toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pourbabak, S.; Orekhov, A.; Samaee, V.; Verlinden, B.; Van Humbeeck, J.; Schryvers, D. pdf  url
doi  openurl
  Title In-Situ TEM Stress Induced Martensitic Transformation in Ni50.8Ti49.2 Microwires Type A1 Journal article
  Year 2019 Publication Shape memory and superelasticity Abbreviated Journal Shap. Mem. Superelasticity  
  Volume 5 Issue 2 Pages (down) 154-162  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In-situ transmission electron microscopy tensile straining is used to study the stress induced martensitic transformation in Ni50.8Ti49.2. Two microwire samples with different heat treatment are investigated from which one single crystal and three polycrystalline TEM specimens, the latter with micro- and nano-size grains, have been produced. The measured Young’s modulus for all TEM specimens is around 70 GPa, considerably higher than the averaged 55 GPa of the original microwire sample. The height of the superelastic stress plateau shows an inverse relationship with the specimen thickness for the polycrystalline specimens. Martensite starts nucleating within the elastic region of the stress–strain curve and on the edges of the specimens while also grain boundaries act as nucleation sites in the polycrystalline specimens. When a martensite plate reaches a grain boundary in the polycrystalline specimen, it initiates the transformation in the neighboring grain at the other side of the grain boundary. In later stages martensite plates coalesce at higher loads in the stress plateau. In highly strained specimens, residual martensite remains after release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472940200002 Publication Date 2019-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-384X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Saeid Pourbabak likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. This work was also made possible through the AUHA13009 Grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159989 Serial 5177  
Permanent link to this record
 

 
Author Kleshch, V.I.; Porshyn, V.; Orekhov, A.S.; Orekhov, A.S.; Lützenkirchen-Hecht, D.; Obraztsov, A.N. pdf  url
doi  openurl
  Title Carbon single-electron point source controlled by Coulomb blockade Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 171 Issue Pages (down) 154-160  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Coulomb blockade effect is commonly used in solid state electronics for the control of electron flow

at the single-particle level. Potentially, it allows the creation of single-electron point sources demanded

for prospective electron microscopy instruments and other vacuum electronics devices. Here we realize

this potential via creation of a stable point electron source composed of a carbon nanowire electrically

coupled to a diamond nanotip by a tunnel junction. Using energy spectroscopy analysis, we characterize

the electrons liberated from the nanometer scale carbon heterostructures in time and energy domains.

Our experimental results demonstrate perfect agreement with theory prediction of Coulomb oscillations

of the Fermi level in the nanowire and allow to determine the mechanisms of their suppression.

Persistence of the oscillations at room temperature, high intensity field emission with currents up to

1 mA, and other characteristics of our emitters are very promising for practical realization of coherent

single-electron guns.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598371500018 Publication Date 2020-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited Open Access OpenAccess  
  Notes The work was supported by Russian Science Foundation (Project No. 19-72-10067). Approved Most recent IF: 6.337  
  Call Number EMAT @ emat @c:irua:175013 Serial 6670  
Permanent link to this record
 

 
Author Yu, C.-P. url  isbn
openurl 
  Title Novel imaging methods of transmission electron microscopy based on electron beam scattering and modulation Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages (down) x, 154 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy (TEM) is a technique that uses an electron beam to analyze materials. This analysis is based on the interaction between the electron beam and the sample, such as photon emission and electron diffraction pattern, to name a few. Sample damage, however, also occurs when such interaction alters the structure of the sample. To ensure information from the undamaged material can be acquired, the electron expense to probe the material is thus limited. In this work, we propose efficient methods for acquiring and processing the information originating from the electron-sample interaction so that the study of the material and the conducting of the TEM experiment can be less hindered by the limited dose usage. In the first part of the work, the relationship between the scattering of the electron and the local physical property of the sample is studied. Based on this relationship, two reconstruction schemes are proposed capable of producing high-resolution images at low-dose conditions. Besides, the proposed reconstructions are not restricted to complete datasets but instead work on pieces of data, therefore allowing live feedback during data acquisition. Such feature of the methods allows the whole TEM experiment to be carried out under low dose conditions and thus further reduces possible beam damage on the studied material. In the second part of the work, we discuss our approach to modulating the electron beam and its benefits. An electrostatic device that can alter the wavefront of the passing electron wave is introduced and characterized. The beam-modulation ability is demonstrated by creating orthogonal beam sets, and applications that exploit the adaptability of the wave modulator are demonstrated with both simulation and experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 987-90-5728-534-7 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200885 Serial 9064  
Permanent link to this record
 

 
Author Vernimmen, J.; Meynen, V.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Cool, P. pdf  doi
openurl 
  Title Formation of a Ti-siliceous trimodal material with macroholes, mesopores and zeolitic features via a one-pot templating synthesis Type A1 Journal article
  Year 2012 Publication Journal of porous materials Abbreviated Journal J Porous Mat  
  Volume 19 Issue 2 Pages (down) 153-160  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Based on a facile one-pot templating synthesis, using a TS-1 zeolite recipe whereby part of the zeolite structure directing agent is replaced by a mesopore templating agent, a trimodal material is formed. The resulting meso-TSM material combines mesoporosity (Ti-MCM-41) with zeolitic features (TS-1) and a unique sheet-like morphology with uniform macroporous voids (macroholes). Moreover, the macrohole formation, mesoporosity and zeolitic properties of the meso-TSM material can be controlled in a straightforward way by adjusting the length of the hydrothermal treatment. This newly developed material may imply great potential for catalytic redox applications and diffusion limitated processes because of its highly tunable character in all three dimensions (micro-, meso- and macroporous scale).  
  Address  
  Corporate Author Thesis  
  Publisher Kluwer Academic Place of Publication Boston, Mass. Editor  
  Language Wos 000301187600002 Publication Date 2011-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1380-2224;1573-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.624 Times cited 2 Open Access  
  Notes Fwo; Goa Approved Most recent IF: 1.624; 2012 IF: 1.348  
  Call Number UA @ lucian @ c:irua:88367 Serial 1257  
Permanent link to this record
 

 
Author Goessens, C.; Schryvers, D.; van Landuyt, J.; Amelinckx, S.; de Keyzer, R. doi  openurl
  Title Long period surface ordering of iodine ions in mixed tabular AgBr-AgBrI microcrystals Type A1 Journal article
  Year 1995 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci  
  Volume 337 Issue Pages (down) 153-165  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1995RQ74900024 Publication Date 2003-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.925 Times cited 10 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13162 Serial 1836  
Permanent link to this record
 

 
Author van Dyck, D.; Van Aert, S.; den Dekker, A.J. doi  openurl
  Title Physical limits on atomic resolution Type A1 Journal article
  Year 2004 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 10 Issue Pages (down) 153-157  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos 000188882100022 Publication Date 2004-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 14 Open Access  
  Notes Approved Most recent IF: 1.891; 2004 IF: 2.389  
  Call Number UA @ lucian @ c:irua:47515 Serial 2616  
Permanent link to this record
 

 
Author Oleynikov, P.N.; Shpanchenko, R.V.; Rozova, M.G.; Abakumov, A.M.; Antipov, E.V.; Hadermann, J.; Lebedev, O.I.; Van Tendeloo, G. openurl 
  Title Synthesis and structure of fluorinated RBa2Cu2O6+. (R=Dy, Ho and Tm) phases Type A1 Journal article
  Year 2001 Publication Russian journal of inorganic chemistry Abbreviated Journal Russ J Inorg Chem+  
  Volume 46 Issue 2 Pages (down) 153-158  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-0236 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.787 Times cited Open Access  
  Notes Approved Most recent IF: 0.787; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:36045 Serial 3443  
Permanent link to this record
 

 
Author Nistor, L.C.; Van Tendeloo, G.; Amelinckx, S. openurl 
  Title Defects and phase transformation in monclinic natural hollandite: BaxMn8O16 Type A1 Journal article
  Year 1994 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 109 Issue Pages (down) 152-165  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1994MY48800024 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.133 Times cited 13 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:10023 Serial 626  
Permanent link to this record
 

 
Author Nistor, L.C.; Van Tendeloo, G.; Amelinckx, S. pdf  doi
openurl 
  Title Defects and phase transition in monoclinic natural hollandite : BaxMn8O16 Type A1 Journal article
  Year 1994 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 109 Issue 1 Pages (down) 152-165  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1994MY48800024 Publication Date 2002-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.133 Times cited 13 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:99918 Serial 627  
Permanent link to this record
 

 
Author Feld, A.; Weimer, A.; Kornowski, A.; Winckelmans, N.; Merkl, J.-P.; Kloust, H.; Zierold, R.; Schmidtke, C.; Schotten, T.; Riedner, M.; Bals, S.; Weller, P.D., Horst url  doi
openurl 
  Title Chemistry of Shape-Controlled Iron Oxide Nanocrystal Formation Type A1 Journal article
  Year 2018 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 13 Pages (down) 152-162  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Herein we demonstrate that meticulous and in-depth analysis of the reaction mechanisms of nanoparticle formation is rewarded by full control of size, shape and crystal structure of superparamagnetic iron oxide nanocrystals during synthesis. Starting from two iron sources – iron(II)- and iron(III) carbonate -a strict separation of oleate formation from the generation of reactive pyrolysis products and concomitant nucleation of iron oxide nanoparticles was achieved. This protocol enabled us to analyze each step of nanoparticle formation independently in depth. Progress of the entire reaction was monitored via matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and gas chromatography (GC) gaining insight into the formation of various iron oleate species prior to nucleation. Interestingly, due to the intrinsic strongly reductive pyrolysis conditions of the oleate intermediates and redox process in early stages of the synthesis, pristine iron oxide nuclei were composed exclusively from wustite, irrespective of the oxidation state of the iron source. Controlling the reaction conditions provided a very broad range of size- and shape defined monodisperse iron oxide nanoparticles. Curiously, after nucleation star shaped nanocrystals were obtained, which underwent metamorphism towards cubic shaped particles. EELS tomography revealed ex post oxidation of the primary wustite nanocrystal providing a full 3D image of Fe2+ and Fe3+ distribution within. Overall, we developed a highly flexible synthesis, yielding multigram amounts of well-defined iron oxide nanocrystals of different sizes and morphologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456749900017 Publication Date 2018-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 54 Open Access OpenAccess  
  Notes The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 192346071 – SFB 986 and the excellence cluster ‘The Hamburg Centre for Ultrafast Imaging – Structure, Dynamics and Control of Matter at the Atomic Scale’ (by grant EXC 1074) S.B. and N.W. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS) and from the Research Foundation Flanders (FWO, Belgium) through Project fundings G038116N. Dr. Volker Sauerland for his support in calibrating the MALDI-TOF spectra. Almut Bark for measuring XRD (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:155716UA @ admin @ c:irua:155716 Serial 5073  
Permanent link to this record
 

 
Author Rosenauer, A.; Schowalter, M.; Glas, F.; Lamoen, D. openurl 
  Title First-principles calculations of 002 structure factors for electron scattering in strained InxGa1-xAs Type A1 Journal article
  Year 2005 Publication Abbreviated Journal  
  Volume 107 Issue Pages (down) 151-154  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:72916 Serial 1202  
Permanent link to this record
 

 
Author Kaltsas, G.; Travlos, A.; Nassiopoulos, A.G.; Frangis, N.; van Landuyt, J. doi  openurl
  Title High crystalline quality erbium silicide films on (100) silicon grown in high vacuum Type A1 Journal article
  Year 1996 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 102 Issue Pages (down) 151-155  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996VJ86100034 Publication Date 2003-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.711 Times cited 14 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15459 Serial 1423  
Permanent link to this record
 

 
Author Goessens, C.; Schryvers, D.; van Landuyt, J.; de Keyzer, R. doi  openurl
  Title In situ HREM study of electron irradiation effects in AgCl microcrystals Type A1 Journal article
  Year 1992 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 40 Issue Pages (down) 151-162  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1992HN13400005 Publication Date 2002-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.436 Times cited 10 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:4094 Serial 1581  
Permanent link to this record
 

 
Author Poppe, R. url  openurl
  Title Refining short-range order parameters from diffuse electron scattering Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages (down) iv, 150 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Electrons, X-rays and neutrons that pass through a thin crystalline sample will be diffracted. Diffraction patterns of crystalline materials contain Bragg reflections (sharp discrete intensity maxima) and diffuse scattering (a weak continuous background). The Bragg reflections contain information about the average crystal structure (the type of atoms and the average atomic positions), whereas the diffuse scattering contains information about the short-range order (deviations from the average crystal structure that are ordered on a local scale). Because the properties of many materials depend on the short-range order, refining short-range order parameters is essential for understanding and optimizing material properties. The refinement of short-range order parameters has previously been applied to the diffuse scattering in single-crystal X-ray and single-crystal neutron diffraction data but not yet to the diffuse scattering in single-crystal electron diffraction data. In this work, we will verify the possibility to refine short-range order parameters from the diffuse scattering in single-crystal electron diffraction data. Electron diffraction allows to acquire data on submicron-sized crystals, which are too small to be investigated with single-crystal X-ray and single-crystal neutron diffraction. In the first part of this work, we will refine short-range order parameters from the one-dimensional diffuse scattering in electron diffraction data acquired on the lithium-ion battery cathode material Li1.2Ni0.13Mn0.54Co0.13O2. The number of stacking faults and the twin percentages will be refined from the diffuse scattering using a Monte Carlo refinement. We will also describe a method to determine the spinel/layered phase ratio from the intensities of the Bragg reflections in electron diffraction data. In the second part of this work, we will refine short-range order parameters from the three-dimensional diffuse scattering in both single-crystal electron and single-crystal X-ray diffraction data acquired on Nb0.84CoSb. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms will be refined from the diffuse scattering using a Monte Carlo refinement and a three-dimensional difference pair distribution function refinement. The effect of different experimental parameters on the spatial resolution of the observed diffuse scattering will also be investigated. Finally, the model of the short-range Nb-vacancy order in Nb0.84CoSb will also be applied to LiNi0.5Sn0.3Co0.2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200610 Serial 9084  
Permanent link to this record
 

 
Author Seo, J.W.; Schryvers, D. doi  openurl
  Title Defect structures in CuZr martensite, studies by CTEM and HRTEM Type A1 Journal article
  Year 1997 Publication Journal de physique: 4 Abbreviated Journal J Phys Iv  
  Volume C5 Issue Pages (down) 149-154  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos 000072520300024 Publication Date 2007-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:21351 Serial 623  
Permanent link to this record
 

 
Author Drozhzhin, O.A.; Sumanov, V.D.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Baranov, A.N.; Stevenson, K.J.; Antipov, E.V. pdf  url
doi  openurl
  Title Switching between solid solution and two-phase regimes in the Li1-xFe1-yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 191 Issue 191 Pages (down) 149-157  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electrochemical properties and phase transformations during (de)insertion of Li+ in LiFePO4, LiFe0.9Mn0.1PO4 and LiFe0.5Mn0.5PO4 are studied by means of galvanostatic cycling, potential intermittent titration technique (PITT) and in situ X-ray powder diffraction. Different modes of switching between the solid solution and two-phase regimes are revealed which are influenced by the Mn content in Li1-xFe1-yMnyPO4. Additionally, an increase in electrochemical capacity with the Mn content is observed at high rates of galvanostatic cycling (10C, 20C), which is in good agreement with the numerically estimated contribution of the solid solution mechanism determined from PITT data. The observed asymmetric behavior of the phase transformations in Li1-xFe0.5Mn0.5PO4 during charge and discharge is discussed. For the first time, the crystal structures of electrochemically deintercalated Li1-xFe0.5Mn0.5PO4 with different Li content – LiFe0.5Mn0.5PO4, Li0.5Fe0.5Mn0.5PO4 and Li0.1Fe0.5Mn0.5PO4 – are refined, including the occupancy factors of the Li position. This refinement is done using electron diffraction tomography data. The crystallographic analyses of Li1-xFe0.5Mn0.5PO4 reveal that at x = 0.5 and 0.9 the structure retains the Pnma symmetry and the main motif of the pristine x = 0 structure without noticeable short range order effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371143200018 Publication Date 2016-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 27 Open Access  
  Notes This work was supported by the Russian Foundation of Basic Research (grants No. 14-29-04064 and 14-03-31473), Skolkovo Institute of Science and Technology, and the Lomonosov Moscow State University Program of Development. J. Hadermann, O. M. Karakulina and A. M. Abakumov acknowl- edge support from FWO under grant G040116N. Approved Most recent IF: 4.798  
  Call Number c:irua:131911 Serial 4032  
Permanent link to this record
 

 
Author Yao, X. url  openurl
  Title An advanced TEM study on quantification of Ni4Ti3 precipitates in low temperature aged Ni-Ti shape memory alloy Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages (down) 149 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:164987 Serial 6284  
Permanent link to this record
 

 
Author Prabhakara, V. url  openurl
  Title Strain measurement for semiconductor applications with Raman spectroscopy and Transmission electron microscopy Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages (down) 149 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Scaling down the size of transistors has been a trend for several decades which has led to improved transistor performance, increased transistor density and hence the overall computation power of IC chips. The trend slowed in recent years due to reliability and power consumption issues at the nanoscale. Hence strain is introduced into transistor channels that has beneficial effects on improving the mobility of charge carriers, providing an alternative pathway for enhancing transistor performance. Therefore, monitoring strain is vital for the semiconductor industry. With the recent trend of decreasing device dimensions (FinFETS ~ 10-20nm) and strain modulation being used throughout, industry needs a reliable and fast method as quality control or defect characterisation. Such a universal strain measurement method does not exist, and one relies on a combination of quantitative in-line methods and complex off-line approaches. In this thesis, I investigated TEM and Raman spectroscopy-based methodologies for strain measurement. In terms of TEM methodologies, advancements are made for the STEM moiré imaging, targeting strain spatial resolution enhancement. I introduce advanced quadrature demodulation and phase stepping interferometry applied to STEM moiré that greatly enhances the spatial resolution while providing enhanced field of view and sensitivity for strain measurement. We introduce ways to reduce scan distortions in strain maps using an alternative scan strategy called “Block scanning” and the non-linear regression applied for strain extraction. Prospects for 3D strain analysis using high-resolution tomography is also investigated which gives direct access for the full second order strain tensors calculation. Finally, we compare strain measurements from TEM techniques with inline techniques like Raman spectroscopy. Raman stress measurement involves sensitive identification of the TO and LO phonon peaks. Raman spectrum of strained Ge transistor channel consists of strongly overlapping peaks within the spectral resolution of the spectrometer. Hence, the process of deconvolution of the two peaks is rather challenging. Hence, we explore new polarisation geometries like radially polarised incoming light which was shown to ease the deconvolution problem resulting in improved precision for Raman stress–strain measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182261 Serial 6847  
Permanent link to this record
 

 
Author Stefan, M.; Nistor, S.V.; Mateescu, D.C.; Abakumov, A.M. pdf  doi
openurl 
  Title Growth of pure and doped Rb2ZnCl4and K2ZnCl4 single crystals by Czochralski technique Type A1 Journal article
  Year 1999 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth  
  Volume 200 Issue 1-2 Pages (down) 148-154  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High-quality single crystals of Rb2ZnCl4 and K2ZnCl4, pure or doped with Cu, Mn, Cd, Tl, Sn, Pb and In cations, were grown by Czochralski technique in argon atmosphere, using an experimental setup that allows direct visual access to the whole growth zone. Slowly cooled crystals exhibit excellent cleavage properties. Fastly cooled crystals do cleave poorly. As shown by X-ray diffraction studies, such K2ZnCl4 samples exhibit inclusions of the high-temperature Pmcn phase with lattice parameters a = 7.263(2) Angstrom, b = 12.562(2) Angstrom and c = 8.960(4) Angstrom in the P2(1) cn room temperature stable phase. ESR and optical spectroscopy studies revealed the localization and valence state of the cation dopants. (C) 1999 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000079840600021 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.751 Times cited 13 Open Access  
  Notes Approved Most recent IF: 1.751; 1999 IF: 1.492  
  Call Number UA @ lucian @ c:irua:102909 Serial 1395  
Permanent link to this record
 

 
Author Tikhomirov, A.S.; Sorokina, N.E.; Shornikova, O.N.; Morozov, V.A.; Van Tendeloo, G.; Avdeev, V.V. pdf  doi
openurl 
  Title The chemical vapor infiltration of exfoliated graphite to produce carbon/carbon composites Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 1 Pages (down) 147-153  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Chemical vapor infiltration was used for the production of carbon/carbon composites based on exfoliated graphite and pyrolytic carbon Two different exfoliated graphites compacted to densities of 0 05-0 4 g/cm(3) were used as a preform The influence of the synthesis conditions (temperature, pressure, time etc) on the degree of infiltration, the pyrolytic carbon morphology and the C/C composite characteristics was examined using Raman spectroscopy, scanning electron microscopy and low-temperature nitrogen adsorption (C) 2010 Elsevier Ltd All rights reserved  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000284977500021 Publication Date 2010-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 7 Open Access  
  Notes Iap Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:99185 Serial 354  
Permanent link to this record
 

 
Author Fedina, L.; Gutakovskii, A.; Aseev, A.; van Landuyt, J.; Vanhellemont, J. doi  openurl
  Title Extended defects formation in Si crystals by clustering of intrinsic point defects studied by in-situ electron irradiation in an HREM Type A1 Journal article
  Year 1999 Publication Physica status solidi: A: applied research T2 – International Conference on Extended Defects in Semiconductors (EDS 98), Sept. 06-11, 1998, Jaszowiec, Poland Abbreviated Journal Phys Status Solidi A  
  Volume 171 Issue 1 Pages (down) 147-157  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In situ irradiation experiments in a high resolution electron microscope JEOL-4000EX at room temperature resulted in discovery of the isolated and combined clustering of vacancies and self-interstitial atoms on {111}- and {113}-habit planes both leading to an extended defect formation in Si crystals. The type of the defect is strongly affected by the type of supersaturation of point defects depending on the crystal thickness during electron irradiation. Because of the existence of energy barriers against recombination of interstitials with the extended aggregates of vacancies, a large family of intermediate defect configurations (IDCs) is formed on {113}- and {111}-habit planes at a low temperature under interstitial supersaturation in addition to the well-known {133}-defects of interstitial type. The formation of metastable IDCs inside vacancy aggregates prevents a way of recombination of defects in extended shape.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Berlin Editor  
  Language Wos 000078539700020 Publication Date 2002-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 40 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:95798 Serial 1152  
Permanent link to this record
 

 
Author Fedina, L.; Gutakovskii, A.; Aseev, A.; van Landuyt, J.; Vanhellemont, J. openurl 
  Title Extended defects formation in Si crystals by clustering of intrinsic point defects studied by in-situ irradiation in an HREM Type A1 Journal article
  Year 1999 Publication Physica status solidi: A: applied research Abbreviated Journal Phys Status Solidi A  
  Volume 171 Issue 1 Pages (down) 147-157  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000078539700020 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8965 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 40 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:29687 Serial 1153  
Permanent link to this record
 

 
Author Buschmann, V.; Fedina, L.; Rodewald, M.; Van Tendeloo, G. pdf  doi
openurl 
  Title A new model for the (2x1) reconstructed CoSi2-Si(100) interface Type A1 Journal article
  Year 1998 Publication Philosophical magazine letters Abbreviated Journal Phil Mag Lett  
  Volume 77 Issue 3 Pages (down) 147-151  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000072112000004 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0839;1362-3036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.941 Times cited 10 Open Access  
  Notes Approved Most recent IF: 0.941; 1998 IF: 1.152  
  Call Number UA @ lucian @ c:irua:25655 Serial 2326  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Goris, B.; Blommaerts, N.; Bals, S.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Plasmonic ‘rainbow’ photocatalyst with broadband solar light response for environmental applications Type A1 Journal article
  Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 188 Issue 188 Pages (down) 147-153  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We propose the concept of a ‘rainbow’ photocatalyst that consists of TiO2 modified with gold-silver alloy nanoparticles of various sizes and compositions, resulting in a broad plasmon absorption band that covers the entire UV–vis range of the solar spectrum. It is demonstrated that this plasmonic ‘rainbow’ photocatalyst is 16% more effective than TiO2 P25 under both simulated and real solar light for pollutant degradation at the solid-gas interface. With this we provide a promising strategy to maximize the spectral response for solar to chemical energy conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372677500016 Publication Date 2016-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 47 Open Access OpenAccess  
  Notes S.W.V. and B.G. acknowledge the Research Foundation—Flanders (FWO) for a postdoctoral fellowship. M.K. acknowledges IWT for the doctoral scholarship. S.B. acknowledges the European Research Council (ERC) for financial support through the ERC grant agreement no. 335078-COLOURATOM. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446  
  Call Number c:irua:130995 Serial 4061  
Permanent link to this record
 

 
Author Fang, C.M.; van Huis, M.A.; Zandbergen, H.W. pdf  doi
openurl 
  Title Stability and structures of the CFCC-TmC phases : a first-principles study Type A1 Journal article
  Year 2012 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 51 Issue 1 Pages (down) 146-150  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The η-M6C, γ-M23C6, and π-M11C2 phases (M = Cr, Mn and Fe) have complex cubic lattices with lattice parameters of approximately 1.0 nm. They belong to the CFCC-TmC family (complex face-centered cubic transition metal carbides), display a rich variety of crystal structures, and play in important role in iron alloys and steels. Here we show that first-principles calculations predict high stability for the γ-M23C6 and η-M6C phases, and instability for the π-M11C2 phases, taking into account various compositional and structural possibilities. The calculations also show a wide variety in magnetic properties. The Cr-containing phases were found to be non-magnetic and the Fe-phases to be ferromagnetic, while the Mn-containing phases were found to be either ferrimagnetic or non-magnetic. Details of the local atomic structures, and the formation and stability of these precipitates in alloys are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296214300020 Publication Date 2011-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 18 Open Access  
  Notes Approved Most recent IF: 2.292; 2012 IF: 1.878  
  Call Number UA @ lucian @ c:irua:93277 Serial 3119  
Permanent link to this record
 

 
Author De wael, A. url  openurl
  Title Model-based quantitative scanning transmission electron microscopy for measuring dynamic structural changes at the atomic scale Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages (down) xiv, 146 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Nanomaterialen kunnen uiterst interessante eigenschappen vertonen voor een verscheidenheid aan veelbelovende toepassingen, gaande van zonnecrème tot batterijen voor elektrische auto’s. Een nanometer is een miljard keer kleiner dan een meter. Op deze schaal kunnen de materiaaleigenschappen volledig verschillen van bulkmaterialen op grotere schaal. Bovendien hangen de eigenschappen van nanomaterialen sterk af van hun exacte grootte en vorm. Kleine verschillen in de posities van de atomen, in de grootte-orde van een picometer (nog eens duizend maal kleiner dan een nanometer), kunnen de fysische eigenschappen al drastisch beïnvloeden. Daarom is een betrouwbare kwantificering van de atomaire structuur van kritisch belang om de evolutie naar materiaalontwerp mogelijk te maken en inzicht te verwerven in de relatie tussen de fysische eigenschappen en de structuur van nanomaterialen. Daarnaast kan de atomaire structuur van nanomaterialen ook veranderen in de loop van de tijd ten gevolge van verschillende fysische processen. Het onderzoek dat in deze thesis gepresenteerd wordt, maakt het mogelijk om de dynamische structuurveranderingen van nanomaterialen betrouwbaar te kwantificeren op atomaire schaal door gebruik te maken van raster transmissie elektronenmicroscopie (STEM). Ik heb dit gerealiseerd door methodes te ontwikkelen waarmee ik het aantal atomen “achter elkaar” kan tellen in elke atoomkolom van een nanomateriaal, en dit op basis van beelden opgenomen met een elektronenmicroscoop. Een belangrijk verschil met telmethodes voor de analyse van een enkel beeld is het schatten van de kans dat een atoomkolom atomen zal verliezen of bijkrijgen van het ene naar het andere beeld in de tijdreeks. Deze kwantitatieve methode kan het ontrafelen van de tijdsafhankelijke structuur-eigenschappen relatie van een nanomateriaal mogelijk maken, wat uiteindelijk kan leiden tot efficiënter design en productie van nanomaterialen voor innovatieve toepassingen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179514 Serial 6870  
Permanent link to this record
 

 
Author Amin-Ahmadi, B.; Idrissi, H.; Galceran, M.; Colla, M.S.; Raskin, J.P.; Pardoen, T.; Godet, S.; Schryvers, D. pdf  doi
openurl 
  Title Effect of deposition rate on the microstructure of electron beam evaporated nanocrystalline palladium thin films Type A1 Journal article
  Year 2013 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 539 Issue Pages (down) 145-150  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The influence of the deposition rate on the formation of growth twins in nanocrystalline Pd films deposited by electron beam evaporation is investigated using transmission electron microscopy. Statistical measurements prove that twin boundary (TB) density and volume fraction of grains containing twins increase with increasing deposition rate. A clear increase of the dislocation density was observed for the highest deposition rate of 5 Å/s, caused by the increase of the internal stress building up during deposition. Based on crystallographic orientation indexation using transmission electron microscopy, it can be concluded that a {111} crystallographic texture increases with increasing deposition rate even though the {101} crystallographic texture remains dominant. Most of the TBs are fully coherent without any residual dislocations. However, for the highest deposition rate (5 Å/s), the coherency of the TBs decreases significantly as a result of the interaction of lattice dislocations emitted during deposition with the growth TBs. The analysis of the grain boundary character of different Pd films shows that an increasing fraction of high angle grain boundaries with misorientation angles around 5565° leads to a higher potential for twin formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000321111100025 Publication Date 2013-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 13 Open Access  
  Notes Fwo Approved Most recent IF: 1.879; 2013 IF: 1.867  
  Call Number UA @ lucian @ c:irua:109268 Serial 807  
Permanent link to this record
 

 
Author Gillie, L.J.; Wright, A.J.; Hadermann, J.; Van Tendeloo, G.; Greaves, C. pdf  doi
openurl 
  Title Synthesis and characterization of the reduced single-layer manganite Sr2MnO3.5+x Type A1 Journal article
  Year 2002 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 167 Issue Pages (down) 145-151  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000177915800018 Publication Date 2002-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.299; 2002 IF: 1.671  
  Call Number UA @ lucian @ c:irua:40347 Serial 3420  
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Bernier, N.; Béché, A.; Rouvière, J.-L. url  doi
openurl 
  Title Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope Type A1 Journal article
  Year 2016 Publication Micron Abbreviated Journal Micron  
  Volume 80 Issue 80 Pages (down) 145-165  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The last few years have seen a great deal of progress in the development of transmission electron microscopy based techniques for strain mapping. New techniques have appeared such as dark field electron holography and nanobeam diffraction and better known ones such as geometrical phase analysis have been improved by using aberration corrected ultra-stable modern electron microscopes. In this paper we apply dark field electron holography, the geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images, nanobeam diffraction and precession diffraction, all performed at the state-of-the-art to five different types of semiconductor samples. These include a simple calibration structure comprising 10-nm-thick SiGe layers to benchmark the techniques. A SiGe recessed source and drain device has been examined in order to test their capabilities on 2D structures. Devices that have been strained using a nitride stressor have been examined to test the sensitivity of the different techniques when applied to systems containing low values of deformation. To test the techniques on modern semiconductors, an electrically tested device grown on a SOI wafer has been examined. Finally a GaN/AlN superlattice was tested in order to assess the different methods of measuring deformation on specimens that do not have a perfect crystalline structure. The different deformation mapping techniques have been compared to one another and the strengths and weaknesses of each are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000366770100018 Publication Date 2015-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 50 Open Access  
  Notes Approved Most recent IF: 1.98  
  Call Number UA @ lucian @ c:irua:136446 Serial 4401  
Permanent link to this record
 

 
Author Leus, K.; Perez, J.P.H.; Folens, K.; Meledina, M.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P. pdf  doi
openurl 
  Title UiO-66-(SH)2 as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions Type A1 Journal article
  Year 2017 Publication Faraday discussions Abbreviated Journal Faraday Discuss  
  Volume 201 Issue Pages (down) 145-161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The dithiol functionalized UiO-66-(SH)(2) is developed as an efficient adsorbent for the removal of mercury in aqueous media. Important parameters for the application of MOFs in real-life circumstances include: stability and recyclability of the adsorbents, selectivity for the targeted Hg species in the presence of much higher concentrations of interfering species, and ability to purify wastewater below international environmental limits within a short time. We show that UiO-66-(SH)(2) meets all these criteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000409366000009 Publication Date 2017-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6640 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.588 Times cited 18 Open Access Not_Open_Access  
  Notes ; J. P. H. P. is grateful for the funding from the Vlaamse Interuniversitaire Raad-Universitaire Ontwikkelingssamenwerking (VLIR-UOS). K. L. acknowledges the financial support from the Ghent University BOF Postdoctoral Grant (01P06813T). ; Approved Most recent IF: 3.588  
  Call Number UA @ lucian @ c:irua:145653 Serial 4757  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: