toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Zhou, Z.; Tan, Y.; Yang, Q.; Bera, A.; Xiong, Z.; Yagmurcukardes, M.; Kim, M.; Zou, Y.; Wang, G.; Mishchenko, A.; Timokhin, I.; Wang, C.; Wang, H.; Yang, C.; Lu, Y.; Boya, R.; Liao, H.; Haigh, S.; Liu, H.; Peeters, F.M.; Li, Y.; Geim, A.K.; Hu, S. url  doi
openurl 
  Title Gas permeation through graphdiyne-based nanoporous membranes Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 13 Issue 1 Pages 4031-4036  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of similar to 0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918423100001 Publication Date 2022-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 10 Open Access OpenAccess  
  Notes Approved Most recent IF: 16.6  
  Call Number UA @ admin @ c:irua:194402 Serial 7308  
Permanent link to this record
 

 
Author (up) Zhu, J.-J.; Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Plasmonic excitations in Coulomb-coupled N-layer graphene structures Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085401-85408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study Dirac plasmons and their damping in spatially separated N-layer graphene structures at finite doping and temperatures. The plasmon spectrum consists of one optical excitation with square-root dispersion and N – 1 acoustical excitations with linear dispersion, which are undamped at zero temperature and finite doping within a triangular energy region outside the electron-hole continuum. In the long-wavelength limit the energy and weight of the optical plasmon modes increase, respectively, as the square root and linearly with N in agreement with recent experimental findings. The energy and weight of the upper-lying acoustical branches also increase with N. This increase is strongest for the uppermost acoustical mode, and we find that its energy can exceed at some value of momentum the plasmon energy in an individual graphene sheet. Meanwhile, the energy of the low-lying acoustical branches decreases weakly with N as compared with the single acoustical mode in double-layer graphene structures. Our numerical calculations provide a detailed understanding of the overall behavior of the wave-vector dependence of the optical and acoustical multilayer plasmon modes and show how their dispersion and damping are modified as a function of temperature, interlayer spacing, and inlayer carrier density in (un)balanced graphene multilayer structures. DOI: 10.1103/PhysRevB.87.085401  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314682900005 Publication Date 2013-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 59 Open Access  
  Notes ; This work was supported by the ESF-Eurocores program EuroGRAPHENE (CONGRAN project) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107671 Serial 2645  
Permanent link to this record
 

 
Author (up) Zhu, J.; Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Electron-phonon bound states in graphene in a perpendicular magnetic field Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 25 Pages 256602-256605  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The spectrum of electron-phonon complexes in monolayer graphene is investigated in the presence of a perpendicular quantizing magnetic field. Despite the small electron-phonon coupling, usual perturbation theory is inapplicable for the calculation of the scattering amplitude near the threshold of optical phonon emission. Our findings, beyond perturbation theory, show that the true spectrum near the phonon-emission threshold is completely governed by new branches, corresponding to bound states of an electron and an optical phonon with a binding energy of the order of alpha omega(0), where alpha is the electron-phonon coupling and omega(0) the phonon energy. DOI: 10.1103/PhysRevLett.109.256602  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000312841700011 Publication Date 2012-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 19 Open Access  
  Notes ; We acknowledge support from the Belgian Science Policy (BELSPO) and EU, the ESF EuroGRAPHENE project CONGRAN, and the Flemisch Science Foundation (FWO-Vl). ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:105962 Serial 983  
Permanent link to this record
 

 
Author (up) Zou, Y.-C.; Mogg, L.; Clark, N.; Bacaksiz, C.; Milanovic, S.; Sreepal, V.; Hao, G.-P.; Wang, Y.-C.; Hopkinson, D.G.; Gorbachev, R.; Shaw, S.; Novoselov, K.S.; Raveendran-Nair, R.; Peeters, F.M.; Lozada-Hidalgo, M.; Haigh, S.J. url  doi
openurl 
  Title Ion exchange in atomically thin clays and micas Type A1 Journal article
  Year 2021 Publication Nature Materials Abbreviated Journal Nat Mater  
  Volume 20 Issue 12 Pages 1677-1682  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The physical properties of clays and micas can be controlled by exchanging ions in the crystal lattice. Atomically thin materials can have superior properties in a range of membrane applications, yet the ion-exchange process itself remains largely unexplored in few-layer crystals. Here we use atomic-resolution scanning transmission electron microscopy to study the dynamics of ion exchange and reveal individual ion binding sites in atomically thin and artificially restacked clays and micas. We find that the ion diffusion coefficient for the interlayer space of atomically thin samples is up to 10(4) times larger than in bulk crystals and approaches its value in free water. Samples where no bulk exchange is expected display fast exchange at restacked interfaces, where the exchanged ions arrange in islands with dimensions controlled by the moire superlattice dimensions. We attribute the fast ion diffusion to enhanced interlayer expandability resulting from weaker interlayer binding forces in both atomically thin and restacked materials. This work provides atomic scale insights into ion diffusion in highly confined spaces and suggests strategies to design exfoliated clay membranes with enhanced performance. Layered clays are of interest for membranes and many other applications but their ion-exchange dynamics remain unexplored in atomically thin materials. Here, using electron microscopy, it is found that the ion diffusion for few-layer two-dimensional clays approaches that of free water and that superlattice cation islands can form in twisted and restacked materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000689664000001 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122; 1476-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 39.737  
  Call Number UA @ admin @ c:irua:181691 Serial 6999  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: