toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chu, D.P.; Peeters, F.M.; Kolodinski, S.; Roca, E. openurl 
  Title Theoretical investigation of CoSi2/Si1-xGex detectors: influence of a Si tunneling barrier on the electro-optical characteristics Type A1 Journal article
  Year 1996 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 79 Issue Pages 1151-1156  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1996TQ77500084 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.183 Times cited 3 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15801 Serial 3606  
Permanent link to this record
 

 
Author Milants, K.; Verheyden, J.; Barancira, T.; Deweerd, W.; Pattyn, H.; Bukshpan, S.; Williamson, D.L.; Vermeiren, F.; Van Tendeloo, G.; Vlekken, C.; Libbrecht, S.; van Haesendonck, C. openurl 
  Title Size distribution and magnetic behavior of lead inclusions in silicon single crystals Type A1 Journal article
  Year 1997 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 81 Issue 5 Pages 2148-2152  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos A1997WK08800017 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.068; 1997 IF: 1.630  
  Call Number UA @ lucian @ c:irua:21433 Serial 3035  
Permanent link to this record
 

 
Author Pokatilov, E.P.; Fomin, V.M.; Balaban, S.N.; Gladilin, V.N.; Klimin, S.N.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Collaert, N.; van Rossum, M.; de Meyer, K. doi  openurl
  Title Distribution of fields and charge carriers in cylindrical nanosize silicon-based metal-oxide-semiconductor structures Type A1 Journal article
  Year 1999 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 85 Issue Pages 6625-6631  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000079871200053 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 16 Open Access  
  Notes Approved Most recent IF: 2.068; 1999 IF: 2.275  
  Call Number UA @ lucian @ c:irua:24444 Serial 743  
Permanent link to this record
 

 
Author Zhang, M.-L.; March, N.H.; Peeters, A.; van Alsenoy, C.; Howard, I.; Lamoen, D.; Leys, F. doi  openurl
  Title Loss rate of a plasticizer in a nylon matrix calculated using macroscopic reaction-diffusion kinetics Type A1 Journal article
  Year 2003 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 93 Issue Pages 1525-1532  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000180630200031 Publication Date 2003-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record;  
  Impact Factor 2.068 Times cited Open Access  
  Notes Approved Most recent IF: 2.068; 2003 IF: 2.171  
  Call Number UA @ lucian @ c:irua:41405 Serial 1844  
Permanent link to this record
 

 
Author Verhulst, A.; Sorée, B.; Leonelli, D.; Vandenberghe, W.G.; Groeseneken, G. doi  openurl
  Title Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor Type A1 Journal article
  Year 2010 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 107 Issue 2 Pages 024518,1-024518,8  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract Tunnel field-effect transistors (TFETs) are potential successors of metal-oxide-semiconductor FETs because scaling the supply voltage below 1 V is possible due to the absence of a subthreshold-swing limit of 60 mV/decade. The modeling of the TFET performance, however, is still preliminary. We have developed models allowing a direct comparison between the single-gate, double-gate, and gate-all-around configuration at high drain voltage, when the drain-voltage dependence is negligible, and we provide improved insight in the TFET physics. The dependence of the tunnel current on device parameters is analyzed, in particular, the scaling with gate-dielectric thickness, channel thickness, and dielectric constants of gate dielectric and channel material. We show that scaling the gate-dielectric thickness improves the TFET performance more than scaling the channel thickness and that improvements are often overestimated. There is qualitative agreement between our model and our experimental data.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000274180600122 Publication Date 2010-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 150 Open Access  
  Notes Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number UA @ lucian @ c:irua:89507 Serial 2146  
Permanent link to this record
 

 
Author Wendelen, W.; Mueller, B.Y.; Autrique, D.; Rethfeld, B.; Bogaerts, A. pdf  doi
openurl 
  Title Space charge corrected electron emission from an aluminum surface under non-equilibrium conditions Type A1 Journal article
  Year 2012 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 111 Issue 11 Pages 113110  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A theoretical study has been conducted of ultrashort pulsed laser induced electron emission from an aluminum surface. Electron emission fluxes retrieved from the commonly employed Fowler-DuBridge theory were compared to fluxes based on a laser-induced non-equilibrium electron distribution. As a result, the two-and three-photon photoelectron emission parameters for the Fowler-DuBridge theory have been approximated. We observe that at regimes where photoemission is important, laser-induced electron emission evolves in a more smooth manner than predicted by the Fowler-DuBridge theory. The importance of the actual electron distribution decreases at higher laser fluences, whereas the contribution of thermionic emission increases. Furthermore, the influence of a space charge effect on electron emission was evaluated by a one dimensional particle-in-cell model. Depending on the fluences, the space charge reduces the electron emission by several orders of magnitude. The influence of the electron emission flux profiles on the effective electron emission was found to be negligible. However, a non-equilibrium electron velocity distribution increases the effective electron emission significantly. Our results show that it is essential to consider the non-equilibrium electron distribution as well as the space charge effect for the description of laser-induced photoemission. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729071]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000305401400043 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 30 Open Access  
  Notes Approved Most recent IF: 2.068; 2012 IF: 2.210  
  Call Number UA @ lucian @ c:irua:100300 Serial 3057  
Permanent link to this record
 

 
Author Salman, O.U.; Finel, A.; Delville, R.; Schryvers, D. pdf  doi
openurl 
  Title The role of phase compatibility in martensite Type A1 Journal article
  Year 2012 Publication Journal of applied physics T2 – 22nd International Symposium on Integrated Functionalities (ISIF), JUN 13-16, 2010, San Juan, PR Abbreviated Journal J Appl Phys  
  Volume 111 Issue 10 Pages 103517  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Shape memory alloys inherit their macroscopic properties from their mesoscale microstructure originated from the martensitic phase transformation. In a cubic to orthorhombic transition, a single variant of martensite can have a compatible (exact) interface with the austenite for some special lattice parameters in contrast to conventional austenite/twinned martensite interface with a transition layer. Experimentally, the phase compatibility results in a dramatic drop in thermal hysteresis and gives rise to very stable functional properties over cycling. Here, we investigate the microstructures observed in Ti50Ni50-xPdx alloys that undergo a cubic to orthorhombic martensitic transformation using a three-dimensional phase field approach. We will show that the simulation results are in very good agreement with transmission electron microscopy observations. However, the understanding of the drop in thermal hysteresis requires the coupling of phase transformation with plastic activity. We will discuss this point within the framework of thermoelasticity, which is a generic feature of the martensitic transformation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4712629]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000305363700053 Publication Date 2012-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.068; 2012 IF: 2.210  
  Call Number UA @ lucian @ c:irua:100310 Serial 2919  
Permanent link to this record
 

 
Author Papp, G.; Borza, S.; Peeters, F.M. doi  openurl
  Title Spin transport in a Mn-doped ZnSe asymmetric tunnel structure Type A1 Journal article
  Year 2005 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 97 Issue 11 Pages 113901-113905  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Spin-dependent tunneling of electrons in a diluted magnetic semiconductor ZnSe/Zn1-xMnxSe/Zn1-yMnySe/ZnSe/Zn1-xMnxSe/ZnSe heterostructure is investigated theoretically in the presence of parallel magnetic and electric fields, but our modeling is appropriate for any dilute magnetic II-VI semiconductor system. In the studied asymmetric system the transmission of electrons and the degree of spin polarization depend on the strength of the magnetic and electric fields and on the direction of the applied bias. For suitable magnetic fields, the output current of the system exhibits a nearly 100% spin polarization and the device can be used as a spin filter. (C) 2005 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000229804700072 Publication Date 2005-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 26 Open Access  
  Notes Approved Most recent IF: 2.068; 2005 IF: 2.498  
  Call Number UA @ lucian @ c:irua:102728 Serial 3102  
Permanent link to this record
 

 
Author Cornelissens, Y.G.; Peeters, F.M. doi  openurl
  Title Response function of a Hall magnetosensor in the diffusive regime Type A1 Journal article
  Year 2002 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 92 Issue 4 Pages 2006-2012  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional electron gas systems patterned into micrometer Hall bars can be used as Hall magnetosensors. In this way, ballistic Hall probes have already been studied and used successfully. Here, the response function of a Hall sensor is determined in the diffusive regime, which allows this device to be used as a magnetosensor for the determination of inhomogeneous magnetic field distributions. Furthermore, the influence of the geometry of the Hall bar on this response function, such as circular corners and asymmetry in the probes, is also investigated and appears to be non-negligible. (C) 2002 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000177171700046 Publication Date 2002-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 24 Open Access  
  Notes Approved Most recent IF: 2.068; 2002 IF: 2.281  
  Call Number UA @ lucian @ c:irua:102826 Serial 2897  
Permanent link to this record
 

 
Author Teodorescu, V.; Nistor, L.; Bender, H.; Steegen, A.; Lauwers, A.; Maex, K.; van Landuyt, J. pdf  doi
openurl 
  Title In situ transmission electron microscopy study of Ni silicide phases formed on (001) Si active lines Type A1 Journal article
  Year 2001 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 90 Issue 1 Pages 167-174  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The formation of Ni silicides is studied by transmission electron microscopy during in situ heating experiments of 12 nm Ni layers on blanket silicon, or in patterned structures covered with a thin chemical oxide. It is shown that the first phase formed is the NiSi2 which grows epitaxially in pyramidal crystals. The formation of NiSi occurs quite abruptly around 400 degreesC when a monosilicide layer covers the disilicide grains and the silicon in between. The NiSi phase remains stable up to 800 degreesC, at which temperature the layer finally fully transforms to NiSi2. The monosilicide grains show different epitaxial relationships with the Si substrate. Ni2Si is never observed. (C) 2001 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000169361100023 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 97 Open Access  
  Notes Approved Most recent IF: 2.068; 2001 IF: 2.128  
  Call Number UA @ lucian @ c:irua:102855 Serial 1587  
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.; Janssens, K.L.; Korkusinski, M.; Hawrylak, P. url  doi
openurl 
  Title Strain and band edges in single and coupled cylindrical InAs/GaAs and InP/InGaP self-assembled quantum dots Type A1 Journal article
  Year 2002 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 92 Issue 10 Pages 5819-5829  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A comparative study is made of the strain distribution in cylindrical InAs/GaAs and InP/InGaP self-assembled quantum dots as obtained from isotropic elasticity theory, the anisotropic continuum mechanical model, and from atomistic calculations. For the isotropic case, the recently proposed approach [J. H. Davies, J. Appl. Phys. 84, 1358 (1998)] is used, while the finite-element method, the valence force field method, and Stillinger-Weber potentials are employed to calculate the strain in anisotropic structures. We found that all four methods result in strain distributions of similar shapes, but with notable quantitative differences inside the dot and near the disk-matrix boundary. The variations of the diagonal strains with the height of the quantum dot, with fixed radius, as calculated from all models, are almost linear. Furthermore, the energies of the band edges in the two types of quantum dots are extracted from the multiband effective-mass theory by inserting the strain distributions as obtained by the four models. We demonstrated that all strain models produce effective potentials for the heavy and light holes which agree very well inside the dot. A negligible anisotropy of all normal strains in the (x,y) plane is found, which, providing the axial symmetry of the kinetic part of the multiband effective-mass Hamiltonian, justifies the use of the axial approximation. Strain propagation along the vertical direction is also considered with the aim to study the influence of strain on the electron coupling in stacks of quantum dots. We found that the interaction between the strain fields of the individual quantum dots makes the effective quantum wells for the electrons in the conduction band shallower, thereby counteracting the quantum mechanical coupling. (C) 2002 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000178987200036 Publication Date 2002-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 73 Open Access  
  Notes Approved Most recent IF: 2.068; 2002 IF: 2.281  
  Call Number UA @ lucian @ c:irua:103327 Serial 3164  
Permanent link to this record
 

 
Author Gryse, O.D.; Clauws, P.; van Landuyt, J.; Lebedev, O.; Claeys, C.; Simoen, E.; Vanhellemont, J. pdf  doi
openurl 
  Title Oxide phase determination in silicon using infrared spectroscopy and transmission electron microscopy techniques Type A1 Journal article
  Year 2002 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 91 Issue 4 Pages 2493-2498  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Infrared absorption spectra of polyhedral and platelet oxygen precipitates in silicon are analyzed using a modified Day-Thorpe approach [J. Phys.: Condens. Matter 11, 2551 (1999)]. The aspect ratio of the precipitates is determined by transmission electron microscopy analysis. The reduced spectral function and the stoichiometry of the precipitate are extracted from the absorption spectra and the amount of precipitated interstitial oxygen. The experimental absorption spectra can be divided in a set with a Frohlich frequency of around 1100 cm(-1) and in a set with a Frohlich frequency between 1110 and 1120 cm(-1). It is shown that the shift in the Frohlich frequency is not due to a differing stoichiometry, but to the detailed structure of the reduced spectral function. Inverse modeling of the spectra suggests that the oxide precipitates consist of substoichiometric SiOgamma with gamma=1.17+/-0.14. (C) 2002 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000173553800114 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 27 Open Access  
  Notes Approved Most recent IF: 2.068; 2002 IF: 2.281  
  Call Number UA @ lucian @ c:irua:103372 Serial 2542  
Permanent link to this record
 

 
Author Dobrynin, A.N.; Temst, K.; Lievens, P.; Margueritat, J.; Gonzalo, J.; Afonso, C.N.; Piscopiello, E.; Van Tendeloo, G. doi  openurl
  Title Observation of Co/CoO nanoparticles below the critical size for exchange bias Type A1 Journal article
  Year 2007 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 101 Issue 11 Pages 113913-113917  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We compare the magnetic properties of pure and oxidized Co nanoparticles embedded in an amorphous Al2O3 matrix. Nanoparticles with diameters of 2 or 3 nm were prepared by alternate pulsed laser deposition in high vacuum conditions, and some of them were exposed to O-2 after production and before being embedded. The nanoparticles are organized in layers, the effective edge-to-edge in-depth separation being 5 or 10 nm. The lower saturation magnetizations per Co atom for the samples containing oxidized nanoparticles provide evidence for the formation of antiferromagnetic CoO shells in the nanoparticles. None of the samples with Co/CoO nanoparticles show exchange bias, while vertical hysteresis loop shifts and enhanced coercivities (as compared to samples with pure Co nanoparticles) are observed. This constitutes evidence for the nanoparticles size being in all cases smaller than the critical size for exchange bias. The difference in coercivity versus temperature dependences for the samples with pure and oxidized Co nanoparticles shows that the exchange anisotropy in Co/CoO nanoparticles appears at temperatures lower than 50 K. (c) 2007 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000247306000098 Publication Date 2007-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 27 Open Access  
  Notes Approved Most recent IF: 2.068; 2007 IF: 2.171  
  Call Number UA @ lucian @ c:irua:103596 Serial 2415  
Permanent link to this record
 

 
Author Buschmann, V.; Rodewald, M.; Fuess, H.; Van Tendeloo, G.; Schäffer, C. doi  openurl
  Title High resolution electron microscopy study of molecular beam epitaxy grown CoSi2/Si1-xGex/Si(100) heterostructurs Type A1 Journal article
  Year 1999 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 85 Issue 4 Pages 2119-2123  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two CoSi2/Si1-xGex/Si(100) heterostructures, with different Ge content, made by molecular beam epitaxy are characterized by high resolution electron microscopy. In general, the interface between the CoSi2 thin film and the Si1-xGex layer is of a high structural quality and the strained Si1-xGex layer exhibits few defects. For both samples, different interface structures are present, although the dominant interfacial configuration is similar to the unreconstructed interface present at the CoSi2/Si(100) interface. Only occasionally (2x1) reconstructed interface regions are found which are just a few nanometers in length. Phenomena such as Ge segregation and the introduction of defects are also observed in the Si1-xGex layer. We attribute the minimal presence of the reconstructed interface to both the (2x8):Si1-xGex(100) surface reconstruction and the Ge segregation that takes place. (C) 1999 American Institute of Physics. [S0021-8979(99)02104-0].  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000078403000017 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.068; 1999 IF: 2.275  
  Call Number UA @ lucian @ c:irua:103977 Serial 1455  
Permanent link to this record
 

 
Author de Sousa, J.S.; Covaci, L.; Peeters, F.M.; Farias, G.A. doi  openurl
  Title Time-dependent investigation of charge injection in a quantum dot containing one electron Type A1 Journal article
  Year 2012 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 112 Issue 9 Pages 093705-93709  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interaction of an injected electron towards a quantum dot (QD) containing a single confined electron is investigated using a flexible time-dependent quantum mechanics formalism, which allows both electrons to move and undergo quantum transitions. Different scenarios combining quantum dot dimensions, dielectric constant, injected wave packet energy, and width were explored, and our main results are: (i) due to the large characteristic transitions times between the confined state in the quantum dot and the delocalized state in the continuum, it is relatively difficult to ionize the occupied QD by Coulomb interaction solely and (ii) the charging state of the quantum dot can be sensed by direct injection of charges. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4759292]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000311968400052 Publication Date 2012-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 1 Open Access  
  Notes ; This work was financially supported by the Brazilian National Research Council (CNPq), under Contract No. NanoBioEstruturas 555183/2005-0, Fundao Cearense de Apoio ao Desenvolvimento Cientfico e Tecnolgico (Funcap), CAPES, Pronex/CNPq/ Funcap, the Bilateral program between Flanders and Brazil, and the Flemish Science Foundation (FWO). ; Approved Most recent IF: 2.068; 2012 IF: 2.210  
  Call Number UA @ lucian @ c:irua:106014 Serial 3664  
Permanent link to this record
 

 
Author Maignan, A.; Singh, K.; Simon, C.; Lebedev, O.I.; Martin, C.; Tan, H.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Magnetic and magnetodielectric properties of erbium iron garnet ceramic Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 3 Pages 033905-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An Er3Fe5O12 ceramic has been sintered in oxygen atmosphere at 1400 °C for dielectric measurements. Its structural quality at room temperature has been checked by combining transmission electron microscopy and X-ray diffraction. It crystallizes in the cubic space group Ia3d with a = 12.3488(1). The dielectric permittivity ([variantgreekepsilon]′) and losses (tan δ) measurements as a function of temperature reveal the existence of two anomalies, a broad one between 110 K and 80 K, attributed to the Er3+ spin reorientation, and a second sharper feature at about 45 K associated to the appearance of irreversibility on the magnetic susceptibility curves. In contrast to the lack of magnetic field impact on [variantgreekepsilon]′ for the former anomaly, a complex magnetic field effect has been evidenced below 45 K. The isothermal [variantgreekepsilon]′(H) curves show the existence of positive magnetodielectric effect, reaching a maximum of 0.14% at 3 T and 10 K. Its magnitude decreases as H is further increased. Interestingly, for the lowest H values, a linear regime in the [variantgreekepsilon]′(H) curve is observed. From this experimental study, it is concluded that the [variantgreekepsilon]′ anomaly, starting above the compensation temperature Tc (75 K) and driven by the internal magnetic field, is not sensitive to an applied external magnetic field. Thus, below 45 K, it is the magnetic structure which is responsible for the coupling between spin and charge in this iron garnet.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000313670600042 Publication Date 2013-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 15 Open Access  
  Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:106182UA @ admin @ c:irua:106182 Serial 1861  
Permanent link to this record
 

 
Author Vereecke, B.; van der Veen, M.H.; Sugiura, M.; Kashiwagi, Y.; Ke, X.; Cott, D.J.; Hantschel, T.; Huyghebaert, C.; Tökei, Z. pdf  doi
openurl 
  Title Wafer-level electrical evaluation of vertical carbon nanotube bundles as a function of growth temperature Type A1 Journal article
  Year 2013 Publication Japanese journal of applied physics Abbreviated Journal Jpn J Appl Phys  
  Volume 52 Issue 42 Pages 04cn02-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have evaluated the resistance of carbon nanotubes (CNTs) grown at a CMOS-compatible temperature using a realistic integration scheme. The structural analysis of the CNTs by transmission electron microscopy (TEM) showed that the degree of graphitization decreased significantly when the growth temperature was decreased from 540 to 400 °C. The CNTs were integrated to form 150-nm-diameter vertical interconnects between a TiN layer and Cu metal trenches on 200 mm full wafers. Wafers with CNTs grown at low temperature were found to have a lower single-contact resistance than those produced at high temperatures. Thickness measurements showed that the low contact resistance is a result of small contact height. This height dependence is masking the impact of CNT graphitization quality on resistance. When benchmarking our results with data from the literature, a relationship between resistivity and growth temperature cannot be found for CNT-based vertical interconnects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Kyoto Editor  
  Language Wos 000320002400150 Publication Date 2013-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-4922;1347-4065; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.384 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.384; 2013 IF: 1.057  
  Call Number UA @ lucian @ c:irua:108713 Serial 3902  
Permanent link to this record
 

 
Author Milovanovic, S.P.; Masir, M.R.; Peeters, F.M. pdf  doi
openurl 
  Title Graphene hall bar with an asymmetric pn-junction Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 19 Pages 193701-193708  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigated the magnetic field dependence of the Hall and the bend resistances in the ballistic regime for a single layer graphene Hall bar structure containing a pn-junction. When both regions are n-type the Hall resistance dominates and Hall type of plateaus are formed. These plateaus occur as a consequence of the restriction on the angle imposed by Snell's law allowing only electrons with a certain initial angles to transmit though the potential step. The size of the plateau and its position is determined by the position of the potential interface as well as the value of the applied potential. When the second region is p-type, the bend resistance dominates, which is asymmetric in field due to the presence of snake states. Changing the position of the pn-interface in the Hall bar strongly affects these states and therefore the bend resistance is also changed. Changing the applied potential, we observe that the bend resistance exhibits a peak around the charge-neutrality point (CNP), which is independent of the position of the pn-interface, while the Hall resistance shows a sign reversal when the CNP is crossed, which is in very good agreement with a recent experiment [J. R. Williams and C. M. Marcus, Phys. Rev. Lett. 107, 046602 (2011)].  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000319295200022 Publication Date 2013-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 7 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. We acknowledge fruitful discussions with M. Barbier. Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:108999 Serial 1371  
Permanent link to this record
 

 
Author Shapoval, O.; Huehn, S.; Verbeeck, J.; Jungbauer, M.; Belenchuk, A.; Moshnyaga, V. pdf  doi
openurl 
  Title Interface-controlled magnetism and transport of ultrathin manganite films Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 17 Pages 17c711-3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report ferromagnetic, T-C = 240 K, and metallic, T-MI = 250 K, behaviors of a three unit cell thick interface engineered lanthanum manganite film, grown by metalorganic aerosol deposition technique on SrTiO3(100) substrates. Atomically resolved electron microscopy and chemical analysis show that ultrathin manganite films start to grow with La-O layer on a strongly Mn/Ti-intermixed interface, engineered by an additional deposition of 2 u.c. of Sr-Mn-O. Such interface engineering results in a hole-doped manganite layer and stabilizes ferromagnetism and metallic conductivity down to the thickness of d = 3 u.c. The films with d = 8 u.c. demonstrate a bulk-like transport behavior with T-MI similar to T-C = 310 – 330 K. (C) 2013 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000319292800195 Publication Date 2013-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 7 Open Access  
  Notes Ifox; Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:109009UA @ admin @ c:irua:109009 Serial 1692  
Permanent link to this record
 

 
Author Autrique, D.; Clair, G.; L'Hermite, D.; Alexiades, V.; Bogaerts, A.; Rethfeld, B. pdf  doi
openurl 
  Title The role of mass removal mechanisms in the onset of ns-laser induced plasma formation Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 114 Issue 2 Pages 023301-23310  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The present study focuses on the role of mass removal mechanisms in ns-laser ablation. A copper sample is placed in argon, initially set at standard pressure and temperature. Calculations are performed for a 6 ns laser pulse with a wavelength of 532 nm and laser fluences up to 10 J/cm2. The transient behavior in and above the copper target is described by a hydrodynamic model. Transmission profiles and ablation depths are compared with experimental results and similar trends are found. Our calculations reveal an interesting self-inhibiting mechanism: volumetric mass removal in the supercritical region triggers plasma shielding and therefore stops proceeding. This self-limiting process indicates that volumetric mass removal does not necessarily result in large ablation depths.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000321761600006 Publication Date 2013-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 31 Open Access  
  Notes Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:109237 Serial 2915  
Permanent link to this record
 

 
Author Comrie, C.M.; Ahmed, A.; Smeets, D.; Demeulemeester, J.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Vantomme, A. pdf  doi
openurl 
  Title Effect of high temperature deposition on CoSi2 phase formation Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 23 Pages 234902-234908  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This paper discusses the nucleation behaviour of the CoSi to CoSi2 transformation from cobalt silicide thin films grown by deposition at elevated substrate temperatures ranging from 375 °C to 600 °C. A combination of channelling, real-time Rutherford backscattering spectrometry, real-time x-ray diffraction, and transmission electron microscopy was used to investigate the effect of the deposition temperature on the subsequent formation temperature of CoSi2, its growth behaviour, and the epitaxial quality of the CoSi2 thus formed. The temperature at which deposition took place was observed to exert a significant and systematic influence on both the formation temperature of CoSi2 and its growth mechanism. CoSi films grown at the lowest temperatures were found to increase the CoSi2 nucleation temperature above that of CoSi2 grown by conventional solid phase reaction, whereas the higher deposition temperatures reduced the nucleation temperature significantly. In addition, a systematic change in growth mechanism of the subsequent CoSi2 growth occurs as a function of deposition temperature. First, the CoSi2 growth rate from films grown at the lower reactive deposition temperatures is substantially lower than that grown at higher reactive deposition temperatures, even though the onset of growth occurs at a higher temperature, Second, for deposition temperatures below 450 °C, the growth appears columnar, indicating nucleation controlled growth. Elevated deposition temperatures, on the other hand, render the CoSi2 formation process layer-by-layer which indicates enhanced nucleation of the CoSi2 and diffusion controlled growth. Our results further indicate that this observed trend is most likely related to stress and changes in microstructure introduced during reactive deposition of the CoSi film. The deposition temperature therefore provides a handle to tune the CoSi2 growth mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000321011700077 Publication Date 2013-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 2 Open Access  
  Notes Fwo; Countatoms Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:109266 Serial 815  
Permanent link to this record
 

 
Author Shestakov, M.V.; Meledina, M.; Turner, S.; Tikhomirov, V.K.; Verellen, N.; Rodríguez, V.D.; Velázquez, J.J.; Van Tendeloo, G.; Moshchalkov, V.V. pdf  doi
openurl 
  Title The size and structure of Ag particles responsible for surface plasmon effects and luminescence in Ag homogeneously doped bulk glass Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 114 Issue 7 Pages 073102-73105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract As-prepared and heat-treated oxyfluoride glasses, co-doped with Ag nanoclusters/nanoparticles, are prepared at 0.15 at. % Ag concentration. The as-prepared glass shows an absorption band in the UV/violet attributed to the presence of amorphous Ag nanoclusters with an average size of 1.1 nm. The luminescence spectra of the untreated glass can also be ascribed to these Ag nanoclusters. Upon heat-treatment, the clusters coalesce into Ag nanoparticles with an average size of 2.3 nm, and the glasses show an extra surface plasmon absorption band in the visible. These particles, however, cease to emit due to ascribing plasmonic properties of bulk silver.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000323510900003 Publication Date 2013-08-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 19 Open Access  
  Notes Fwo Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:109455 Serial 3031  
Permanent link to this record
 

 
Author Carrillo-Nuñez, H.; Magnus, W.; Vandenberghe, W.G.; Sorée, B.; Peeters, F.M. doi  openurl
  Title Phonon-assisted Zener tunneling in a cylindrical nanowire transistor Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 18 Pages 184507-184508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The tunneling current has been computed for a cylindrical nanowire tunneling field-effect transistor (TFET) with an all-round gate that covers the source region. Being the underlying mechanism, band-to-band tunneling, mediated by electron-phonon interaction, is pronouncedly affected by carrier confinement in the radial direction and, therefore, involves the self-consistent solution of the Schrodinger and Poisson equations. The latter has been accomplished by exploiting a non-linear variational principle within the framework of the modified local density approximation taking into account the nonparabolicity of both the valence band and conduction band in relatively thick wires. Moreover, while the effective-mass approximation might still provide a reasonable description of the conduction band in relatively thick wires, we have found that the nonparabolicity of the valence band needs to be included. As a major conclusion, it is observed that confinement effects in nanowire tunneling field-effect transistors have a stronger impact on the onset voltage of the tunneling current in comparison with planar TFETs. On the other hand, the value of the onset voltage is found to be overestimated when the valence band nonparabolicity is ignored. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000319294100093 Publication Date 2013-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 4 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), and the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC. ; Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:109651 Serial 2599  
Permanent link to this record
 

 
Author Li, D.Y.; Zeng, Y.J.; Pereira, L.M.C.; Batuk, D.; Hadermann, J.; Zhang, Y.Z.; Ye, Z.Z.; Temst, K.; Vantomme, A.; Van Bael, M.J.; Van Haesendonck, C.; pdf  doi
openurl 
  Title Anisotropic magnetism and spin-dependent transport in Co nanoparticle embedded ZnO thin films Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 114 Issue 3 Pages 033909-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Oriented Co nanoparticles were obtained by Co ion implantation in crystalline ZnO thin films grown by pulsed laser deposition. Transmission electron microscopy revealed the presence of elliptically shaped Co precipitates with nanometer size, which are embedded in the ZnO thin films, resulting in anisotropic magnetic behavior. The low-temperature resistance of the Co-implanted ZnO thin films follows the Efros-Shklovskii type variable-range-hopping. Large negative magnetoresistance (MR) exceeding 10% is observed in a magnetic field of 1 T at 2.5K and the negative MR survives up to 250K (0.3%). The negative MR reveals hysteresis as well as anisotropy that correlate well with the magnetic properties, clearly demonstrating the presence of spin-dependent transport. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000322202700071 Publication Date 2013-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:110765 Serial 126  
Permanent link to this record
 

 
Author Milovanovic, S.P.; Masir, M.R.; Peeters, F.M. pdf  doi
openurl 
  Title Bilayer graphene Hall bar with a pn-junction Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 114 Issue 11 Pages 113706  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the magnetic field dependence of the Hall and the bend resistances for a ballistic Hall bar structure containing a pn-junction sculptured from a bilayer of graphene. The electric response is obtained using the billiard model, and we investigate the cases of bilayer graphene with and without a band gap. Two different conduction regimes are possible: (i) both sides of the junction have the same carrier type and (ii) one side of the junction is n-type while the other one is p-type. The first case shows Hall plateau-like features in the Hall resistance that fade away as the band gap opens. The second case exhibits a bend resistance that is asymmetric in magnetic field as a consequence of snake states along the pn-interface, where the maximum is shifted away from zero magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000324827200031 Publication Date 2013-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 3 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:111169 Serial 234  
Permanent link to this record
 

 
Author Seyed-Talebi, S.M.; Beheshtian, J.; Neek-Amal, M. doi  openurl
  Title Doping effect on the adsorption of NH3 molecule onto graphene quantum dot : from the physisorption to the chemisorption Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 114 Issue 12 Pages 124307-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The adsorption of ammonia molecule onto a graphene hexagonal flake, aluminum (Al) and boron (B) doped graphene flakes (graphene quantum dots, GQDs) are investigated using density functional theory. We found that NH3 molecule is absorbed to the hollow site through the physisorption mechanism without altering the electronic properties of GQD. However, the adsorption energy of NH3 molecule onto the Al- and B-doped GQDs increases with respect GQD resulting chemisorption. The adsorption of NH3 onto the Al-doped and B-doped GQDs makes graphene locally buckled, i.e., B-doped and Al-doped GQDs are not planar. The adsorption mechanism onto a GQD is different than that of graphene. This study reveals important features of the edge passivation and doping effects of the adsorption mechanism of external molecules onto the graphene quantum dots. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000325391100057 Publication Date 2013-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 10 Open Access  
  Notes ; This work was supported by the EU-Marie Curie IIF Fellowship/299855 for M.-N.A. ; Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:112201 Serial 750  
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; De Meyer, K. doi  openurl
  Title Tensile strained Ge tunnel field-effect transistors: k\cdot p material modeling and numerical device simulation Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 4 Pages 044505-44508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k.p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Gamma and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-holelike valence band is strongly coupling to the conduction band at the Gamma point even in the presence of strain based on the 30-band k.p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) mu A/mu m can be achieved along with on/off ratio > 10(6) for V-DD = 0.5V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331210800113 Publication Date 2014-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 26 Open Access  
  Notes ; Authors would like to thank Dr. Mohammad Ali Pourghaderi for useful discussions on the nonparabolicity. Authors would also like to thank Professor Eddy Simoen and Dr. Yosuke Shimura for useful discussions about the validity of modeled bandgaps and effective masses. This work was also supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:115800 Serial 3505  
Permanent link to this record
 

 
Author Milovanović, S.P.; Masir, M.R.; Peeters, F.M. pdf  doi
openurl 
  Title Magnetic electron focusing and tuning of the electron current with a pn-junction Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 4 Pages 043719-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transverse magnetic focusing properties of graphene using a ballistic four terminal structure are investigated. The electric response is obtained using the semiclassical billiard model. The transmission exhibits pronounced peaks as a consequence of skipping orbits at the edge of the structure. When we add a pn-junction between the two probes, snake states along the pn-interface appear. Injected electrons are guided by the pn-interface to one of the leads depending on the value of the applied magnetic field. Oscillations in the resistance are found depending on the amount of particles that end up in each lead.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331210800066 Publication Date 2014-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 21 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:115801 Serial 1866  
Permanent link to this record
 

 
Author Verreck, D.; Van de Put, M.; Sorée, B.; Verhulst, A.S.; Magnus, W.; Vandenberghe, W.G.; Collaert, N.; Thean, A.; Groeseneken, G. doi  openurl
  Title Quantum mechanical solver for confined heterostructure tunnel field-effect transistors Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 5 Pages 053706-53708  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331645900040 Publication Date 2014-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 15 Open Access  
  Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:115825 Serial 2780  
Permanent link to this record
 

 
Author Zhang, Y.; Jiang, W.; Zhang, Q.Z.; Bogaerts, A. pdf  doi
openurl 
  Title Computational study of plasma sustainability in radio frequency micro-discharges Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 19 Pages 193301-193311  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We apply an implicit particle-in-cell Monte-Carlo (PIC-MC) method to study a radio-frequency argon microdischarge at steady state in the glow discharge limit, in which the microdischarge is sustained by secondary electron emission from the electrodes. The plasma density, electron energy distribution function (EEDF), and electron temperature are calculated in a wide range of operating conditions, including driving voltage, microdischarge gap, and pressure. Also, the effect of gap size scaling (in the range of 50-1000 μm) on the plasma sustaining voltage and peak electron density at atmospheric pressure is examined, which has not been explored before. In our simulations, three different EEDFs, i.e., a so-called three temperature hybrid mode, a two temperature α mode, and a two temperature γ mode distribution, are identified at different gaps and voltages. The maximum sustaining voltage to avoid a transition from the glow mode to an arc is predicted, as well as the minimum sustaining voltage for a steady glow discharge. Our calculations elucidate that secondary electrons play an essential role in sustaining the discharge, and as a result the relationship between breakdown voltage and gap spacing is far away from the Paschen law at atmospheric pressure.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000336920200010 Publication Date 2014-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:116948 Serial 458  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: