toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Le Compte, M.; Cardenas De La Hoz, E.; Peeters, S.; Smits, E.; Lardon, F.; Roeyen, G.; Vanlanduit, S.; Prenen, H.; Peeters, M.; Lin, A.; Deben, C. url  doi
openurl 
  Title Multiparametric tumor organoid drug screening using widefield live-cell imaging for bulk and single-organoid analysis Type A1 Journal article
  Year 2022 Publication Jove-Journal Of Visualized Experiments Abbreviated Journal Jove-J Vis Exp  
  Volume Issue 190 Pages 1-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Center for Oncological Research (CORE)  
  Abstract Patient-derived tumor organoids (PDTOs) hold great promise for preclinical and translational research and predicting the patient therapy response from ex vivo drug screenings. However, current adenosine triphosphate (ATP)-based drug screening assays do not capture the complexity of a drug response (cytostatic or cytotoxic) and intratumor heterogeneity that has been shown to be retained in PDTOs due to a bulk readout. Live-cell imaging is a powerful tool to overcome this issue and visualize drug responses more in-depth. However, image analysis software is often not adapted to the three-dimensionality of PDTOs, requires fluorescent viability dyes, or is not compatible with a 384-well microplate format. This paper describes a semi-automated methodology to seed, treat, and image PDTOs in a high-throughput, 384-well format using conventional, widefield, live-cell imaging systems. In addition, we developed viability marker-free image analysis software to quantify growth rate-based drug response metrics that improve reproducibility and correct growth rate variations between different PDTO lines. Using the normalized drug response metric, which scores drug response based on the growth rate normalized to a positive and negative control condition, and a fluorescent cell death dye, cytotoxic and cytostatic drug responses can be easily distinguished, profoundly improving the classification of responders and non-responders. In addition, drug-response heterogeneity can by quantified from single-organoid drug response analysis to identify potential, resistant clones. Ultimately, this method aims to improve the prediction of clinical therapy response by capturing a multiparametric drug response signature, which includes kinetic growth arrest and cell death quantification. ,  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000928020400010 Publication Date 2022-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1940-087x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.2  
  Call Number UA @ admin @ c:irua:193168 Serial 7271  
Permanent link to this record
 

 
Author (up) Lefrancois, P.; Girard-Sahun, F.; Badets, V.; Clement, F.; Arbault, S. pdf  url
doi  openurl
  Title Electroactivity of superoxide anion in aqueous phosphate buffers analyzed with platinized microelectrodes Type A1 Journal article
  Year 2020 Publication Electroanalysis Abbreviated Journal Electroanal  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The reactivity of platinized ultramicroelectrodes (Pt-black UMEs) towards superoxide anion O-2(.-), an unstable Reactive Oxygen Species (ROS), and its relatives, H2O2 and O-2, was studied. Voltammetric studies in PBS demonstrate that Pt-black UMEs provide: i) a well-resolved reversible redox signature for O-2(.-) detected in both alkaline and physiological buffers (pH 12 and 7.4); ii) irreversible oxidation and reduction waves for H2O2 at pH 7.4. The oxygen reduction reaction (ORR) at Pt-black surfaces solely yields H2O2 (2 electrons/2 H+) at physiological pH. Consequently, Pt-black UMEs allow to sense different ROS including superoxide anion for future biomedical or physico-chemical investigations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000590291800001 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited Open Access  
  Notes Approved Most recent IF: 3; 2020 IF: 2.851  
  Call Number UA @ admin @ c:irua:174264 Serial 6764  
Permanent link to this record
 

 
Author (up) Lenaerts, J.; Gijbels, R.; van Vaeck, L.; Verlinden, G.; Geuens, I. doi  openurl
  Title Imaging TOF-SIMS for the surface analysis of silver halide microcrystals Type A1 Journal article
  Year 2003 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 203/204 Issue Pages 614-619  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000180527300138 Publication Date 2002-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 7 Open Access  
  Notes Approved Most recent IF: 3.387; 2003 IF: 1.284  
  Call Number UA @ lucian @ c:irua:51974 Serial 1556  
Permanent link to this record
 

 
Author (up) Lenaerts, J.; van Vaeck, L.; Gijbels, R. doi  openurl
  Title Secondary ion formation of low molecular weight organic dyes in time-of-flight static secondary ion mass spectrometry Type A1 Journal article
  Year 2003 Publication Rapid communications in mass spectrometry Abbreviated Journal Rapid Commun Mass Sp  
  Volume 17 Issue 18 Pages 2115-2124  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) was used to characterize thin layers of oxy- and thiocarbocyanine dyes on Ag and Si. Apart from adduct ions a variety of structural fragment ions were detected for which a fragmentation pattern is proposed. Peak assignments were confirmed by comparing spectra of dyes with very similar structures. All secondary ions were assigned with a mass accuracy better than 50 ppm. The intensity of molecular ions as well as fragment ions has been studied as a function of the type of organic dye, the substrate, the layer thickness and the type of primary ion. A large yield difference of two orders of magnitude was observed between the precursor ions of cationic carbocyanine dyes and the protonated molecules of the anionic dyes. Fragment ions, on the other hand, yielded similar intensities for both types of dye. As the dye layers deposited on an Ag substrate yielded higher secondary ion intensities than those deposited on a Si substrate, the Ag metal clearly acts as a promoting agent for secondary ion formation. The effect was more pronounced for precursor signals than for fragment ions. The promoting effect decreased as the deposited layer thickness of the organic dye layer was increased. Copyright (C) 2003 John Wiley Sons, Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000185230400014 Publication Date 2003-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0951-4198;1097-0231; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.998 Times cited 10 Open Access  
  Notes Approved Most recent IF: 1.998; 2003 IF: 2.789  
  Call Number UA @ lucian @ c:irua:104132 Serial 2958  
Permanent link to this record
 

 
Author (up) Lenaerts, J.; van Vaeck, L.; Gijbels, R.; Van Luppen, J. doi  openurl
  Title Comparison of mono- and polyatomic primary ions for the characterization of organic dye overlayers with static secondary ion mass spectrometry Type A1 Journal article
  Year 2004 Publication Rapid communications in mass spectrometry Abbreviated Journal Rapid Commun Mass Sp  
  Volume 18 Issue 3 Pages 257-264  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Organic carbocyanine dye coatings have been analyzed by time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) using three types of primary ions: Ga+ operating at 25 keV, and Xe+ and SF5+ both operating at 9 keV. Secondary ion yields obtained with these three primary ions have been compared for coatings with different layer thickness, varying from (sub)-monolayer to multilayers, on different substrates (Si, Ag and AgBr cubic microcrystals). For (sub)-monolayers deposited on Ag, Xe+ and SF5+ primary ions generate similar precursor ion intensities, but with Ga+ slightly lower precursor ion intensities were obtained. Thick coatings on Ag as well as mono- and multilayers on Si produce the highest precursor and fragment ion intensities with the polyatomic primary ion. The yield difference between SF5+ and Xe+ can reach a factor of 6. In comparison with Ga+, yield enhancements by up to a factor of 180 are observed with SF5+. For the mass spectrometric analysis of dye layers on AgBr microcrystals, SF5+ again proves to be the primary ion of choice. Copyright (C) 2004 John Wiley Sons, Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000188695200004 Publication Date 2004-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0951-4198;1097-0231; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.998 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.998; 2004 IF: 2.750  
  Call Number UA @ lucian @ c:irua:103759 Serial 432  
Permanent link to this record
 

 
Author (up) Lenaerts, J.; Verlinden, G.; Gijbels, R.; Geuens, I.; Callant, P. openurl 
  Title The exchange of fluorinated dyes between different types of silver halide microcrystals studied by time of flight secondary ion mass spectrometry (TOF-SIMS) Type P1 Proceeding
  Year 2000 Publication Abbreviated Journal  
  Volume Issue Pages 180-183  
  Keywords P1 Proceeding; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Soc Imaging Science Technology Place of Publication Springfield Editor  
  Language Wos 000183315900049 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 2000 Series Issue Edition  
  ISSN 0-89208-229-1 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:95776 Serial 3580  
Permanent link to this record
 

 
Author (up) Lenaerts, J.; Verlinden, G.; Ignatova, V.A.; van Vaeck, L.; Gijbels, R.; Geuens, I. doi  openurl
  Title Modeling of the sputtering process of cubic silver halide microcrystals and its relevance in depth profiling by secondary ion-mass spectrometry (SIMS) Type A1 Journal article
  Year 2001 Publication Fresenius' journal of analytical chemistry Abbreviated Journal Fresen J Anal Chem  
  Volume 370 Issue 5 Pages 654-662  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000170115200032 Publication Date 2002-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0937-0633;1432-1130; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:37251 Serial 2135  
Permanent link to this record
 

 
Author (up) Lenaerts, J.; Verlinden, G.; van Vaeck, L.; Gijbels, R.; Geuens, I. openurl 
  Title TOF-SIMS analysis of carbocyanine dyes adsorbed on silver substrates Type P3 Proceeding
  Year 2000 Publication Abbreviated Journal  
  Volume Issue Pages 115-118  
  Keywords P3 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Amsterdam Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:34080 Serial 3669  
Permanent link to this record
 

 
Author (up) Lenaerts, J.; Verlinden, G.; van Vaeck, L.; Gijbels, R.; Geuens, I.; Callant, P. doi  openurl
  Title Exchange of fluorinated cyanine dyes between different types of silver halide microcrystals studied by imaging time-of-flight secondary ion mass spectrometry Type A1 Journal article
  Year 2001 Publication Langmuir Abbreviated Journal Langmuir  
  Volume 17 Issue 23 Pages 7332-7338  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000172123700027 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.833 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.833; 2001 IF: 2.963  
  Call Number UA @ lucian @ c:irua:37254 Serial 1108  
Permanent link to this record
 

 
Author (up) Li, K.; Liu, J.-L.; Li, X.-S.; Lian, H.-Y.; Zhu, X.; Bogaerts, A.; Zhu, A.-M. pdf  url
doi  openurl
  Title Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 353 Issue Pages 297-304  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We propose a novel Power to Synthesis Gas (P2SG) approach, composed of two high-efficiency and renewable electricity-driven units, i.e., plasma catalytic reforming (PCR) and water electrolysis (WE), to produce high quality syngas from CH4, CO2 and H2O. As WE technology is already commercial, we mainly focus on the PCR unit, consisting of gliding arc plasma and Ni-based catalyst, for oxidative dry reforming of methane. An energy efficiency of 78.9% and energy cost of 1.0 kWh/Nm3 at a CH4 conversion of 99% and a CO2 conversion of 79% are obtained. Considering an energy efficiency of 80% for WE, the P2SG system yields an overall energy efficiency of 79.3% and energy cost of 1.8 kWh/Nm3. High-quality syngas is produced without the need for posttreatment units, featuring the ideal stoichiometric number of 2, with concentration of 94.6 vol%, and a desired CO2 fraction of 1.9 vol% for methanol synthesis. The PCR unit has the advantage of fast response to adapting to fluctuation of renewable electricity, avoiding local hot spots in the catalyst bed and coking, in contrast to conventional catalytic processes. Moreover, pure O2 from the WE unit is directly utilized by the PCR unit for oxidative dry reforming of methane, and thus, no air separation unit, like in conventional processes, is required. This work demonstrates the viability of the P2SG approach for large-scale energy storage of renewable electricity via electricity-to-fuel conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441527900029 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 7 Open Access OpenAccess  
  Notes This project is supported by the National Natural Science Foundation of China (11705019, 11475041), the Fundamental Research Funds for the Central Universities (DUT16QY49, DUT16LK16) and the Fund for Scientific Research Flanders (FWO; grant G.0383.16N). Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:153059 Serial 5049  
Permanent link to this record
 

 
Author (up) Li, S.; Ahmed, R.; Yi, Y.; Bogaerts, A. url  doi
openurl 
  Title Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis Type A1 Journal article
  Year 2021 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 11 Issue 5 Pages 590  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Direct oxidation of methane to methanol (DOMTM) is attractive for the increasing industrial demand of feedstock. In this review, the latest advances in heterogeneous catalysis and plasma catalysis for DOMTM are summarized, with the aim to pinpoint the differences between both, and to provide some insights into their reaction mechanisms, as well as the implications for future development of highly selective catalysts for DOMTM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000653609900001 Publication Date 2021-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited Open Access OpenAccess  
  Notes Fundamental Research Funds for the Central Universities of China, DUT18JC42 ; National Natural Science Foundation of China, 21503032 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; TOP-BOF research project of the Research Council of the University of Antwerp, 32249 ; This research was funded by the Fundamental Research Funds for the Central Universities of China (DUT18JC42), the National Natural Science Foundation of China (21503032) PetroChina Innovation Foundation (2018D-5007-0501) and the TOP-BOF research project of the Research Council of the University of Antwerp (grant ID 32249). This research was supported by the China Scholarship Council (CSC). The authors warmly acknowledge CSC for their support. Approved Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @c:irua:177851 Serial 6753  
Permanent link to this record
 

 
Author (up) Li, S.; Liu, C.; Bogaerts, A.; Gallucci, F. url  doi
openurl 
  Title Editorial: Special issue on CO2 utilization with plasma technology Type Editorial
  Year 2022 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 61 Issue Pages 102017  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology has advanced significantly in recent years, with application ranging from chemical conversion, to surface treatment, material development and several other fields. Special attention has been paid to the development of possible novel approaches for the conversion of chemicals in a more sustainable way. Plasma technology offers advantages over thermochemical routes such as high process versatility, mild reaction condition, one-step synthesis, fast reaction and instant control. More importantly, it can be easily combined with elec­tricity generated from various renewable sources and is suitable for energy storage via the conversion of intermittent renewable energy into carbon-neutral fuels or other chemicals. In recent years, there has been a growing interest in the development of plasma technology for CO2 uti­lization. Investigation on different reactions such as CO2 splitting, dry reforming of methane (DRM) and CO2 hydrogenation with different types of plasma reactors and catalysts have been reported by researchers worldwide. Although technological maturity still needs to be increased, the potential of plasma has been well-recognized by the scientific community and industry. More research output in the future is expected as a result of intensive research activities and various kinds of invest­ment. In this context, we present this special issue on CO2 utilization with plasma technology, which collects 22 articles, covering topics in related areas such as plasma reactor design, plasma catalysis, plasmamaterial interaction, modeling and new ideas for possible applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000798071200005 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.7  
  Call Number PLASMANT @ plasmant @c:irua:188287 Serial 7058  
Permanent link to this record
 

 
Author (up) Li, S.; Sun, J.; Gorbanev, Y.; van’t Veer, K.; Loenders, B.; Yi, Y.; Kenis, T.; Chen, Q.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Assisted Dry Reforming of CH4: How Small Amounts of O2Addition Can Drastically Enhance the Oxygenate Production─Experiments and Insights from Plasma Chemical Kinetics Modeling Type A1 Journal Article
  Year 2023 Publication ACS Sustainable Chemistry & Engineering Abbreviated Journal ACS Sustainable Chem. Eng.  
  Volume 11 Issue 42 Pages 15373-15384  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-based dry reforming of methane (DRM) into

high-value-added oxygenates is an appealing approach to enable

otherwise thermodynamically unfavorable chemical reactions at

ambient pressure and near room temperature. However, it suffers

from coke deposition due to the deep decomposition of CH4. In this

work, we assess the DRM performance upon O2 addition, as well as

varying temperature, CO2/CH4 ratio, discharge power, and gas

residence time, for optimizing oxygenate production. By adding O2,

the main products can be shifted from syngas (CO + H2) toward

oxygenates. Chemical kinetics modeling shows that the improved

oxygenate production is due to the increased concentration of

oxygen-containing radicals, e.g., O, OH, and HO2, formed by electron

impact dissociation [e + O2 → e + O + O/O(1D)] and subsequent

reactions with H atoms. Our study reveals the crucial role of oxygen-coupling in DRM aimed at oxygenates, providing practical

solutions to suppress carbon deposition and at the same time enhance the oxygenates production in plasma-assisted DRM.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082603900001 Publication Date 2023-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, S001619N ; China Scholarship Council, 202006060029 ; National Natural Science Foundation of China, 21975018 ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:201013 Serial 8966  
Permanent link to this record
 

 
Author (up) Liang, Y.-S.; Liu, Y.-X.; Zhang, Y.-R.; Wang, Y.-N. pdf  doi
openurl 
  Title Investigation of voltage effect on reaction mechanisms in capacitively coupled N-2 discharges Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 127 Issue 13 Pages 133301  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A systematic investigation of voltage effect on the plasma parameters, especially the species densities and chemical reaction mechanisms, in the capacitive N-2 discharges is performed by employing a two-dimensional self-consistent fluid model. The validity of the numerical model is first demonstrated by the qualitative agreement of the calculated and experimental results. Then, the densities, production mechanisms, and loss mechanisms of species from simulation are examined at various voltages. It is found that all the species densities increase monotonically with the voltage, whereas their spatial profiles at lower voltages are quite different from those at higher voltages. The electrons and Nthorn 2 ions are mainly generated by the electron impact ionization of N-2 gas, while the Nthorn ions, whose density is one or two orders of magnitude lower, are mostly formed by the ionization of N atoms. The electron impact dissociation of N-2 gas dominates the generation of N atoms, which are mostly destroyed for the Nthorn ion production. As for the excited N-2 levels, the level conversion processes play a very important role in their production and depletion mechanisms, except for the electron impact excitation of the ground state N-2 molecules. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000524256700001 Publication Date 2020-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited Open Access  
  Notes ; This work was financially supported by the National Natural Science Foundation of China (NNSFC) (Grant Nos. 11805089 and 11875101), the Natural Science Foundation of Liaoning Province, China (Grant No. 2019-BS-127), the Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, China (Grant No. KF1804), and the China Scholarship Council. ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:168558 Serial 6555  
Permanent link to this record
 

 
Author (up) Liang, Y.-S.; Xue, C.; Zhang, Y.-R.; Wang, Y.-N. doi  openurl
  Title Investigation of active species in low-pressure capacitively coupled N-2/Ar plasmas Type A1 Journal article
  Year 2021 Publication Physics Of Plasmas Abbreviated Journal Phys Plasmas  
  Volume 28 Issue 1 Pages 013510  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, a self-consistent fluid model is developed focusing on the plasma parameters in capacitively coupled 20% N 2-80% Ar discharges. Measurements of ion density are performed with the help of a floating double probe, and the emission intensities from Ar(4p) and N 2 ( B ) transitions are detected by an optical emission spectroscopy to estimate their relative densities. The consistency between the numerical and experimental results confirms the reliability of the simulation. Then the plasma characteristics, specifically the reaction mechanisms of active species, are analyzed under various voltages. The increasing voltage leads to a monotonous increase in species density, whereas a less homogeneous radial distribution is observed at a higher voltage. Due to the high concentration of Ar gas, Ar + becomes the main ion, followed by the N 2 +</mml:msubsup> ion. Besides the electron impact ionization of neutrals, the charge transfer processes of Ar +/ N 2 and N 2 +</mml:msubsup>/Ar are found to have an impact on the ionic species. The results indicate that adopting the lower charge transfer reaction rate coefficients weakens the Ar + ion density and yields a higher N 2 +</mml:msubsup> ion density. However, the effect on the species spatial distributions and other species densities is limited. As for the excited-state species, the electron impact excitation of background gases remains overwhelming in the formation of Ar(4p), N 2 ( B ), and N 2 ( a ' ), whereas the <mml:msub> N 2 ( A ) molecules are mainly formed by the decay of <mml:msub> N 2 ( B ). In addition, the dissociation of <mml:msub> N 2 collided by excited-state Ar atoms dominates the N generation, which are mostly depleted to produce N + ions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000629931300002 Publication Date 2021-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.115  
  Call Number UA @ admin @ c:irua:177669 Serial 6767  
Permanent link to this record
 

 
Author (up) Lin, A.; Biscop, E.; Breen, C.; Butler, S.J.; Smits, E.; Bogaerts, A.; Jakovljevic, V. pdf  url
doi  openurl
  Title Critical Evaluation of the Interaction of Reactive Oxygen and Nitrogen Species with Blood to Inform the Clinical Translation of Nonthermal Plasma Therapy Type A1 Journal article
  Year 2020 Publication Oxidative Medicine And Cellular Longevity Abbreviated Journal Oxid Med Cell Longev  
  Volume 2020 Issue Pages 1-10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Non-thermal plasma (NTP), an ionized gas generated at ambient pressure and temperature, has been an emerging technology for medical applications. Through controlled delivery of reactive oxygen and nitrogen species (ROS/RNS), NTP can elicit hormetic cellular responses, thus stimulating broad therapeutic effects. To enable clinical translation of the promising preclinical research into NTP therapy, a deeper understanding of NTP interactions with clinical substrates is profoundly needed. Since NTP-generated ROS/RNS will inevitably interact with blood in several clinical contexts, understanding their stability in this system is crucial. In this study, two medically relevant NTP delivery modalities were used to assess the stability of NTP-generated ROS/RNS in three aqueous solutions with increasing organic complexities: phosphate-buffered saline (PBS), blood plasma (BP), and processed whole blood. NTP-generated RNS collectively (NO2−, ONOO−), H2O2, and ONOO− exclusively were analyzed over time. We demonstrated that NTP-generated RNS and H2O2 were stable in PBS but scavenged by different components of the blood. While RNS remained stable in BP after initial scavenging effects, it was completely reduced in processed whole blood. On the other hand, H2O2 was completely scavenged in both liquids over time. Our previously developed luminescent probe europium(III) was used for precision measurement of ONOO− concentration. NTP-generated ONOO− was detected in all three liquids for up to at least 30 seconds, thus highlighting its therapeutic potential. Based on our results, we discussed the necessary considerations to choose the most optimal NTP modality for delivery of ROS/RNS to and via blood in the clinical context.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000600343500001 Publication Date 2020-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-0900 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.593 Times cited Open Access  
  Notes This work was supported in part by the Research Foundation Flanders grant 12S9218N (A.L.) ,12S9221N (A.L) and G044420N (A.B. and A.L). This work was also supported by the Methusalem grant (A.B.). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:174000 Serial 6658  
Permanent link to this record
 

 
Author (up) Lin, A.; Biscop, E.; Gorbanev, Y.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Toward defining plasma treatment dose : the role of plasma treatment energy of pulsed‐dielectric barrier discharge in dictating in vitro biological responses Type A1 Journal article
  Year 2022 Publication Plasma Processes And Polymers Abbreviated Journal Plasma Process Polym  
  Volume 19 Issue 3 Pages e2100151  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The energy dependence of a pulsed-dielectric barrier discharge (DBD) plasma treatment on chemical species production and biological responses was investigated. We hypothesized that the total plasma energy delivered during treatment encompasses the influence of major application parameters. A microsecond-pulsed DBD system was used to treat three different cancer cell lines and cell viability was analyzed. The energy per pulse was measured and the total plasma treatment energy was controlled by adjusting the pulse frequency, treatment time, and application distance. Our data suggest that the delivered plasma energy plays a predominant role in stimulating a biological response in vitro. This study aids in developing steps toward defining a plasma treatment unit and treatment dose for biomedical and clinical research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711907800001 Publication Date 2021-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.5  
  Call Number UA @ admin @ c:irua:182916 Serial 7219  
Permanent link to this record
 

 
Author (up) Lin, A.; De Backer, J.; Quatannens, D.; Cuypers, B.; Verswyvel, H.; De La Hoz, E.C.; Ribbens, B.; Siozopoulou, V.; Van Audenaerde, J.; Marcq, E.; Lardon, F.; Laukens, K.; Vanlanduit, S.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title The effect of local non‐thermal plasma therapy on the<scp>cancer‐immunity</scp>cycle in a melanoma mouse model Type University Hospital Antwerp
  Year 2022 Publication Bioengineering & Translational Medicine Abbreviated Journal Bioengineering & Transla Med  
  Volume Issue Pages  
  Keywords University Hospital Antwerp; A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; ADReM Data Lab (ADReM); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE); Proteinscience, proteomics and epigenetic signaling (PPES)  
  Abstract Melanoma remains a deadly cancer despite significant advances in immune checkpoint blockade and targeted therapies. The incidence of melanoma is also growing worldwide, which highlights the need for novel treatment options and strategic combination of therapies. Here, we investigate non-thermal plasma (NTP), an ionized gas, as a promising, therapeutic option. In a melanoma mouse model, direct treatment of tumors with NTP results in reduced tumor burden and prolonged survival. Physical characterization of NTP treatment in situ reveals the deposited NTP energy and temperature associated with therapy response, and whole transcriptome analysis of the tumor identified several modulated pathways. NTP treatment also enhances the cancer-immunity cycle, as immune cells in both the tumor and tumor-draining lymph nodes appear more stimulated to perform their anti-cancer functions. Thus, our data suggest that local NTP therapy stimulates systemic, anti-cancer immunity. We discuss, in detail, how these fundamental insights will help direct the translation of NTP technology into the clinic and inform rational combination strategies to address the challenges in melanoma therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000784103500001 Publication Date 2022-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2380-6761 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Vlaamse regering, 1S67621N 1S76421N G044420N 12S9221N 12S9218N ; The authors would like to thank and acknowledge Christophe Hermans, Ho Wa Lau, and Hilde Lambrechts for their help with sectioning and preparing the IHC slides. The authors would also like to thank Dani Banner for designing the ergonomic NTP applicator handle and Hasan Baysal for 3D printing the pieces used in this experiment. We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. Some of the resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) The data that support the findings of this study are available from the Flemish Government. The FWO fellowships and grants that funded this work also include: 12S9218N (Abraham Lin), 12S9221N (Abraham Lin), G044420N (Abraham Lin, Annemie Bogaert, and Steve Vanlanduit), 1S76421N (Delphine Quatannens), and 1S67621N (Hanne Verswyvel). Figure 7 was created with BioRender.com. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:187909 Serial 7056  
Permanent link to this record
 

 
Author (up) Lin, A.; Gorbanev, Y.; De Backer, J.; Van Loenhout, J.; Van Boxem, W.; Lemière, F.; Cos, P.; Dewilde, S.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Non‐Thermal Plasma as a Unique Delivery System of Short‐Lived Reactive Oxygen and Nitrogen Species for Immunogenic Cell Death in Melanoma Cells Type A1 Journal article
  Year 2019 Publication Advanced Science Abbreviated Journal Adv Sci  
  Volume 6 Issue 6 Pages 1802062  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000462613100001 Publication Date 2019-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.034 Times cited 39 Open Access OpenAccess  
  Notes This study was funded in part by the Flanders Research Foundation (grant no. 12S9218N) and the European Marie Sklodowska-Curie Individual Fellowship within Horizon2020 (LTPAM) grant no. 743151). The microsecond-pulsed power supply was purchased following discussions with the C. & J. Nyheim Plasma Institute at Drexel University. The authors would like to thank Dr. Erik Fransen for his expertise and guidance with the statistical models and analysis used here. The authors would also like to thank Dr. Sander Bekeschus of the Leibniz Institute for Plasma Science and Technology for the discussions at conferences and workshops. A.L. contributed to the design and carrying out of all experiments. A.L. also wrote the manuscript. Y.G. contributed to the design and carrying out of experiments involving chemical measurements. Y.G. also contributed to writing the chemical portions of the manuscript. J.D.B. contributed to the design and carrying out of in vivo experiments. J.D.B. also contributed to writing the portions of the manuscript involving animal experiments and care. J.V.L. contributed to the optimization of the calreticulin protocol used in the experiments. W.V.B. contributed to optimization of colorimetric assays used in the experiments. F.L. contributed to mass spectrometry measurements. P.C., S.D., E.S., and A.B. provided workspace, equipment, and valuable discussions for the project. All authors participated in the review of the manuscript.; Flanders Research Foundation, 12S9218N ; European Marie Sklodowska-Curie Individual Fellowship within Horizon2020, 743151 ; Approved Most recent IF: 9.034  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:156548 Serial 5165  
Permanent link to this record
 

 
Author (up) Lin, A.; Gromov, M.; Nikiforov, A.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Characterization of Non-Thermal Dielectric Barrier Discharges for Plasma Medicine: From Plastic Well Plates to Skin Surfaces Type A1 Journal Article
  Year 2023 Publication Plasma Chemistry and Plasma Processing Abbreviated Journal Plasma Chem Plasma Process  
  Volume 43 Issue 6 Pages 1587-1612  
  Keywords A1 Journal Article; Non-thermal plasma · Plasma medicine · Dielectric barrier discharge · Plasma diagnostics · Plasma surface interaction · In situ plasma monitoring; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract technologies have been expanding, and one of the most exciting and rapidly growing

applications is in biology and medicine. Most biomedical studies with DBD plasma systems are performed in vitro, which include cells grown on the surface of plastic well plates, or in vivo, which include animal research models (e.g. mice, pigs). Since many DBD systems use the biological target as the secondary electrode for direct plasma generation and treatment, they are sensitive to the surface properties of the target, and thus can be altered based on the in vitro or in vivo system used. This could consequently affect biological response from plasma treatment. Therefore, in this study, we investigated the DBD plasma behavior both in vitro (i.e. 96-well flat bottom plates, 96-well U-bottom plates, and 24-well flat bottom plates), and in vivo (i.e. mouse skin). Intensified charge coupled device (ICCD) imaging was performed and the plasma discharges were visually distinguishable between the different systems. The geometry of the wells did not affect DBD plasma generation for low application distances (≤ 2 mm), but differentially affected plasma uniformity on the bottom of the well at greater distances. Since DBD plasma treatment in vitro is rarely performed in dry wells for plasma medicine experiments, the effect of well wetness was also investigated. In all in vitro cases, the uniformity of the DBD plasma was affected when comparing wet versus dry wells, with the plasma in the wide-bottom wells appearing the most similar to plasma generated on mouse skin. Interestingly, based on quantification of ICCD images, the DBD plasma intensity per surface area demonstrated an exponential one-phase decay with increasing application distance, regardless of the in vitro or in vivo system. This trend is similar to that of the energy per pulse of plasma, which is used to determine the total plasma treatment energy for biological systems. Optical emission spectroscopy performed on the plasma revealed similar trends in radical species generation between the plastic well plates and mouse skin. Therefore, taken together, DBD plasma intensity per surface area may be a valuable parameter to be used as a simple method for in situ monitoring during biological treatment and active plasma treatment control, which can be applied for in vitro and in vivo systems.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001072607700001 Publication Date 2023-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited Open Access Not_Open_Access  
  Notes This work was partially funded by the Research Foundation—Flanders (FWO) and supported by the following Grants: 12S9221N (A. L.), G044420N (A. L. and A. B.), and G033020N (A.B.). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on “Therapeutical applications of Cold Plasmas” (CA20114; PlasTHER). Approved Most recent IF: 3.6; 2023 IF: 2.355  
  Call Number PLASMANT @ plasmant @c:irua:200285 Serial 8970  
Permanent link to this record
 

 
Author (up) Lin, A.; Razzokov, J.; Verswyvel, H.; Privat-Maldonado, A.; De Backer, J.; Yusupov, M.; Cardenas De La Hoz, E.; Ponsaerts, P.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Oxidation of Innate Immune Checkpoint CD47 on Cancer Cells with Non-Thermal Plasma Type A1 Journal article
  Year 2021 Publication Cancers Abbreviated Journal Cancers  
  Volume 13 Issue 3 Pages 579  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)  
  Abstract Non-thermal plasma (NTP) therapy has been emerging as a promising cancer treatment strategy, and recently, its ability to locally induce immunogenic cancer cell death is being unraveled. We hypothesized that the chemical species produced by NTP reduce immunosuppressive surface proteins and checkpoints that are overexpressed on cancerous cells. Here, 3D in vitro tumor models, an in vivo mouse model, and molecular dynamics simulations are used to investigate the effect of NTP on CD47, a key innate immune checkpoint. CD47 is immediately modulated after NTP treatment and simulations reveal the potential oxidized salt-bridges responsible for conformational changes. Umbrella sampling simulations of CD47 with its receptor, signal-regulatory protein alpha (SIRPα), demonstrate that the induced-conformational changes reduce its binding affinity. Taken together, this work provides new insight into fundamental, chemical NTP-cancer cell interaction mechanisms and a previously overlooked advantage of present NTP cancer therapy: reducing immunosuppressive signals on the surface of cancer cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000614960600001 Publication Date 2021-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes We thank Erik Fransen (University of Antwerp; Antwerp, Belgium) for his help and guidance on the statistical analysis. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:176455 Serial 6709  
Permanent link to this record
 

 
Author (up) Lin, A.; Sahun, M.; Biscop, E.; Verswyvel, H.; De Waele, J.; De Backer, J.; Theys, C.; Cuypers, B.; Laukens, K.; Berghe, W.V.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma Type A1 Journal article
  Year 2023 Publication Drug resistance updates Abbreviated Journal  
  Volume 67 Issue Pages 100914  
  Keywords A1 Journal article; Pharmacology. Therapy; ADReM Data Lab (ADReM); Center for Oncological Research (CORE); Proteinscience, proteomics and epigenetic signaling (PPES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To gain insights into the underlying mechanisms of NTP therapy sensitivity and resistance, using the firstever

NTP-resistant cell line derived from sensitive melanoma cells (A375).

Methods: Melanoma cells were exposed to NTP and re-cultured for 12 consecutive weeks before evaluation

against the parental control cells. Whole transcriptome sequencing analysis was performed to identify differentially

expressed genes and enriched molecular pathways. Glucose uptake, extracellular lactate, media acidification,

and mitochondrial respiration was analyzed to determine metabolic changes. Cell death inhibitors were

used to assess the NTP-induced cell death mechanisms, and apoptosis and ferroptosis was further validated via

Annexin V, Caspase 3/7, and lipid peroxidation analysis.

Results: Cells continuously exposed to NTP became 10 times more resistant to NTP compared to the parental cell

line of the same passage, based on their half-maximal inhibitory concentration (IC50). Sequencing and metabolic

analysis indicated that NTP-resistant cells had a preference towards aerobic glycolysis, while cell death analysis

revealed that NTP-resistant cells exhibited less apoptosis but were more vulnerable to lipid peroxidation and

ferroptosis.

Conclusions: A preference towards aerobic glycolysis and ferroptotic cell death are key physiological changes in

NTP-resistance cells, which opens new avenues for further, in-depth research into other cancer types.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000925156500001 Publication Date 2022-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1368-7646 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 24.3 Times cited Open Access OpenAccess  
  Notes The authors would like to thank Dr. Christophe Deben and Ms. Hannah Zaryouh (Center for Oncological Research, University of Antwerp) for the use and their help with the D300e Digital Dispenser and Spark® Cyto, as well as Ms. Rapha¨elle Corremans (Laboratory Pathophysiology, University of Antwerp) for the use of their lactate meter. The authors would also like to acknowledge the help from Ms. Tias Verhezen and Mr. Cyrus Akbari, who was involved at the start of the project but could not continue due to the COVID-19 pandemic. The authors also acknowledge the resources and services provided by the VSC (Flemish Supercomputer Center). This work was funded in part by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work also include: 12S9221N (Abraham Lin), G044420N (Abraham Lin, Annemie Bogaerts), and 1S67621N (Hanne Verswyvel). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr. Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on Therapeutical applications of Cold Plasmas (CA20114; PlasTHER). Approved Most recent IF: 24.3; 2023 IF: 10.906  
  Call Number PLASMANT @ plasmant @c:irua:193167 Serial 7240  
Permanent link to this record
 

 
Author (up) Lin, A.; Stapelmann, K.; Bogaerts, A. pdf  url
doi  openurl
  Title Advances in Plasma Oncology toward Clinical Translation Type Editorial
  Year 2020 Publication Cancers Abbreviated Journal Cancers  
  Volume 12 Issue 11 Pages 3283  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This Special Issue on “Advances in Plasma Oncology Toward Clinical Translation” aims to bring together cutting-edge research papers within the field in the context of clinical translation and application [...]  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000592876800001 Publication Date 2020-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:173858 Serial 6434  
Permanent link to this record
 

 
Author (up) Lin, A.; Truong, B.; Fridman, G.; Friedman, A.A.; Miller, V. pdf  doi
openurl 
  Title Immune cells enhance selectivity of nanosecond-pulsed DBD plasma against tumor cells Type A1 Journal article
  Year 2017 Publication Plasma medicine Abbreviated Journal  
  Volume 7 Issue 1 Pages 85-96  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cancer immunotherapy is a promising strategy that engages the patient's immune system to kill cancer cells selectively while sparing normal tissue. Treatment of macrophages with a nanosecond-pulsed dielectric barrier discharge directly enhanced their cytotoxic activity against tumor cells but not normal cells. These results underscore the clinical potential of plasma for cancer immunotherapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2017-08-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155657 Serial 8058  
Permanent link to this record
 

 
Author (up) Lin, A.; Truong, B.; Patel, S.; Kaushik, N.; Choi, E.H.; Fridman, G.; Fridman, A.; Miller, V. url  doi
openurl 
  Title Nanosecond-pulsed DBD plasma-generated reactive oxygen species trigger immunogenic cell death in A549 lung carcinoma cells through intracellular oxidative stress Type A1 Journal article
  Year 2017 Publication International journal of molecular sciences Abbreviated Journal  
  Volume 18 Issue 5 Pages 966  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404113900073 Publication Date 2017-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067; 1661-6596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155654 Serial 8292  
Permanent link to this record
 

 
Author (up) Lin, A.G.; Xiang, B.; Merlino, D.J.; Baybutt, T.R.; Sahu, J.; Fridman, A.; Snook, A.E.; Miller, V. pdf  doi
openurl 
  Title Non-thermal plasma induces immunogenic cell death in vivo in murine CT26 colorectal tumors Type A1 Journal article
  Year 2018 Publication Oncoimmunology Abbreviated Journal  
  Volume 7 Issue 9 Pages e1484978  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Immunogenic cell death is characterized by the emission of danger signals that facilitate activation of an adaptive immune response against dead-cell antigens. In the case of cancer therapy, tumor cells undergoing immunogenic death promote cancer-specific immunity. Identification, characterization, and optimization of stimuli that induce immunogenic cancer cell death has tremendous potential to improve the outcomes of cancer therapy. In this study, we show that non-thermal, atmospheric pressure plasma can be operated to induce immunogenic cell death in an animal model of colorectal cancer. In vitro, plasma treatment of CT26 colorectal cancer cells induced the release of classic danger signals. Treated cells were used to create a whole-cell vaccine which elicited protective immunity in the CT26 tumor mouse model. Moreover, plasma treatment of subcutaneous tumors elicited emission of danger signals and recruitment of antigen presenting cells into tumors. An increase in T cell responses targeting the colorectal cancer-specific antigen guanylyl cyclase C (GUCY2C) were also observed. This study provides the first evidence that non-thermal plasma is a bone fide inducer of immunogenic cell death and highlights its potential for clinical translation for cancer immunotherapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443993100030 Publication Date 2018-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-4011; 2162-402x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 28 Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:155651 Serial 5119  
Permanent link to this record
 

 
Author (up) Lindner, H.; Autrique, D.; Garcia, C.C.; Niemax, K.; Bogaerts, A. doi  openurl
  Title Optimized transport setup for high repetition rate pulse-separated analysis in laser ablation-inductively coupled plasma mass spectrometry Type A1 Journal article
  Year 2009 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 81 Issue 11 Pages 4241-4248  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An optimized laser ablation setup, proposed for high repetition rate inductively coupled plasma mass spectrometry (ICPMS) analyses such as 2D imaging or depth profiling, is presented. For such applications, the particle washout time needs to be as short as possible to allow high laser pulse frequencies for reduced analysis time. Therefore, it is desirable to have an ablation setup that operates as a laminar flow reactor (LFR). A top-down strategy was applied that resulted in the present design. In the first step, a previously applied ablation setup was analyzed on the basis of computational fluid dynamics (CFD) results presented by D. Autrique et al. (Spectrochim. Acta, B 2008, 63, 257−270). By means of CFD simulations, the design was modified in such a way that it operated in the LFR regime. Experimental results demonstrate that the current design can indeed be regarded as an LFR. Furthermore, the operation under LFR conditions allowed some insight into the initial radial concentration distribution if the experimental ICPMS signal and analytical expressions are taken into account. Recommendations for a modified setup for more resilient spatial distributions are given. With the present setup, a washout time of 140 ms has been achieved for a 3% signal area criterion. Therefore, 7 Hz repetition rates can be applied with the present setup. Using elementary formulas of the analytical model, an upper bound for the washout times for similar setups can be predicted. The authors believe that the presented setup geometry comes close to the achievable limit for reliable short washout times.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000266601800014 Publication Date 2009-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 18 Open Access  
  Notes Approved Most recent IF: 6.32; 2009 IF: 5.214  
  Call Number UA @ lucian @ c:irua:76935 Serial 2492  
Permanent link to this record
 

 
Author (up) Lindner, H.; Autrique, D.; Pisonero, J.; Günther, D.; Bogaerts, A. doi  openurl
  Title Numerical simulation analysis of flow patterns and particle transport in the HEAD laser ablation cell with respect to inductively coupled plasma spectrometry Type A1 Journal article
  Year 2010 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 25 Issue 3 Pages 295-304  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The present study analyses a specific laser ablation cell, the High Efficiency Aerosol Dispersion (HEAD) cell (see J. Pisonero et al., J. Anal. At. Spectrom., 2006, 21, 922931), by means of computational fluid dynamics (CFD) simulations. However, this cell consists of different modular parts, therefore, the results are probably of interest for the further development of other ablation cells. In the HEAD cell, the ablation spot is positioned below an orifice in the ceiling of the sample chamber. The particle transport through this orifice has been analysed for a ceiling height of 0.8 mm. The critical velocity for the onset of particle losses was found to be independent on the ejection angle at the crater spot. The deceleration of the particles can be described as the stopping in an effectively steady gas. Particle losses were negligible in this modular part of the cell at the evaluated laser ablation conditions. The transport efficiency through the Venturi chamber was investigated for different sample gas flow rates. In this case, it was found that small particles were predominantly lost at low flow rates, the large particles at higher flow rates. Making use of the simulation results, it was possible to design a modification of the HEAD cell that results in extremely short calculated washout times. The simulations yielded a signal of less than 10 ms, which was produced by more than 99% of the introduced mass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000274961600005 Publication Date 2010-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 16 Open Access  
  Notes Approved Most recent IF: 3.379; 2010 IF: 4.372  
  Call Number UA @ lucian @ c:irua:80871 Serial 2403  
Permanent link to this record
 

 
Author (up) Lindner, H.; Bogaerts, A. doi  openurl
  Title Multi-element model for the simulation of inductively coupled plasmas : effects of helium addition to the central gas stream Type A1 Journal article
  Year 2011 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 66 Issue 6 Pages 421-431  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A model for an atmospheric pressure inductively coupled plasma (ICP) is developed which allows rather easy extension to a variable number of species and ionisation degrees. This encompasses an easy calculation of transport parameters for mixtures, ionisation and heat capacity. The ICP is modeled in an axisymmetric geometry, taking into account the gas streaming into a flowing ambient gas. A mixture of argon and helium is applied in the injector gas stream as it is often done in laser ablation ICP spectrometry. The results show a strong influence of the added helium on the center of the ICP, which is important for chemical analysis. The length of the central channel is significantly increased and the temperature inside is significantly higher than in the case of pure argon. This means that higher gas volume flow rates can be applied by addition of helium compared to the use of pure argon. This has the advantage that the gas velocity in the transport system towards the ICP can be increased, which allows shorter washout-times. Consequently, shorter measurement times can be achieved, e.g. for spatial mapping analyses in laser ablation ICP spectrometry. Furthermore, the higher temperature and the longer effective plasma length will increase the maximum size of droplets or particles injected into the ICP that are completely evaporated at the detection site. Thus, we expect an increase of the analytical performance of the ICP by helium addition to the injector gas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000293488700003 Publication Date 2011-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 28 Open Access  
  Notes Approved Most recent IF: 3.241; 2011 IF: 2.876  
  Call Number UA @ lucian @ c:irua:90190 Serial 2209  
Permanent link to this record
 

 
Author (up) Lindner, H.; Loper, K.H.; Hahn, D.W.; Niemax, K. doi  openurl
  Title The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry Type A1 Journal article
  Year 2011 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 66 Issue 2 Pages 179-185  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000289328900012 Publication Date 2011-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.241; 2011 IF: 2.876  
  Call Number UA @ lucian @ c:irua:89008 Serial 1627  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: