toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M. pdf  url
doi  openurl
  Title Molecular dynamics simulations of mechanical stress on oxidized membranes Type A1 Journal article
  Year 2019 Publication Biophysical chemistry Abbreviated Journal Biophys Chem  
  Volume 254 Issue Pages 106266  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Biomembranes are under constant attack of free radicals that may lead to lipid oxidation in conditions of oxidative stress. The products generated during lipid oxidation are responsible for structural and dynamical changes which may jeopardize the membrane function. For instance, the local rearrangements of oxidized lipid molecules may induce membrane rupture. In this study, we investigated the effects of mechanical stress on oxidized phospholipid bilayers (PLBs). Model bilayers were stretched until pore formation (or poration) using nonequilibrium molecular dynamics simulations. We studied single-component homogeneous membranes composed of lipid oxidation products, as well as two-component heterogeneous membranes with coexisting native and oxidized domains. In homogeneous membranes, the oxidation products with —OH and —OOH groups reduced the areal strain required for pore formation, whereas the oxidation product with ]O group behaved similarly to the native membrane. In heterogeneous membranes composed of oxidized and non-oxidized domains, we tested the hypothesis according to which poration may be facilitated at the domain interface region. However, results were inconclusive due to their large statistical variance and sensitivity to simulation setup parameters. We pointed out important technical issues that need to be considered in future simulations of mechanically-induced poration of heterogeneous membranes. This research is of interest for photodynamic therapy and plasma medicine, because ruptured and intact plasma membranes are experimentally considered hallmarks of necrotic and apoptotic cell death.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000502890900015 Publication Date 2019-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4622 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.402 Times cited Open Access  
  Notes São Paulo Research Foundation, 2012/50680-5 ; National Counsel of Technological and Scientific Development, 459270/2014-1 ; We are thankful for the financial support received from the São Paulo Research Foundation (FAPESP) (grant no. 2012/50680-5) and from the National Counsel of Technological and Scientific Development (CNPq) (grant no. 459270/2014-1). MCO acknowledges UFABC for the Master's scholarship granted. Approved Most recent IF: 2.402  
  Call Number PLASMANT @ plasmant @c:irua:163477 Serial 5374  
Permanent link to this record
 

 
Author (up) Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M. pdf  url
doi  openurl
  Title How do nitrated lipids affect the properties of phospholipid membranes? Type A1 Journal article
  Year 2020 Publication Archives Of Biochemistry And Biophysics Abbreviated Journal Arch Biochem Biophys  
  Volume 695 Issue Pages 108548  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Biological membranes are under constant attack of free radicals, which may lead to lipid nitro-oxidation, pro­ ducing a complex mixture of nitro-oxidized lipids that are responsible for structural and dynamic changes on the membrane. Despite the latter, nitro-oxidized lipids are also associated with several inflammatory and neuro­ degenerative diseases, the underlying mechanisms of which remain elusive. We perform atomistic molecular dynamics simulations using several isomers of nitro-oxidized lipids to study their effect on the structure and permeability of the membrane, as well as the interaction between the mixture of these products in the phos­pholipid membrane environment. Our results show that the stereo- and positional isomers have a stronger effect on the properties of the membrane composed of oxidized lipids compared to that containing nitrated lipids. Nevertheless, nitrated lipids lead to three-fold increase in water permeability compared to oxidized lipids. In addition, we show that in a membrane consisting of combined nitro-oxidized lipid products, the presence of oxidized lipids protects the membrane from transient pores. Is well stablished that plasma application and photodynamic therapy produces a number of oxidative species used to kill cancer cells, through membrane damage induced by nitro-oxidative stress. This study is important to elucidate the mechanisms and the molecular level properties involving the reactive species produced during that cancer therapies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000594173400010 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited Open Access  
  Notes CAPES; Flanders Research Foundation, 1200219N ; We thank Universidade Federal do ABC for providing the computa­tional resources needed for completion of this work and CAPES for scholarship granted. M.Y. acknowledges the Flanders Research Foun­dation (grant 1200219N) for financial support. Approved Most recent IF: 3.9; 2020 IF: 3.165  
  Call Number PLASMANT @ plasmant @c:irua:173861 Serial 6440  
Permanent link to this record
 

 
Author (up) Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M. pdf  url
doi  openurl
  Title Lipid Oxidation: Role of Membrane Phase-Separated Domains Type A1 Journal Article
  Year 2021 Publication Journal Of Chemical Information And Modeling Abbreviated Journal J Chem Inf Model  
  Volume 61 Issue 6 Pages 2857-2868  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Lipid oxidation is associated with several inflammatory and neurodegenerative diseases, but many questions to unravel its effects on biomembranes are still open due to the complexity of the topic. For instance, recent studies indicated that phase-separated domains can have a significant effect on membrane function. It is reported that domain interfaces are “hot spots” for pore formation, but the underlying mechanisms and the effect of oxidation-induced phase separation on membranes remain elusive. Thus, to evaluate the permeability of the membrane coexisting of liquid-ordered (Lo) and liquid-disordered (Ld) domains, we performed atomistic molecular dynamics simulations. Specifically, we studied the membrane permeability of nonoxidized or oxidized homogeneous membranes (single-phase) and at the Lo/Ld domain interfaces of heterogeneous membranes, where the Ld domain is composed of either oxidized or nonoxidized lipids. Our simulation results reveal that the addition of only 1.5% of lipid aldehyde molecules at the Lo/Ld domain interfaces of heterogeneous membranes increases the membrane permeability, whereas their addition at homogeneous membranes does not have any effect. This study is of interest for a better understanding of cancer treatment methods based on oxidative stress (causing among others lipid oxidation), such as plasma medicine and photodynamic therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000669541400034 Publication Date 2021-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.76 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 1200219N ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; We thank Universidade Federal do ABC for providing the computational resources needed for completion of this work and CAPES for the scholarship granted. M.Y. acknowledges the Flanders Research Foundation (grant 1200219N) for financial support. Approved Most recent IF: 3.76  
  Call Number PLASMANT @ plasmant @c:irua:179766 Serial 6806  
Permanent link to this record
 

 
Author (up) Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M. pdf  url
doi  openurl
  Title Distribution of lipid aldehydes in phase-separated membranes: A molecular dynamics study Type A1 Journal article
  Year 2022 Publication Archives Of Biochemistry And Biophysics Abbreviated Journal Arch Biochem Biophys  
  Volume 717 Issue Pages 109136  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract It is well established that lipid aldehydes (LAs) are able to increase the permeability of cell membranes and induce their rupture. However, it is not yet clear how LAs are distributed in phase-separated membranes (PSMs), which are responsible for the transport of selected molecules and intracellular signaling. Thus, we investigate here the distribution of LAs in a PSM by coarse-grained molecular dynamics simulations. Our results reveal that LAs derived from mono-unsaturated lipids tend to accumulate at the interface between the liquid-ordered/liquiddisordered domains, whereas those derived from poly-unsaturated lipids remain in the liquid-disordered domain. These results are important for understanding the effects caused by oxidized lipids in membrane structure, properties and organization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000767632000001 Publication Date 2022-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes We thank the University of Antwerp and the Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.9  
  Call Number PLASMANT @ plasmant @c:irua:185874 Serial 6905  
Permanent link to this record
 

 
Author (up) Oliveira, M.C.; Yusupov, M.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title Unraveling the permeation of reactive species across nitrated membranes by computer simulations Type A1 Journal Article;Reactive oxygen and nitrogen species
  Year 2021 Publication Computers In Biology And Medicine Abbreviated Journal Comput Biol Med  
  Volume 136 Issue Pages 104768  
  Keywords A1 Journal Article;Reactive oxygen and nitrogen species; Nitro-oxidative stress; Molecular dynamics simulations; Nitrated membranes; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Reactive oxygen and nitrogen species (RONS) are involved in many biochemical processes, including nitrooxidative stress that causes cancer cell death, observed in cancer therapies such as photodynamic therapy and cold atmospheric plasma. However, their mechanisms of action and selectivity still remain elusive due to the complexity of biological cells. For example, it is not well known how RONS generated by cancer therapies permeate the cell membrane to cause nitro-oxidative damage. There are many studies dedicated to the perme­ation of RONS across native and oxidized membranes, but not across nitrated membranes, another lipid product also generated during nitro-oxidative stress. Herein, we performed molecular dynamics (MD) simulations to calculate the free energy barrier of RONS permeation across nitrated membranes. Our results show that hy­drophilic RONS, such as hydroperoxyl radical (HO2) and peroxynitrous acid (ONOOH), have relatively low barriers compared to hydrogen peroxide (H2O2) and hydroxyl radical (HO), and are more prone to permeate the membrane than for the native or peroxidized membranes, and similar to aldehyde-oxidized membranes. Hy­drophobic RONS like molecular oxygen (O2), nitrogen dioxide (NO2) and nitric oxide (NO) even have insignif­icant barriers for permeation. Compared to native and peroxidized membranes, nitrated membranes are more permeable, suggesting that we must not only consider oxidized membranes during nitro-oxidative stress, but also nitrated membranes, and their role in cancer therapies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000696938800003 Publication Date 2021-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4825 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.836 Times cited Open Access OpenAccess  
  Notes We thank University of Antwerp and Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted and for providing the computational resources needed for completion of this work. M. Yusupov acknowledges the Flanders Research Foundation (grant 1200219N) for financial support. Approved Most recent IF: 1.836  
  Call Number PLASMANT @ plasmant @c:irua:181082 Serial 6807  
Permanent link to this record
 

 
Author (up) Osella, S.; Knippenberg, S. pdf  doi
openurl 
  Title Laurdan as a molecular rotor in biological environments Type A1 Journal article
  Year 2019 Publication ACS applied bio materials Abbreviated Journal  
  Volume 2 Issue 12 Pages 5769-5778  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Laurdan is one of the most used fluorescent probes for lipid membrane phase recognition. Despite its wide use for optical techniques and its versatility as a solvatochromic probe, little is known regarding its use as molecular rotor, for which clear evidence is found in the current study. Although recent computational and experimental studies suggest the existence of two stable conformations of laurdan in different membrane phases, it is difficult to experimentally probe their prevalence. By means of multiscale computational approaches, we prove now that this information can be obtained through the optical properties of the two conformers, ranging from one-photon absorption over two-photon absorption to the first hyperpolarizability. Fluorescence decay and anisotropy analyses are performed as well and stress the importance of laurdan's conformational versatility. As a molecular rotor and with reference to the distinct properties of its conformers, laurdan can be used to probe biochemical processes that change the lipid orders in cell membranes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000616372300047 Publication Date 2019-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2576-6422 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:180356 Serial 8166  
Permanent link to this record
 

 
Author (up) Osorio-Tejada, J.; van't Veer, K.; Long, N.V.D.; Tran, N.N.; Fulcheri, L.; Patil, B.S.; Bogaerts, A.; Hessel, V. url  doi
openurl 
  Title Sustainability analysis of methane-to-hydrogen-to-ammonia conversion by integration of high-temperature plasma and non-thermal plasma processes Type A1 Journal article
  Year 2022 Publication Energy Conversion And Management Abbreviated Journal Energ Convers Manage  
  Volume 269 Issue Pages 116095  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The Covid era has made us aware of the need for resilient, self-sufficient, and local production. We are likely willing to pay an extra price for that quality. Ammonia (NH3) synthesis accounts for 2 % of global energy production and is an important point of attention for the development of green energy technologies. Therefore, we propose a thermally integrated process for H2 production and NH3 synthesis using plasma technology, and we evaluate its techno-economic performance and CO2 footprint by life cycle assessment (LCA). The key is to integrate energy-wise a high-temperature plasma (HTP) process, with a (low-temperature) non-thermal plasma (NTP) process and to envision their joint economic potential. This particularly means raising the temperature of the NTP process, which is typically below 100 ◦ C, taking advantage of the heat released from the HTP process. For that purpose, we proposed the integrated process and conducted chemical kinetics simulations in the NTP section to determine the thermodynamically feasible operating window of this novel combined plasma process. The results suggest that an NH3 yield of 2.2 mol% can be attained at 302 ◦ C at an energy yield of 1.1 g NH3/kWh. Cost calculations show that the economic performance is far from commercial, mainly because of the too low energy yield of the NTP process. However, when we base our costs on the best literature value and plausible future scenarios for the NTP energy yield, we reach a cost prediction below 452 $/tonne NH3, which is competitive with conventional small-scale Haber-Bosch NH3 synthesis for distributed production. In addition, we demonstrate that biogas can be used as feed, thus allowing the proposed integrated reactor concept to be part of a biogas-to-ammonia circular concept. Moreover, by LCA we demonstrate the environmental benefits of the pro­posed plant, which could cut by half the carbon emissions when supplied by photovoltaic electricity, and even invert the carbon balance when supplied by wind power due to the avoided emissions of the carbon black credits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000880662100007 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0196-8904 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.4 Times cited Open Access OpenAccess  
  Notes European Research Council; European Commission, 810182 ; The authors acknowledge support from the ERC Synergy Grant “Surface-COnfined fast modulated Plasma for process and Energy intensification” (SCOPE), from the European Commission, with Grant No. 810182. Approved Most recent IF: 10.4  
  Call Number PLASMANT @ plasmant @c:irua:191785 Serial 7103  
Permanent link to this record
 

 
Author (up) Ostrikov, K.; Neyts, E.C.; Meyyappan, M. pdf  doi
openurl 
  Title Plasma nanoscience : from nano-solids in plasmas to nano-plasmas in solids Type A1 Journal article
  Year 2013 Publication Advances in physics Abbreviated Journal Adv Phys  
  Volume 62 Issue 2 Pages 113-224  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The unique plasma-specific features and physical phenomena in the organization of nanoscale soild-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter to nano-plasma effects and nano-plasmas of different states of matter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000320913600001 Publication Date 2013-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-8732;1460-6976; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 21.818 Times cited 380 Open Access  
  Notes Approved Most recent IF: 21.818; 2013 IF: 18.062  
  Call Number UA @ lucian @ c:irua:108723 Serial 2639  
Permanent link to this record
 

 
Author (up) Ozkan, A. url  openurl
  Title CO2 splitting in a dielectric barrier discharge plasma : understanding of physical and chemical aspects Type Doctoral thesis
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Université Libre de Bruxelles/Universiteit Antwerpen Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:136265 Serial 4470  
Permanent link to this record
 

 
Author (up) Ozkan, A.; Bogaerts, A.; Reniers, F. pdf  url
doi  openurl
  Title Routes to increase the conversion and the energy efficiency in the splitting of CO2by a dielectric barrier discharge Type A1 Journal article
  Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 50 Pages 084004  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Here, we present routes to increase CO2 conversion into CO using an atmospheric pressure dielectric-barrier discharge. The change in conversion as a function of simple plasma parameters, such as power, flow rate, but also frequency, on-and-off power pulse, thickness and the chemical nature of the dielectric, wall and gas temperature, are described. By means of an in-depth electrical characterization of the discharge (effective plasma voltage, dielectric voltage, plasma current, number and lifetime of the microdischarges), combined with infrared analysis of the walls of the reactor, optical emission spectroscopy for the gas temperature, and mass spectrometry for the CO2 conversion, we propose a global interpretation of the effect of all the experimental parameters on the conversion and efficiency of the reaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395400700001 Publication Date 2017-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 28 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Interuniversity Attraction Pole) program PSIPhysical Chemistry of Plasma–Surface Interaction financially supported by the Belgian Federal Office for Science Policy (BELSPO). A Ozkan would like to thank the financial support given by the Fonds David et Alice Van Buuren. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @ c:irua:140093 Serial 4415  
Permanent link to this record
 

 
Author (up) Ozkan, A.; Dufour, T.; Arnoult, G.; De Keyzer, P.; Bogaerts, A.; Reniers, F. pdf  doi
openurl 
  Title CO2-CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge Type A1 Journal article
  Year 2015 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util  
  Volume 9 Issue 9 Pages 74-81  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The conversion of CO2 and CH4 into value-added chemicals is studied in a new geometry of a dielectric barrier discharge (DBD) with multi-electrodes, dedicated to the treatment of high gas flow rates. Gas chromatography is used to define the CO2 and CH4 conversion as well as the yields of the products of decomposition (CO, O2 and H2) and of recombination (C2H4, C2H6 and CH2O). The influence of three parameters is investigated on the conversion: the CO2 and CH4 flow rates, the plasma power and the nature of the carrier gas (argon or helium). The energy efficiency of the CO2 conversion is estimated and compared with those of similar atmospheric plasma sources. Our DBD reactor shows a good compromise between a good energy efficiency and the treatment of a large CO2 flow rate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350088700010 Publication Date 2015-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited 57 Open Access  
  Notes Approved Most recent IF: 4.292; 2015 IF: 3.091  
  Call Number c:irua:123029 Serial 3522  
Permanent link to this record
 

 
Author (up) Ozkan, A.; Dufour, T.; Bogaerts, A.; Reniers, F. pdf  url
doi  openurl
  Title How do the barrier thickness and dielectric material influence the filamentary mode and CO2conversion in a flowing DBD? Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 045016  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Dielectric barrier discharges (DBDs) are commonly used to generate cold plasmas at

atmospheric pressure. Whatever their configuration (tubular or planar), the presence of a dielectric barrier is mandatory to prevent too much charge build up in the plasma and the formation of a thermal arc. In this article, the role of the barrier thickness (2.0, 2.4 and 2.8 mm) and of the kind of dielectric material (alumina, mullite, pyrex, quartz) is investigated on the filamentary behavior in the plasma and on the CO2 conversion in a tubular flowing DBD, by means of mass spectrometry measurements correlated with electrical characterization and IR imaging. Increasing the barrier thickness decreases the capacitance, while preserving the electrical charge. As a result, the voltage over the dielectric increases and a larger number of microdischarges is generated, which enhances the CO2 conversion. Furthermore, changing the dielectric material of the barrier, while keeping the same geometry and dimensions, also affects the CO2 conversion. The highest CO2 conversion and energy efficiency are obtained for quartz and alumina, thus not following the trend of the relative permittivity. From the

electrical characterization, we clearly demonstrate that the most important parameters are the somewhat higher effective plasma voltage (yielding a somewhat higher electric field and electron energy in the plasma) for quartz, as well as the higher plasma current (and thus larger electron density) and the larger number of microdischarge filaments (mainly for alumina, but also for quartz). The latter could be correlated to the higher surface roughness for alumina and to the higher voltage over the dielectric for quartz.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380380200030 Publication Date 2016-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 24 Open Access  
  Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A. Ozkan would like to thank the financial support given by ‘Fonds David et Alice Van Buuren’. Approved Most recent IF: 3.302  
  Call Number c:irua:134396 Serial 4100  
Permanent link to this record
 

 
Author (up) Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Bogaerts, A.; Reniers, F. pdf  url
doi  openurl
  Title The influence of power and frequency on the filamentary behavior of a flowing DBD—application to the splitting of CO2 Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 025013  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this experimental study, a flowing dielectric barrier discharge operating at atmospheric pressure is used for the splitting of CO2 into O2 and CO. The influence of the applied frequency and plasma power on the microdischarge properties is investigated to understand their role on the CO2 conversion. Electrical measurements are carried out to explain the conversion trends and to characterize the microdischarges through their number, their lifetime,

their intensity and the induced electrical charge. Their influence on the gas and electrode temperatures is also evidenced through optical emission spectroscopy and infrared imaging. It is shown that, in our configuration, the conversion depends mostly on the charge delivered in the plasma and not on the effective plasma voltage when the applied power is modified. Similarly, at constant total current, a better conversion is observed at low frequencies, where a less filamentary discharge regime with a higher effective plasma voltage than that at a higher

frequency is obtained.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372337900015 Publication Date 2016-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 40 Open Access  
  Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A Ozkan would like to thank the financial support given by ‘Fonds David et Alice Van Buuren’. N Britun is a postdoctoral researcher of the F.R.S.-FNRS, Belgium. Approved Most recent IF: 3.302  
  Call Number c:irua:131904 Serial 4021  
Permanent link to this record
 

 
Author (up) Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title DBD in burst mode: solution for more efficient CO2conversion? Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 055005  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the

conversion from 16–26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the process time for the duty cycles <70%, while a higher duty cycle or the usual pure AC mode leads to a clear voltage decay by more than 500 V, over approximately 90 s, before reaching a steady state regime. The higher plasma voltage in the burst mode yields a higher electric field. This causes the increasing the electron energy, and therefore their

involvement in the CO2 dissociation process, which is an additional explanation for the higher CO2 conversion and energy efficiency in the burst mode.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403945500005 Publication Date 2016-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 17 Open Access  
  Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A. Ozkan would also like to thank financial support given by ‘Fonds David et Alice Van Buuren’. Approved Most recent IF: 3.302  
  Call Number c:irua:134841 Serial 4107  
Permanent link to this record
 

 
Author (up) Pattyn, C.; Maira, N.; Buddhadasa, M.; Vervloessem, E.; Iseni, S.; Roy, N.C.; Remy, A.; Delplancke, M.-P.; De Geyter, N.; Reniers, F. url  doi
openurl 
  Title Disproportionation of nitrogen induced by DC plasma-driven electrolysis in a nitrogen atmosphere Type A1 Journal article
  Year 2022 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 24 Issue 18 Pages 7100-7112  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nitrogen disproportionation i.e. its simultaneous conversion to compounds of higher (NOx) and lower (NH3) oxidation states in a N-2 DC plasma-driven electrolysis process with a plasma cathode is investigated. This type of plasma-liquid interaction exhibits a growing interest for many applications, in particular nitrogen fixation where it represents a green alternative to the Haber-Bosch process. Optical emission spectroscopy, FTIR and electrochemical sensing systems are used to characterize the gas phase physico-chemistry while the liquid phase is analyzed via ionic chromatography and colorimetric assays. Experiments suggest that lowering the discharge current enhances nitrogen reduction and facilitates the transfer of nitrogen compounds to the liquid phase. Large amounts of water vapor appear to impact the gas discharge physico-chemistry and to favor the vibrational excitation of N-2, a key parameter for an energy-efficient nitrogen fixation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000847733600001 Publication Date 2022-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.8  
  Call Number UA @ admin @ c:irua:190655 Serial 7145  
Permanent link to this record
 

 
Author (up) Paulussen, S.; Sels, B.; Bogaerts, A.; Paul, J. openurl 
  Title Een tweede leven voor broeikasgassen? Type A2 Journal article
  Year 2008 Publication Het ingenieursblad : maandblad van de Koninklijke Vlaamse Ingenieursvereniging KVIV Abbreviated Journal  
  Volume 77 Issue 3 Pages 16-20  
  Keywords A2 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1235 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:82308 Serial 3765  
Permanent link to this record
 

 
Author (up) Paulussen, S.; Verheyde, B.; Tu, X.; De Bie, C.; Martens, T.; Petrovic, D.; Bogaerts, A.; Sels, B. pdf  doi
openurl 
  Title Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges Type A1 Journal article
  Year 2010 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 19 Issue 3 Pages 034015,1-034015,6  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The aim of this work consists of the evaluation of atmospheric pressure dielectric barrier discharges for the conversion of greenhouse gases into useful compounds. Therefore, pure CO2 feed flows are administered to the discharge zone at varying discharge frequency, power input, gas temperature and feed flow rates, aiming at the formation of CO and O2. The discharge obtained in CO2 is characterized as a filamentary mode with a microdischarge zone in each half cycle of the applied voltage. It is shown that the most important parameter affecting the CO2-conversion levels is the gas flow rate. At low flow rates, both the conversion and the CO-yield are significantly higher. In addition, also an increase in the gas temperature and the power input give rise to higher conversion levels, although the effect on the CO-yield is limited. The optimum discharge frequency depends on the power input level and it cannot be unambiguously stated that higher frequencies give rise to increased conversion levels. A maximum CO2 conversion of 30% is achieved at a flow rate of 0.05 L min−1, a power density of 14.75 W cm−3 and a frequency of 60 kHz. The most energy efficient conversions are achieved at a flow rate of 0.2 L min−1, a power density of 11 W cm−3 and a discharge frequency of 30 kHz.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000277982800016 Publication Date 2010-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 116 Open Access  
  Notes Approved Most recent IF: 3.302; 2010 IF: 2.218  
  Call Number UA @ lucian @ c:irua:82408 Serial 512  
Permanent link to this record
 

 
Author (up) Paunska, T.; Trenchev, G.; Bogaerts, A.; Kolev, S. url  doi
openurl 
  Title A 2D model of a gliding arc discharge for CO2conversion Type P1 Proceeding
  Year 2019 Publication AIP conference proceedings T2 – 10th Jubilee Conference of the Balkan-Physical-Union (BPU), AUG 26-30, 2018, Sofia, BULGARIA Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The study presents a 2D fluid plasma model of a gliding arc discharge for dissociation of CO2 which allows its subsequent conversion into value-added chemicals. The model is based on the balance equations of charged and neutral particles, the electron energy balance equation, the gas thermal balance equation and the current continuity equation. By choosing the modeling domain to be the plane perpendicular to the arc current, the numerical calculations are significantly simplified. Thus, the model allows us to explore the influence of the gas instabilities (turbulences) on the energy efficiency of CO2 conversion. This paper presents results for plasma parameters at different values of the effective turbulent thermal conductivity leading to enhanced energy transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472653800069 Publication Date 2019-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 2075 Series Issue Edition  
  ISSN 978-0-7354-1803-5; 978-0-7354-1803-5; 0094-243x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:161422 Serial 6281  
Permanent link to this record
 

 
Author (up) Peerenboom, K.; Parente, A.; Kozák, T.; Bogaerts, A.; Degrez, G. pdf  url
doi  openurl
  Title Dimension reduction of non-equilibrium plasma kinetic models using principal component analysis Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 24 Issue 24 Pages 025004  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The chemical complexity of non-equilibrium plasmas poses a challenge for plasma modeling because of the computational load. This paper presents a dimension reduction method for such chemically complex plasmas based on principal component analysis (PCA). PCA is used to identify a low-dimensional manifold in chemical state space that is described by a small number of parameters: the principal components. Reduction is obtained since continuity equations only need to be solved for these principal components and not for all the species. Application of the presented method to a CO2 plasma model including state-to-state vibrational kinetics of CO2 and CO demonstrates the potential of the PCA method for dimension reduction. A manifold described by only two principal components is able to predict the CO2 to CO conversion at varying ionization degrees very accurately.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000356816200008 Publication Date 2015-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.302; 2015 IF: 3.591  
  Call Number c:irua:123534 Serial 704  
Permanent link to this record
 

 
Author (up) Pentcheva, E.; Van 't dack, L.; Veldeman, E.; Gijbels, R. openurl 
  Title Corrélations chimiques-géothermométriques des paramètres microchimiques des hydrothermes profonds Type A3 Journal article
  Year 1996 Publication Comptes rendus de l'Académie bulgare des sciences Abbreviated Journal  
  Volume 49 Issue 1 Pages 61-64  
  Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:16238 Serial 528  
Permanent link to this record
 

 
Author (up) Pentcheva, E.; Veldeman, E.; Van 't dack, L.; Gijbels, R. openurl 
  Title Sur les processus, controlant le caractère hydrochimique des eaux thermales profondes (Bulgarie Méridionale) Type A3 Journal article
  Year 1991 Publication Comptes rendus de l'Académie bulgare des sciences Abbreviated Journal  
  Volume 44 Issue Pages 51-54  
  Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #  
  Call Number UA @ lucian @ c:irua:708 Serial 3389  
Permanent link to this record
 

 
Author (up) Pentcheva, E.N.; Petrov, P.S.; Van 't dack, L.; Gijbels, R. openurl 
  Title Études génétiques du système “eau thermale – gaz – roche” sous l'influence de phénomènes volcaniques récents Type A1 Journal article
  Year 1995 Publication Doklady Bolgarskoi Akademii Nauk Abbreviated Journal  
  Volume 48 Issue 9/10 Pages 99-102  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Sofia Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0366-8681 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:110843 Serial 1085  
Permanent link to this record
 

 
Author (up) Pentcheva, E.N.; Petrov, P.S.; Veldeman, E.; Van 't dack, L.; Gijbels, R. openurl 
  Title Comportement hydrogéochimique des éléments traces au cours de l'interaction eau – roche en milieu alcalin Type A1 Journal article
  Year 1990 Publication Doklady Bolgarskoi Akademii Nauk Abbreviated Journal  
  Volume 43 Issue 4 Pages 51-54  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Sofia Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0366-8681 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:111478 Serial 439  
Permanent link to this record
 

 
Author (up) Pentcheva, E.N.; Swenters, K.; Van 't dack, L.; Verlinden, J.; Gijbels, R. openurl 
  Title Recherches microchimiques comparatives (SME et AAN) d'hydrothermes des granites de la Bulgarie du Sud Type A1 Journal article
  Year 1984 Publication Doklady Bolgarskoi Akademii Nauk Abbreviated Journal  
  Volume 37 Issue Pages 509-512  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Sofia Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0366-8681 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:111477 Serial 2843  
Permanent link to this record
 

 
Author (up) Pentcheva, E.N.; Van 't dack, L.; Gijbels, R. openurl 
  Title Influence of recent volcanism on the geochemical behaviour of trace elements and gases in deep granitic hydrothermal systems, southwest Bulgaria Type P3 Proceeding
  Year 1995 Publication Abbreviated Journal  
  Volume Issue Pages 383-387  
  Keywords P3 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Vladivostok Editor  
  Language Wos A1995BD94A00087 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:12271 Serial 1632  
Permanent link to this record
 

 
Author (up) Pentcheva, E.N.; Van 't dack, L.; Veldeman, E.; Gijbels, R. openurl 
  Title Correlations géothermométriques des éléments-traces des hydrothermes de terrains granitiques (Bulgarie Méridionale) Type A1 Journal article
  Year 1992 Publication Doklady na Balgarskata Akademija na Naukite Abbreviated Journal  
  Volume 44 Issue 12 Pages 85-88  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Sofija Editor  
  Language Wos A1991KD52300022 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0861-1459 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #  
  Call Number UA @ lucian @ c:irua:4198 Serial 529  
Permanent link to this record
 

 
Author (up) Pentcheva, E.N.; Van 't dack, L.; Veldeman, E.; Hristov, V.; Gijbels, R. openurl 
  Title Hydrochemical characteristics of geothermal systems in South Bulgaria Type MA3 Book as author
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords MA3 Book as author; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher University of Antwerp. Department of Chemistry Place of Publication Antwerp Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:20478 Serial 1529  
Permanent link to this record
 

 
Author (up) Pentcheva, E.N.; Veldeman, E.; Van 't dack, L.; Gijbels, R. openurl 
  Title Sur l'équilibre hydrogéochimique “solution – suspension” dans les systèmes hydrothermaux du socle cristallin Type A1 Journal article
  Year 1996 Publication Doklady Bolgarskoi Akademii Nauk Abbreviated Journal  
  Volume 49 Issue 2 Pages 65-68  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Sofia Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0366-8681 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:110844 Serial 3388  
Permanent link to this record
 

 
Author (up) Pentcheva, E.N.; Veldeman, E.; Van 't dack, L.; Gijbels, R. openurl 
  Title Trace element geochemistry of the system rock-thermal water – suspended matter – deposits in a granitic environment Type P3 Proceeding
  Year 1992 Publication Abbreviated Journal  
  Volume Issue Pages 1321-1325  
  Keywords P3 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Balkema Place of Publication Rotterdam Editor  
  Language Wos A1992BW43V00286 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:4206 Serial 3693  
Permanent link to this record
 

 
Author (up) Petrovic, D.; Martens, T.; De Bie, C.; van Dijk, J.; Brok, W.J.M.; Bogaerts, A. openurl 
  Title Numerical study on energy efficiency of a cylindrical dielectric barrier discharge plasma-chemical reactor Type P1 Proceeding
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 109  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:85694 Serial 2412  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: