toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title The quasiparticle band structure of zincblende and rocksalt ZnO Type A1 Journal article
  Year 2010 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 22 Issue 12 Pages (up) 125505,1-125505,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the pd hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong pd hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn20 + pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ~ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong pd hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000275496600010 Publication Date 2010-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 53 Open Access  
  Notes Iwt; Fwo; Bof-Nio Approved Most recent IF: 2.649; 2010 IF: 2.332  
  Call Number UA @ lucian @ c:irua:81531 Serial 2802  
Permanent link to this record
 

 
Author Chen, Y.; Hong-Yu, W.; Peeters, F.M.; Shanenko, A.A. pdf  doi
openurl 
  Title Quantum-size effects and thermal response of anti-Kramer-Pesch vortex core Type A1 Journal article
  Year 2015 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 27 Issue 27 Pages (up) 125701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Since the 1960's it has been well known that the basic superconductive quantities can exhibit oscillations as functions of the thickness (diameter) in superconducting nanofilms (nanowires) due to the size quantization of the electronic spectrum. However, very little is known about the effects of quantum confinement on the microscopic properties of vortices. Based on a numerical solution to the Bogoliubov-de Gennes equations, we study the quantum-size oscillations of the vortex core resulting from the sequential interchange of the Kramer-Pesch and anti-Kramer-Pesch regimes with changing nanocylinder radius. The physics behind the anti-Kramer-Pesch anomaly is displayed by utilizing a semi-analytical Anderson approximate solution. We also demonstrate that the anti-Kramer-Pesch vortex core is robust against thermal smearing and results in a distinctive two-maxima structure in the local density of states, which can be used to identify the existence of the anti-Kramer-Pesch vortex.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000351294700018 Publication Date 2015-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 4 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. NSFC-11304134, the Flemish Science Foundation (FWO-Vl), and the Methusalem program. AAS acknowledges the support of the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). WHY acknowledges the support of Scientific Research Fund of Zhejiang Provincial Education Department (Y201120994). ; Approved Most recent IF: 2.649; 2015 IF: 2.346  
  Call Number c:irua:125460 Serial 2787  
Permanent link to this record
 

 
Author Zamani, M.; Yapicioglu, H.; Kara, A.; Sevik, C. pdf  doi
openurl 
  Title Statistical analysis of porcelain tiles' technical properties : full factorial design investigation on oxide ratios and temperature Type A1 Journal article
  Year 2023 Publication Physica scripta Abbreviated Journal  
  Volume 98 Issue 12 Pages (up) 125953-18  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract This study focuses on optimizing the composition and firing temperature of porcelain tiles using statistical analysis techniques. A full factorial design, including model adequacy checking, analysis of variance, Pareto charts, interaction plots, regression model, and response optimizer is employed. The key factors were the Seger ratios of SiO2/Al2O3, Na2O/K2O, MgO/CaO, and firing temperature. The response variables investigated were bulk density, water absorption, linear shrinkage, coefficient of thermal expansion (at 500 degrees C), and strength. The statistical analysis revealed highly significant results, which were further validated, confirming their reliability for practical use in the production of porcelain tiles. The study demonstrated the effectiveness of utilizing Seger formulas and properties of typical raw materials to accurately predict the final properties of ceramic tiles. By employing SiO2/Al2O3 = 5.2, Na2O/K2O = 1.50, MgO/CaO = 3.0, and firing temperature of 1180 degrees C, optimized properties, such as maximum strength, maximum bulk density, and minimum water absorption, was achieved with a composite desirability of 0.9821.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001105879800001 Publication Date 2023-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949; 1402-4896 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202033 Serial 9097  
Permanent link to this record
 

 
Author Ackerman, M.L.; Kumar, P.; Neek-Amal, M.; Thibado, P.M.; Peeters, F.M.; Singh, S. url  doi
openurl 
  Title Anomalous dynamical behavior of freestanding graphene membranes Type A1 Journal article
  Year 2016 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 117 Issue 117 Pages (up) 126801  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report subnanometer, high-bandwidth measurements of the out-of-plane (vertical) motion of atoms in freestanding graphene using scanning tunneling microscopy. By tracking the vertical position over a long time period, a 1000-fold increase in the ability to measure space-time dynamics of atomically thin membranes is achieved over the current state-of-the-art imaging technologies. We observe that the vertical motion of a graphene membrane exhibits rare long-scale excursions characterized by both anomalous mean-squared displacements and Cauchy-Lorentz power law jump distributions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000383171800010 Publication Date 2016-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 46 Open Access  
  Notes ; The authors thank Theodore L. Einstein, Michael F. Shlesinger, and Woodrow L. Shew for their careful reading of the manuscript and insightful comments. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. P. M. T. was supported by the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. M.N.-A. was supported by Iran Science Elites Federation (ISEF) under Grant No. 11/66332. ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @ c:irua:137125 Serial 4347  
Permanent link to this record
 

 
Author Misko, V.R.; Savel'ev, S.; Rakhmanov, A.L.; Nori, F. url  doi
openurl 
  Title Nonuniform self-organized dynamical states in superconductors with periodic pinning Type A1 Journal article
  Year 2006 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 96 Issue 12 Pages (up) 127004-127004,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider magnetic flux moving in superconductors with periodic pinning arrays. We show that sample heating by moving vortices produces negative differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in the voltage-current characteristic (VI curve). The uniform flux flow state is unstable in the NDR region of the VI curve. Domain structures appear during the NDR part of the VI curve of an N type, while a filamentary instability is observed for the NDR of an S type. The simultaneous existence of the NDR of both types gives rise to the appearance of striking self-organized (both stationary and nonstationary) two-dimensional dynamical structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000236467000064 Publication Date 2006-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 31 Open Access  
  Notes Approved Most recent IF: 8.462; 2006 IF: 7.072  
  Call Number UA @ lucian @ c:irua:94690 Serial 2364  
Permanent link to this record
 

 
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M. url  doi
openurl 
  Title Reply to “Comment on `Excitons, trions, and biexcitons in transition-metal dichalcogenides: Magnetic-field dependence'” Type Editorial
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 12 Pages (up) 127402  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract In the Comment, the authors state that the separation of the relative and center of mass variables in our work is not correct. Here we point out that there is a typographical error, i.e., qi instead of -e, in two of our equations which, when corrected, makes the Comment redundant. Within the ansatzes mentioned in our paper all our results are correct, in contrast to the claims of the Comment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519990800011 Publication Date 2020-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:167680 Serial 6594  
Permanent link to this record
 

 
Author Milton Pereira, J.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Graphene-based resonant-tunneling structures Type A1 Journal article
  Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 90 Issue 13 Pages (up) 132122,1-3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000245317100056 Publication Date 2007-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 147 Open Access  
  Notes Approved Most recent IF: 3.411; 2007 IF: 3.596  
  Call Number UA @ lucian @ c:irua:64303 Serial 1370  
Permanent link to this record
 

 
Author Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P.; Peeters, F.M. url  doi
openurl 
  Title Influence of impurities and surface defects on the flux-induced current in mesoscopic d-wave superconducting loops Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 13 Pages (up) 132501-132501,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigated the magnetic flux dependence of the supercurrent in mesoscopic d-wave superconducting loops, containing impurities and surface defects, by numerically solving the Bogoliubovde Gennes equations self-consistently. In the presence of impurities, bound states arise close to the Fermi energy. In the case of a single impurity, the flux-induced current is found to be suppressed. This can be different when more impurities are introduced in the sample due to the quantum interference effect, which depends sensitively on the relative position between the impurities. We further analyze the effect of small surface defects at the inner or outer edge of the loop, and show that indentation and bulge defects have pronounced and different effects on the supercurrent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000295713600002 Publication Date 2011-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), by Belgian Science Policy (IAP), by National Science Foundation of China (Grant Nos. 10904089 and 60971053), and by research funds under Grant Nos. 20093108120005, S30105, 09JC1406000, and 10zz63. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92811 Serial 1623  
Permanent link to this record
 

 
Author Connolly, M.R.; Milošević, M.V.; Bending, S.J.; Tamegai, T. url  doi
openurl 
  Title Magneto-optical imaging of flux penetration into arrays of Bi2Sr2CaCu2O8 microdisks Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 13 Pages (up) 132501,1-132501,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have used differential magneto-optical (MO) imaging to investigate the mixed state of superconducting Bi2Sr2CaCu2O8+ (BSCCO) microdisks fabricated on a single-crystal sample. MO difference images of the stray field distribution over a range of out-of-plane fields allow us to distinguish between flux that is penetrating the disks and that entering the underlying BSCCO platelet. We find that flux preferentially flows along linear defects into the interstitial platelet regions up to a characteristic field Hp, above which flux enters the disks. We identify this as the field of first penetration of pancake vortices over the Bean-Livingston barrier around the disks, where Hp(T) at intermediate temperatures is well described by an exponentially decaying function with a characteristic temperature T0=19 K. At a given temperature, a minority of the disks exhibit a lower penetration field and we correlate the location of these disks with the linear defects in the BSCCO crystal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000260574200018 Publication Date 2008-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:75658 Serial 1901  
Permanent link to this record
 

 
Author Osca, J.; Sorée, B. doi  openurl
  Title Torque field and skyrmion motion by spin transfer torque in a quasi-2D interface in presence of strong spin-orbit interaction Type A1 Journal article
  Year 2021 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 130 Issue 13 Pages (up) 133903  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the torque field and skyrmion motion at an interface between a ferromagnet hosting a skyrmion and a material with a strong spin-orbit interaction. We analyze both semiconductor materials and topological insulators using a Hamiltonian model that includes a linear term. The spin torque-inducing current is considered to flow in the single band limit; therefore, a quantum model of current is used. Skyrmion motion due to spin transfer torque proves to be more difficult in the presence of a spin-orbit interaction in the case where only interface in-plane currents are present. However, edge effects in narrow nanowires can be used to drive the skyrmion motion and to exert a limited control on its motion direction. We also show the differences and similarities between torque fields due to electric current in the many and single band limits. Published under an exclusive license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000755090400003 Publication Date 2021-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:186452 Serial 7034  
Permanent link to this record
 

 
Author Li, L.L.; Bacaksiz, C.; Nakhaee, M.; Pentcheva, R.; Peeters, F.M.; Yagmurcukardes, M. url  doi
openurl 
  Title Single-layer Janus black arsenic-phosphorus (b-AsP): optical dichroism, anisotropic vibrational, thermal, and elastic properties Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 13 Pages (up) 134102-134109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using density functional theory (DFT) calculations, we predict a puckered, dynamically stable Janus single-layer black arsenic-phosphorus (b-AsP), which is composed of two different atomic sublayers, arsenic and phosphorus atoms. The calculated phonon spectrum reveals that Janus single-layer b-AsP is dynamically stable with either pure or coupled optical phonon branches arising from As and P atoms. The calculated Raman spectrum indicates that due to the relatively strong P-P bonds, As atoms have no contribution to the highfrequency optical vibrations. In addition, the orientation-dependent isovolume heat capacity reveals anisotropic contributions of LA and TA phonon branches to the low-temperature thermal properties. Unlike pristine single layers of b-As and b-P, Janus single-layer b-AsP exhibits additional out-of-plane asymmetry which leads to important consequences for its electronic, optical, and elastic properties. In contrast to single-layer b-As, Janus single-layer b-AsP is found to possess a direct band gap dominated by the P atoms. Moreover, real and imaginary parts of the dynamical dielectric function, including excitonic effects, reveal the highly anisotropic optical feature of the Janus single-layer. A tight-binding (TB) model is also presented for Janus single-layer b-AsP, and it is shown that, with up to seven nearest hoppings, the TB model reproduces well the DFT band structure in the low-energy region around the band gap. This TB model can be used in combination with the Green's function approach to study, e.g., quantum transport in finite systems based on Janus single-layer b-AsP. Furthermore, the linear-elastic properties of Janus single-layer b-AsP are investigated, and the orientation-dependent in-plane stiffness and Poisson ratio are calculated. It is found that the Janus single layer exhibits strong in-plane anisotropy in its Poisson ratio much larger than that of single-layer b-P. This Janus single layer is relevant for promising applications in optical dichroism and anisotropic nanoelasticity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000524531900001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 30 Open Access  
  Notes ; This work was supported by the German Science Foundation (DFG) within SFB/TRR80 (project G3) and the FLAGERA project TRANS-2D-TMD. M.Y. was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). Computational resources were provided by the Flemish Supercomputer Center (VSC) and Leibniz Supercomputer Centrum (project pr87ro). ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:168554 Serial 6602  
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Melting of graphene clusters Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages (up) 134103-134109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Density-functional tight-binding and classical molecular dynamics simulations are used to investigate the structural deformations and melting of planar carbon nanoclusters C-N with N = 2-55. The minimum-energy configurations for different clusters are used as starting configurations for the study of the temperature effects on the bond breaking and rotation in carbon lines (N < 6), carbon rings (5 < N < 19), and graphene nanoflakes. The larger the rings (graphene nanoflakes) the higher the transition temperature (melting point) with ring-to-line (perfect-to-defective) transition structures. The melting point was obtained by using the bond energy, the Lindemann criteria, and the specific heat. We found that hydrogen-passivated graphene nanoflakes (CNHM) have a larger melting temperature with a much smaller dependence on size. The edges in the graphene nanoflakes exhibit several different metastable configurations (isomers) during heating before melting occurs. DOI: 10.1103/PhysRevB.87.134103  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317390700001 Publication Date 2013-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; This work was supported by the EU-Marie Curie IIF Postdoctoral Fellowship No. 299855 (for M.N.-A.), the ESF-EuroGRAPHENE Project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108467 Serial 1987  
Permanent link to this record
 

 
Author Galván Moya, J.E.; Peeters, F.M. url  doi
openurl 
  Title Ginzburg-Landau theory of the zigzag transition in quasi-one-dimensional classical Wigner crystals Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 13 Pages (up) 134106,1-134106,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a mean-field description of the zigzag phase transition of a quasi-one-dimensional system of strongly interacting particles, with interaction potential r−ne−r/λ, that are confined by a power-law potential (yα). The parameters of the resulting one-dimensional Ginzburg-Landau theory are determined analytically for different values of α and n. Close to the transition point for the zigzag phase transition, the scaling behavior of the order parameter is determined. For α=2, the zigzag transition from a single to a double chain is of second order, while for α>2, the one-chain configuration is always unstable and, for α<2, the one-chain ordered state becomes unstable at a certain critical density, resulting in jumps of single particles out of the chain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296289500004 Publication Date 2011-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:93583 Serial 1345  
Permanent link to this record
 

 
Author Michel, K.H.; Costamagna; Peeters, F.M. url  doi
openurl 
  Title Theory of anharmonic phonons in two-dimensional crystals Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages (up) 134302  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Anharmonic effects in an atomic monolayer thin crystal with honeycomb lattice structure are investigated by analytical and numerical lattice dynamical methods. Starting from a semiempirical model for anharmonic couplings of third and fourth orders, we study the in-plane and out-of-plane (flexural) mode components of the generalized wave vector dependent Gruneisen parameters, the thermal tension and the thermal expansion coefficients as a function of temperature and crystal size. From the resonances of the displacement-displacement correlation functions, we obtain the renormalization and decay rate of in-plane and flexural phonons as a function of temperature, wave vector, and crystal size in the classical and in the quantum regime. Quantitative results are presented for graphene. There, we find that the transition temperature T-alpha from negative to positive thermal expansion is lowered with smaller system size. Renormalization of the flexural mode has the opposite effect and leads to values of T-alpha approximate to 300 K for systems of macroscopic size. Extensive numerical analysis throughout the Brillouin zone explores various decay and scattering channels. The relative importance of normal and umklapp processes is investigated. The work is complementary to crystalline membrane theory and computational studies of anharmonic effects in two-dimensional crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000353031000001 Publication Date 2015-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; We thank B. Verberck, D. Lamoen, and A. Dobry for useful comments. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. This work is supported by the EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132512 Serial 4263  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.; Sorée, B.; Magnus, W.; Mocuta, A.; Collaert, N.; Thean, A.; Groeseneken, G. doi  openurl
  Title Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages (up) 134502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In0.53Ga0.47As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000362668400025 Publication Date 2015-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 9 Open Access  
  Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:128765 Serial 4183  
Permanent link to this record
 

 
Author Lin, N.S.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Dynamics of multishell vortex structures in mesoscopic superconducting Corbino disks Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 13 Pages (up) 134504,1-134504,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the dynamics of vortex shells in mesoscopic superconducting Corbino disks, where vortices form shells as recently observed in micrometer-sized Nb disks. Due to the interplay between the vortex-vortex interaction, the gradient Lorentz force and the (in)commensurability between the numbers of vortices in shells, the process of angular melting of vortex-shell configurations becomes complex. Angular melting can start either from the center of the disk (where the shear stress is maximum) or from its boundary (where the shear stress is minimum) depending on the specific vortex configuration. Furthermore, we found that two kinds of defects can exist in such vortex-shell structures: intrashell and intershell defects. An intrashell defect may lead to an inverse dynamic behavior, i.e., one of the vortex shells under a stronger driving force can rotate slower than the adjacent shell that is driven by a weaker Lorentz force. An intershell defect always locks more than two shells until the gradient of the Lorentz force becomes large enough to break the rigid-body rotation of the locked shells. Such a lock-unlock process leads to hysteresis in the angular velocities of the shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000277207900079 Publication Date 2010-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by the “Odysseus” program of the Flemish Government and the Flemish Science Foundation (FWO-V1), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, and the FWO-V1. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:82803 Serial 779  
Permanent link to this record
 

 
Author Bekaert, J. pdf  doi
openurl 
  Title Phonon-mediated superconductivity in ternary silicides X₄ CoSi (X = Nb, Ta) Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 13 Pages (up) 134504-134507  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The superconducting properties of two recently synthesized ternary silicides with unit formula X<sub>4</sub>CoSi (X = Nb, Ta) are investigated through ab initio calculations combined with Eliashberg theory. Interestingly, their crystal structure comprises interlocking honeycomb networks of Nb/Ta atoms. Nb<sub>4</sub>CoSi is found to harbor better conditions for phonon-mediated superconductivity, as it possesses a higher density of states at the Fermi level, fostering stronger electron-phonon coupling. The superconducting critical temperatures (T<sub>c</sub>) follow the same trend, with Nb<sub>4</sub>CoSi having a twice higher value than Ta<sub>4</sub>CoSi. Furthermore, the calculated T<sub>c</sub> values (5.9 K vs 3.1 K) agree excellently with the experimentally obtained ones, establishing superconductivity in this new materials class as mediated by the electron-phonon coupling. Furthermore, my calculations show that the superconducting properties of these compounds do not simply correlate with the parameters of their honeycomb networks, contrary to proposals raised in the literature. Rather, their complete fermiology and phonon spectrum should be taken into account in order to explain their respective superconducting properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001140080300003 Publication Date 2023-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201445 Serial 9071  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Golubovic, D.S.; Peeters, F.M.; Moshchalkov, V.V. url  doi
openurl 
  Title Enhancement and decrease of critical current due to suppression of superconductivity by a magnetic field Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 76 Issue 13 Pages (up) 134505,1-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000250619800084 Publication Date 2007-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:67347 Serial 1059  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Savel'ev, S.; Kusmartsev, F.; Peeters, F.M. url  doi
openurl 
  Title Parametric amplification of vortex-antivortex pair generation in a Josephson junction Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 13 Pages (up) 134505  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using advanced three-dimensional simulations, we show that an Abrikosov vortex, trapped inside a cavity perpendicular to an artificial Josephson junction, can serve as a very efficient source for generation of Josephson vortex-antivortex pairs in the presence of the applied electric current. In such a case, the nucleation rate of the pairs can be tuned in a broad range by an out-of-plane ac magnetic field in a broad range of frequencies. This parametrically amplified vortex-antivortex nucleation can be considered as a macroscopic analog of the dynamic Casimir effect, where fluxon pairs mimic the photons and the ac magnetic field plays the role of the oscillating mirrors. The emerging vortex pairs in our system can be detected by the pronounced features in the measured voltage characteristics, or through the emitted electromagnetic radiation, and exhibit resonant dynamics with respect to the frequency of the applied magnetic field. Reported tunability of the Josephson oscillations can be useful for developing high-frequency emission devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344025100003 Publication Date 2014-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Leverhulme Trust. G.R.B. acknowledges support from a EU-Marie Curie individual grant (Grant No. 253057) ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:121176 Serial 2553  
Permanent link to this record
 

 
Author Adami, O.-A.; Jelić, Ž.L.; Xue, C.; Abdel-Hafiez, M.; Hackens, B.; Moshchalkov, V.V.; Milošević, M.V.; Van de Vondel, J.; Silhanek, A.V. pdf  url
doi  openurl
  Title Onset, evolution, and magnetic braking of vortex lattice instabilities in nanostructured superconducting films Type A1 Journal article
  Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages (up) 134506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In 1976, Larkin and Ovchinnikov [Zh. Eksp. Teor. Fiz. 68, 1915 (1975) [Sov. Phys.–JETP 41, 960 (1976)]] predicted that vortex matter in superconductors driven by an electrical current can undergo an abrupt dynamic transition from a flux-flow regime to a more dissipative state at sufficiently high vortex velocities. Typically, this transition manifests itself as a large voltage jump at a particular current density, so-called instability current density J∗, which is smaller than the depairing current. By tuning the effective pinning strength in Al films, using an artificial periodic pinning array of triangular holes, we show that a unique and well-defined instability current density exists if the pinning is strong, whereas a series of multiple voltage transitions appear in the relatively weaker pinning regime. This behavior is consistent with time-dependent Ginzburg-Landau simulations, where the multiple-step transition can be unambiguously attributed to the progressive development of vortex chains and subsequently phase-slip lines. In addition, we explore experimentally the magnetic braking effects, caused by a thick Cu layer deposited on top of the superconductor, on the instabilities and the vortex ratchet effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362433200003 Publication Date 2015-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ACKNOWLEDGMENTS: This work was partially supported by the Fonds de la Recherche Scientifique-FNRS, the Methusalem Funding of the Flemish Government, the Research Foundation-Flanders (FWO), and COST Action MP1201. The work of A.V.S. and Z.L.J. is partially supported by “Mandat d’Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. B.H. is an associate researcher of the Fonds de la Recherche Scientifique- FNRS. The authors thank J. Cuppens for the data analysis at the early stage of this work, R. Delamare for his valuable help during the fabrication of the samples, and G. Grimaldi for helpful discussions. Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:128747 Serial 3981  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Superconducting films with weak pinning centers: incommenssurate vortex lattices Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 76 Issue 13 Pages (up) 134508,1-134508,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000250619800087 Publication Date 2007-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:67348 Serial 3353  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Elmuradov, A.; Peeters, F.M. doi  openurl
  Title Critical currents of the phase slip process in the presence of electromagnetic radiation : rectification for time asymmetric ac signal Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 72 Issue 13 Pages (up) 134509-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We studied theoretically the effect of time symmetric and asymmetric electromagnetic (e.m.) radiation on the phase-slip process in superconducting wires in the regime where there is no stimulation of superconductivity. We found that for large amplitudes j(ac) of the symmetric ac signal the value of the lower critical current j(c1)(j(ac)) at which the voltage vanishes in the sample oscillates as a function of j(ac). The amplitude of these oscillations decays with increasing power of the ac signal, and we explain it either by the existence of a maximal current j(c3) beyond which no phase slips can be created or by a weak heat removal from the sample. Applying an asymmetric in time signal (with zero dc current) we show that it may lead to a finite voltage in the system (i.e., ratchet effect). At high enough frequencies the rectified voltage is directly proportional to the frequency of the applied e.m. radiation. These properties resemble in many aspects the behavior of a Josephson junction under e.m. radiation. The differences are mainly connected to the effect of the transport current on the magnitude of the order parameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000231564400132 Publication Date 2005-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:102721 Serial 543  
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Tight-binding description of intrinsic superconducting correlations in multilayer graphene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages (up) 134509-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using highly efficient GPU-based simulations of the tight-binding Bogoliubov-de Gennes equations we solve self-consistently for the pair correlation in rhombohedral (ABC) and Bernal (ABA) multilayer graphene by considering a finite intrinsic s-wave pairing potential. We find that the two different stacking configurations have opposite bulk/surface behavior for the order parameter. Surface superconductivity is robust for ABC stacked multilayer graphene even at very low pairing potentials for which the bulk order parameter vanishes, in agreement with a recent analytical approach. In contrast, for Bernal stacked multilayer graphene, we find that the order parameter is always suppressed at the surface and that there exists a critical value for the pairing potential below which no superconducting order is achieved. We considered different doping scenarios and find that homogeneous doping strongly suppresses surface superconductivity while nonhomogeneous field-induced doping has a much weaker effect on the superconducting order parameter. For multilayer structures with hybrid stacking (ABC and ABA) we find that when the thickness of each region is small (few layers), high-temperature surface superconductivity survives throughout the bulk due to the proximity effect between ABC/ABA interfaces where the order parameter is enhanced. DOI: 10.1103/PhysRevB.87.134509  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317390000006 Publication Date 2013-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108469 Serial 3660  
Permanent link to this record
 

 
Author Orlova, N.V.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.; Vagov, A.V.; Axt, V.M. url  doi
openurl 
  Title Ginzburg-Landau theory for multiband superconductors : microscopic derivation Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages (up) 134510-134518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A procedure to derive the Ginzburg-Landau (GL) theory from the multiband BCS Hamiltonian is developed in a general case with an arbitrary number of bands and arbitrary interaction matrix. It combines the standard Gor'kov truncation and a subsequent reconstruction in order to match accuracies of the obtained terms. This reconstruction recovers the phenomenological GL theory as obtained from the Landau model of phase transitions but offers explicit microscopic expressions for the relevant parameters. Detailed calculations are presented for a three-band system treated as a prototype multiband superconductor. It is demonstrated that the symmetry in the coupling matrix may lead to the chiral ground state with the phase frustration, typical for systems with broken time-reversal symmetry. DOI: 10.1103/PhysRevB.87.134510  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317586700002 Publication Date 2013-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 57 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). A.A.S. acknowledges useful discussions with D. Neilson. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108464 Serial 1344  
Permanent link to this record
 

 
Author Palacios, J.J.; Peeters, F.M.; Baelus, B.J. doi  openurl
  Title An effective lowest Landau level treatment of demagnetization in superconducting mesoscopic disks Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 64 Issue Pages (up) 134514  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000171426700097 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:37283 Serial 852  
Permanent link to this record
 

 
Author Flammia, L.; Zhang, L.-F.; Covaci, L.; Perali, A.; Milošević, M.V. url  doi
openurl 
  Title Superconducting nanoribbon with a constriction : a quantum-confined Josephson junction Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 13 Pages (up) 134514  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Extended defects are known to strongly affect nanoscale superconductors. Here, we report the properties of superconducting nanoribbons with a constriction formed between two adjacent step edges by solving the Bogoliubov-de Gennes equations self-consistently in the regime where quantum confinement is important. Since the quantum resonances of the superconducting gap in the constricted area are different from the rest of the nanoribbon, such constriction forms a quantum-confined S-S'-S Josephson junction, with a broadly tunable performance depending on the length and width of the constriction with respect to the nanoribbon, and possible gating. These findings provide an intriguing approach to further tailor superconducting quantum devices where Josephson effect is of use.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000430161500004 Publication Date 2018-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen), the Special Research Funds of the University of Antwerp (TOPBOF), the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001), the MultiSuper network, and the EU-COST NANOCOHYBRI action CA16218. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150754UA @ admin @ c:irua:150754 Serial 4980  
Permanent link to this record
 

 
Author Nulens, L.; Dausy, H.; Wyszynski, M.J.; Raes, B.; Van Bael, M.J.; Milošević, M.V.; Van de Vondel, J. url  doi
openurl 
  Title Metastable states and hidden phase slips in nanobridge SQUIDs Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 13 Pages (up) 134518-134519  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We fabricated an asymmetric nanoscale SQUID consisting of one nanobridge weak link and one Dayem bridge weak link. The current phase relation of these particular weak links is characterized by multivaluedness and linearity. While the latter is responsible for a particular magnetic field dependence of the critical current (so-called vorticity diamonds), the former enables the possibility of different vorticity states (phase winding numbers) existing at one magnetic field value. In experiments the observed critical current value is stochastic in nature, does not necessarily coincide with the current associated with the lowest energy state and critically depends on the measurement conditions. In this paper, we unravel the origin of the observed metastability as a result of the phase dynamics happening during the freezing process and while sweeping the current. Moreover, we employ special measurement protocols to prepare the desired vorticity state and identify the (hidden) phase slip dynamics ruling the detected state of these nanodevices. In order to gain insights into the dynamics of the condensate and, more specifically the hidden phase slips, we performed time-dependent Ginzburg-Landau simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000904657300007 Publication Date 2022-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:193393 Serial 7321  
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M. url  doi
openurl 
  Title Hollow nanocylinder: multisubband superconductivity induced by quantum confinement Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 13 Pages (up) 134523-134523:11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantization of the transverse electron motion in high-quality superconducting metallic nanowires and nanofilms results in the formation of well-distinguished single-electron subbands. They shift in energy with changing thickness, which is known to cause quantum-size superconducting oscillations. The formation of multiple subbands results in a multigap structure induced by the interplay between quantum confinement and Andreev mechanism. We investigate multisubband superconductivity in a hollow nanocylinder by numerically solving the Bogoliubov-de Gennes equations. When changing the inner radius and thickness of the hollow nanocylinder, we find a crossover from an irregular pattern of quantum-size superconducting oscillations, typical of nanowires, to an almost regular regime, specific for superconducting nanofilms. At this crossover the multigap structure becomes degenerate. The ratio of the critical temperature to the energy gap increases and approaches its bulk value while being reduced by 20-30% due to Andreev-type states driven by quantum confinement in the irregular regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000277207900098 Publication Date 2010-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Interuniversity Attraction Poles Programme, Belgian States, Belgian Science Policy (IAP) and the ESF-AQDJJ network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:95623 Serial 1481  
Permanent link to this record
 

 
Author Kishore, V.V.R.; Čukarić, N.; Partoens, B.; Tadić, M.; Peeters, F.M. pdf  doi
openurl 
  Title Hole subbands in freestanding nanowires : six-band versus eight-band k.p modelling Type A1 Journal article
  Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 13 Pages (up) 135302-135302,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure of GaAs, InAs and InSb nanowires is studied using the six-band and the eight-band k.p models. The effect of the different Luttinger-like parameters (in the eight-band model) on the hole band structure is investigated. Although GaAs nanostructures are often treated within a six-band model because of the large bandgap, it is shown that an eight-band model is necessary for a correct description of its hole spectrum. The camel-back structure usually found in the six-band model is not always present in the eight-band model. This camel-back structure depends on the interaction between light and heavy holes, especially the ones with opposite spin. The latter effect is less pronounced in an eight-band model, but could be very sensitive to the Kane inter-band energy (E-P) value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000302120100007 Publication Date 2012-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), Belgian Science Policy (IAP) and the Ministry of Education and Science of Serbia. ; Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:97763 Serial 1479  
Permanent link to this record
 

 
Author Szaszko-Bogar, V.; Foeldi, P.; Peeters, F.M. doi  openurl
  Title Oscillating spin-orbit interaction as a source of spin-polarized wavepackets in two-terminal nanoscale devices Type A1 Journal article
  Year 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 26 Issue 13 Pages (up) 135302  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ballistic transport through nanoscale devices with time-dependent Rashba-type spin- orbit interaction (SOI) can lead to spin-polarized wavepackets that appear even for completely unpolarized input. The SOI that oscillates in a finite domain generates density and spin polarization fluctuations that leave the region as propagating waves. In particular, spin polarization has space and time dependence even in regions without SOI. Our results are based on an analytical solution of the time-dependent Schrodinger equation. The relevant Floquet quasi-energies that are obtained appear in the energy spectrum of both the transmitted and the reflected waves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited Open Access  
  Notes Approved Most recent IF: 2.649; 2014 IF: 2.346  
  Call Number UA @ lucian @ c:irua:116844 Serial 2533  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: