toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Geurts, R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Second generation of vortex-antivortex states in mesoscopic superconductors: stabilization by artificial pinning Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 17 Pages 174508,1-174508,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Antagonistic symmetries of superconducting polygons and their induced multivortex states in a homogeneous magnetic field may lead to the appearance of antivortices in the vicinity of the superconducting/normal-state boundary (where mesoscopic confinement is particularly strong). Resulting vortex-antivortex (V-Av) molecules match the sample symmetry but are extremely sensitive to defects and fluctuations and remain undetected experimentally. Here we show that V-Av states can reappear deep in the superconducting state due to an array of perforations in a polygonal setting, surrounding a central hole. Such states are no longer caused by the symmetry of the sample but rather by pinning itself, which prevents the vortex-antivortex annihilation. As a result, even micron size, clearly spaced V-Av molecules can be stabilized in large mesoscopic samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000266501100098 Publication Date 2009-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes Approved (up) Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77399 Serial 2956  
Permanent link to this record
 

 
Author Szafran, B.; Nowak, M.P.; Bednarek, S.; Chwiej, T.; Peeters, F.M. url  doi
openurl 
  Title Selective suppression of Dresselhaus or Rashba spin-orbit coupling effects by the Zeeman interaction in quantum dots Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 23 Pages 235303,1-235303,13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study single- and two-electron parabolic quantum dots in the presence of linear Dresselhaus and Rashba spin-orbit interactions. Contributions of both types of spin-orbit coupling are investigated in the context of the spin polarization of the system at high magnetic fields. We demonstrate that for negative Landé factors the effect of the Dresselhaus coupling is suppressed at high magnetic field, which for structures without inversion asymmetry leads to a completely spin-polarized system and a strict antisymmetry of the wave functions with respect to the interchange of spatial-electron coordinates. For negative Landé factor the Rashba coupling is preserved at high field and consequently the spin polarization of the systems as well as the spatial antisymmetry of the two-electron wave function remain approximate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000267699500073 Publication Date 2009-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes Approved (up) Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77691 Serial 2969  
Permanent link to this record
 

 
Author Hao, Y.L.; Djotyan, A.P.; Avetisyan, A.A.; Peeters, F.M. url  doi
openurl 
  Title Shallow donor states near a semiconductor-insulator-metal interface Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 3 Pages 035329,1-035329,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The lowest energy electronic states of a donor located near a semiconductor-insulator-metal interface are investigated within the effective mass approach. The effect of the finite thickness of the insulator between the semiconductor and the metallic gate on the energy levels is studied. The lowest energy states are obtained through a variational approach, which takes into account the influence of all image charges that arise due to the presence of the metallic and the dielectric interfaces. We compare our results with a numerical exact calculation using the finite element technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000268617800101 Publication Date 2009-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes Approved (up) Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77950 Serial 2989  
Permanent link to this record
 

 
Author Földi, P.; Kálmán, O.; Peeters, F.M. url  doi
openurl 
  Title Stability of spintronic devices based on quantum ring networks Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 12 Pages 125324,1-125324,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transport properties in mesoscopic networks are investigated, where the strength of the (Rashba-type) spin-orbit coupling is tuned with external gate voltages. We analyze in detail to what extent the ideal behavior and functionality of some promising network-based devices are modified by random (spin-dependent) scattering events and by thermal fluctuations. It is found that although the functionality of these devices is obviously based on the quantum coherence of the transmitted electrons, there is a certain stability: moderate level of errors can be tolerated. For mesoscopic networks made of typical semiconductor materials, we found that when the energy distribution of the input carriers is narrow enough, the devices can operate close to their ideal limits even at relatively high temperature. As an example, we present results for two different networks: one that realizes a Stern-Gerlach device and another that simulates a spin quantum walker. Finally we propose a simple network that can act as a narrow band energy filter even in the presence of random scatterers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000270383300091 Publication Date 2009-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes Approved (up) Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79230 Serial 3131  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M. url  doi
openurl 
  Title Superconducting nanowires: interplay of discrete transverse modes with supercurrent Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 2 Pages 024513,1-024513,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract From a numerical solution of the Bogoliubov-de Gennes equations, we investigate an interplay of the transverse discrete modes with a longitudinal supercurrent in a metallic cylindrical superconducting nanowire. The superconductor-to-normal transition induced by a longitudinal superflow of electrons is found to occur as a cascade of jumps in the order parameter (supercurrent and superfluid density) as a function of the superfluid velocity for diameters d<1015 nm (for Al parameters) and sufficiently low temperatures T<0.30.4Tc, with Tc the critical temperature. When approaching Tc, the jumps are smoothed into steplike but continuous drops. A similar picture occurs for d>1520 nm. Only when the diameter exceeds 5070 nm the quantum-size cascades are fully washed out, and we arrive at the mesoscopic regime. Below this regime the critical current density jc exhibits the quantum-size oscillations with pronounced resonant enhancements: the smaller the diameter, the more significant is the enhancement. Thickness fluctuations of real samples will smooth out such oscillations into an overall growth of jc with decreasing nanowire diameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000268617500092 Publication Date 2009-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes Approved (up) Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77949 Serial 3358  
Permanent link to this record
 

 
Author Karapetrov, G.; Milošević, M.V.; Iavarone, M.; Fedor, J.; Belkin, A.; Novosad, V.; Peeters, F.M. url  doi
openurl 
  Title Transverse instabilities of multiple vortex chains in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayers Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 18 Pages 180506,1-180506,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using scanning tunneling microscopy and Ginzburg-Landau simulations, we explore vortex configurations in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayer. The permalloy film with stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinning-antipinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-one-dimensional arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. The longitudinal instabilities of the resulting vortex structures lead to vortices levitating in the antipinning channels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000272310900031 Publication Date 2009-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes Approved (up) Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80314 Serial 3729  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Tunable kinematics of phase-slip lines in a superconducting stripe with magnetic dots Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 21 Pages 214509,1-214509,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using numerical simulations, we study the dynamic properties of a superconducting stripe with a perpendicular magnetized ferromagnet on top in the presence of an applied dc current. In the resistive state conventional phase-slip lines are transformed into kinematic vortex-antivortex pairs with special dynamic behavior. In addition, the location of phase slippage in the sample is predetermined by the position of the magnetic dot. Both these effects directly influence the dynamics of the superconducting condensate and lead to periodic oscillations of the voltage across the sample with a frequency tunable both by the applied current and by the magnetization of the magnet. We found that the frequency of the voltage oscillations increases with increasing number of magnetic dots.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000273228200084 Publication Date 2009-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes Approved (up) Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80575 Serial 3743  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Tunneling, conductance, and wavevector filtering through magnetic barriers in bilayer graphene Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 3 Pages 035409,1-035409,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We evaluate the transmission and conductance through magnetic barrier structures in bilayer graphene. In particular we consider a magnetic step, single and double barriers, -function barriers, as well as barrier structures that have average magnetic field equal to zero. The transmission depends strongly on the direction of the incident electron or hole wavevector and gives the possibility to construct a direction-dependent wavevector filter. The results contrast sharply with previous results on single-layer graphene. In general, the angular range of perfect transmission becomes drastically wider and the gaps narrower. This perfect transmission range decreases with the number of barriers, the barrier width, and the magnetic field. Depending on the structure, a variety of transmission resonances occur that are reflected in the conductance through the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000262978200107 Publication Date 2009-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 80 Open Access  
  Notes Approved (up) Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:75983 Serial 3762  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Water on graphene: hydrophobicity and dipole moment using density functional theory Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 23 Pages 235440,1-235440,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We apply density-functional theory to study the adsorption of water clusters on the surface of a graphene sheet and find i) graphene is highly hydrophobic and ii) adsorbed water has very little effect on the electronic structure of graphene. A single water cluster on graphene has a very small average dipole moment which is in contrast with an ice layer that exhibits a strong dipole moment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000267699500147 Publication Date 2009-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 292 Open Access  
  Notes Approved (up) Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77693 Serial 3904  
Permanent link to this record
 

 
Author Chaves, A.; Farias, G.A.; Peeters, F.M.; Szafran, B. url  doi
openurl 
  Title Wave packet dynamics in semiconductor quantum rings of finite width Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 12 Pages 125331,1-125331,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The time evolution of a wave packet injected into a semiconductor quantum ring is investigated in order to obtain the transmission and reflection probabilities. Within the effective-mass approximation, the time-dependent Schrödinger equation is solved for a system with nonzero width of the ring and leads and finite potential-barrier heights, where we include smooth lead-ring connections. In the absence of a magnetic field, an analysis of the projection of the wave function over the different subband states shows that when the injected wave packet is within a single subband, the junction can scatter this wave packet into different subbands but remarkably at the second junction the wave packet is scattered back into the subband state of the incoming wave packet. If a magnetic field is applied perpendicularly to the ring plane, transmission and reflection probabilities exhibit Aharonov-Bohm (AB) oscillations and the outgoing electrons may end up in different subband states from those of the incoming electrons. Localized impurities, placed in the ring arms, influence the AB oscillation period and amplitude. For a single impurity or potential barrier of sufficiently strong strength, the period of the AB oscillations is halved while for two impurities localized in diametrically opposite points of the ring, the original AB period is recovered. A theoretical investigation of the confined states and time evolution of wave packets in T wires is also made, where a comparison between this system and the lead-ring junction is drawn.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000270383300098 Publication Date 2009-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 40 Open Access  
  Notes Approved (up) Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79231 Serial 3906  
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Calorimetric properties of mesoscopic superconducting disks, rings, and cylinders Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 6 Pages 064501,1-064501,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The thermal signatures of superconductivity in mesoscopic disks, rings and cylinders are calculated within the Ginzburg-Landau theory. In an applied perpendicular magnetic field H the heat capacity of mesoscopic samples shows a strong dependence on the realized vortex state; discontinuities are found at the critical field for different vorticities, as well as at the superconducting-to-normal state transition. The same applies to the intermediate state of type-I superconductors. Even the subtle changes in the fluxoid distribution inside the sample leave clear signatures on heat capacity, which is particularly useful for fully three-dimensional samples whose interior is often inaccessible by magnetometry. The heat-capacity jump ΔC(H) at the critical temperature exhibits quasiperiodic modulations as a function of magnetic field. In mesoscopic superconducting rings, these oscillations provide calorimetric verification of the Little-Parks effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000274998100091 Publication Date 2010-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes ; We are grateful to O. Bourgeois for useful discussions. This work was supported by the Flemish Science Foundation (FWO-VI), the Interuniversity Attraction Poles (IAP) Program-Belgian State-Belgian Science Policy, ESF-JSPS NES program and the ESF-AQDJJ network. ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:81766 Serial 271  
Permanent link to this record
 

 
Author Kosimov, D.P.; Dzhurakhalov, A.A.; Peeters, F.M. url  doi
openurl 
  Title Carbon clusters: from ring structures to nanographene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 19 Pages 195414,1-195414,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The lowest-energy configurations of Cn(n≤55) clusters are obtained using the energy-minimization technique with the conjugate gradient method where a modified Brenner potential is invoked to describe the carbon and hydrocarbon interaction. We found that the ground-state configuration consists of a single ring for small number of C atoms and multiring structures are found with increasing n, which can be in planar, bowl-like or caplike form. Contrary to previous predictions, the binding energy Eb does not show even-odd oscillations and only small jumps are found in the Eb(n) curve as a consequence of specific types of edges or equivalently the number of secondary atoms. We found that hydrogenation of the edge atoms may change the ground-state configuration of the nanocluster. In both cases we determined the magic clusters. Special attention is paid to trigonal and hexagonal shaped carbon clusters and to clusters having a graphenelike configuration. Trigonal clusters are never the ground state while hexagonal-shaped clusters are only the ground state when they have zigzag edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278142000103 Publication Date 2010-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 55 Open Access  
  Notes ; This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-V1). ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83385 Serial 278  
Permanent link to this record
 

 
Author Piacente, G.; Hai, G.Q.; Peeters, F.M. url  doi
openurl 
  Title Continuous structural transitions in quasi-one-dimensional classical Wigner crystals Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 2 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the structural phase transitions in confined systems of strongly interacting particles. We consider infinite quasi-one-dimensional systems with different pairwise repulsive interactions in the presence of an external confinement following a power law. Within the framework of Landaus theory, we find the necessary conditions to observe continuous transitions and demonstrate that the only allowed continuous transition is between the single- and the double-chain configurations and that it only takes place when the confinement is parabolic. We determine analytically the behavior of the system at the transition point and calculate the critical exponents. Furthermore, we perform Monte Carlo simulations and find a perfect agreement between theory and numerics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000274002100035 Publication Date 2010-01-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes ; The authors acknowledge FAPESP and CNPq (Brazil), the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl) (Belgium) for financial support. ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:81243 Serial 493  
Permanent link to this record
 

 
Author Yang, C.H.; Peeters, F.M.; Xu, W. url  doi
openurl 
  Title Density of states and magneto-optical conductivity of graphene in a perpendicular magnetic field Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 20 Pages 205428  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The density of states (DOS) and the optical conductivity of graphene is calculated in the presence of a perpendicular magnetic field and where scattering on charged and short-range impurities is included. The standard Kubo formula is employed where the self-energy induced by impurity scattering and the Green's function are calculated self-consistently including inter-Landau level (LL) coupling and screening effects. It is found that the scattering from those two types of impurities results in a symmetric LL broadening and asymmetric inter-LL coupling renormalizes the LL positions to lower energy. The peak position and intensity of the magneto-optical conductivity depends on the filling factor and the broadened DOS. Good agreement is found with recent cyclotron resonance measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000284400700003 Publication Date 2010-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 39 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. 10804053, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the Chinese Academy of Sciences and Department of Science and Technology of Yunnan Province. ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:95543 Serial 641  
Permanent link to this record
 

 
Author Lin, N.S.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Dynamics of multishell vortex structures in mesoscopic superconducting Corbino disks Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 13 Pages 134504,1-134504,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the dynamics of vortex shells in mesoscopic superconducting Corbino disks, where vortices form shells as recently observed in micrometer-sized Nb disks. Due to the interplay between the vortex-vortex interaction, the gradient Lorentz force and the (in)commensurability between the numbers of vortices in shells, the process of angular melting of vortex-shell configurations becomes complex. Angular melting can start either from the center of the disk (where the shear stress is maximum) or from its boundary (where the shear stress is minimum) depending on the specific vortex configuration. Furthermore, we found that two kinds of defects can exist in such vortex-shell structures: intrashell and intershell defects. An intrashell defect may lead to an inverse dynamic behavior, i.e., one of the vortex shells under a stronger driving force can rotate slower than the adjacent shell that is driven by a weaker Lorentz force. An intershell defect always locks more than two shells until the gradient of the Lorentz force becomes large enough to break the rigid-body rotation of the locked shells. Such a lock-unlock process leads to hysteresis in the angular velocities of the shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000277207900079 Publication Date 2010-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by the “Odysseus” program of the Flemish Government and the Flemish Science Foundation (FWO-V1), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, and the FWO-V1. ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:82803 Serial 779  
Permanent link to this record
 

 
Author Wu, Z.; Peeters, F.M.; Chang, K. url  doi
openurl 
  Title Electron tunneling through double magnetic barriers on the surface of a topological insulator Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 11 Pages 115211-115211,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study electron tunneling through a planar magnetic and electric barrier on the surface of a three-dimensional topological insulator. For the double barrier structures, we find (i) a directional-dependent tunneling which is sensitive to the magnetic field configuration and the electric gate voltage, (ii) a spin rotation controlled by the magnetic field and the gate voltage, (iii) many Fabry-Pérot resonances in the transmission determined by the distance between the two barriers, and (iv) the electrostatic potential can enhance the difference in the transmission between the two magnetization configurations, and consequently lead to a giant magnetoresistance. Points (i), (iii), and (iv) are alike with that in graphene stemming from the same linear-dispersion relations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000282125700002 Publication Date 2010-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 65 Open Access  
  Notes ; This work was supported by the NSF of China, the Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy. ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85420 Serial 990  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic and dynamical properties of Si/Ge core-shell nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 11 Pages 113411-113411,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Full ab initio techniques are applied to study the electronic and dynamical properties of free standing, hydrogen-passivated Si/Ge core-shell nanowires oriented along the [110] direction. All studied wires exhibit a direct band gap and are found to be structurally stable. The different contributions of the core and shell atoms to the phonon spectra are identified. The acoustic phonon velocities and the frequencies of some typical optical modes are compared with those of pure Si and Ge nanowires. These depend either on the concentration or on the type of core material. Optical modes are hardened and longitudinal acoustic velocities are softened with decreasing wire diameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000282270000001 Publication Date 2010-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and NOI-BOF (University of Antwerp). ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85421 Serial 995  
Permanent link to this record
 

 
Author Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic and magnetic properties of superlattices of graphene/graphane nanoribbons with different edge hydrogenation Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 16 Pages 165412-165412,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Zigzag graphene nanoribbons patterned on graphane are studied using spin-polarized ab initio calculations. We found that the electronic and magnetic properties of the graphene/graphane superlattice strongly depends on the degree of hydrogenation at the interfaces between the two materials. When both zigzag interfaces are fully hydrogenated, the superlattice behaves like a freestanding zigzag graphene nanoribbon, and the magnetic ground state is antiferromagnetic. When one of the interfaces is half hydrogenated, the magnetic ground state becomes ferromagnetic, and the system is very close to being a half metal with possible spintronics applications whereas the magnetic ground state of the superlattice with both interfaces half hydrogenated is again antiferromagnetic. In this last case, both edges of the graphane nanoribbon also contribute to the total magnetization of the system. All the spin-polarized ground states are semiconducting, independent of the degree of hydrogenation of the interfaces. The ab initio results are supplemented by a simple tight-binding analysis that captures the main qualitative features. Our ab initio results show that patterned hydrogenation of graphene is a promising way to obtain stable graphene nanoribbons with interesting technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000282569500011 Publication Date 2010-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 46 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (FW/08/01). A. D. H. acknowledges also support from ANPCyT (under Grant No. PICT2008-2236) ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85030 Serial 996  
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic structure and optical absorption of GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs core-shell nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 23 Pages 235425-235425,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure of GaAs/AlxGa1−xAs and AlxGa1−xAs/GaAs core-shell nanowires grown in the [001] direction is studied. The k⋅p method with the 6×6 Kohn-Lüttinger Hamiltonian, taking into account the split-off band is used. The variation in the energy level dispersion, the spinor contribution to the ground state and the optical interband absorption are studied. For some range of parameters the top of the valence band exhibits a camelback structure which results in an extra peak in the optical absorption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286769100008 Publication Date 2010-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:86911 Serial 1010  
Permanent link to this record
 

 
Author Misko, V.R.; Bothner, D.; Kemmler, M.; Kleiner, R.; Koelle, D.; Peeters, F.M.; Nori, F. url  doi
openurl 
  Title Enhancing the critical current in quasiperiodic pinning arrays below and above the matching magnetic flux Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 18 Pages 184512-184512,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quasiperiodic pinning arrays, as recently demonstrated theoretically and experimentally using a fivefold Penrose tiling, can lead to a significant enhancement of the critical current Ic as compared to traditional regular pinning arrays. However, while regular arrays showed only a sharp peak in Ic(Φ) at the matching flux Φ1 and quasiperiodic arrays provided a much broader maximum at Φ<Φ1, both types of pinning arrays turned out to be inefficient for fluxes larger than Φ1. We demonstrate theoretically and experimentally the enhancement of Ic(Φ) for Φ>Φ1 by using non-Penrose quasiperiodic pinning arrays. This result is based on a qualitatively different mechanism of flux pinning by quasiperiodic pinning arrays and could be potentially useful for applications in superconducting microelectronic devices operating in a broad range of magnetic fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000283923400006 Publication Date 2010-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, the FWO-Vl, and by the DFG via SFB/TRR21. V. R. M. is grateful to the FWO-Vl for the support of the research stay at the DML (ASI, RIKEN), and to F. N. for hospitality. M. K. gratefully acknowledges support from the Carl-Zeiss-Stiftung, and D. B. from the Evangelisches Studienwerk e.V. Villigst. F. N. acknowledges partial support from the Laboratory of Physical Sciences, National Security Agency, Army Research Office, DARPA, AFOSR, National Science Foundation under Grant No. 0726909, JSPS-RFBR under Contract No. 09-02-92114, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and Funding Program for Innovative R&D on S&T (FIRST). ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85800 Serial 1066  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Extra Dirac points in the energy spectrum for superlattices on single-layer graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 7 Pages 075438,1-075438,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the emergence of extra Dirac points in the electronic structure of a periodically spaced barrier system, i.e., a superlattice, on single-layer graphene, using a Dirac-type Hamiltonian. Using square barriers allows us to find analytic expressions for the occurrence and location of these new Dirac points in k space and for the renormalization of the electron velocity near them in the low-energy range. In the general case of unequal barrier and well widths the new Dirac points move away from the Fermi level and for given heights of the potential barriers there is a minimum and maximum barrier width outside of which the new Dirac points disappear. The effect of these extra Dirac points on the density of states and on the conductivity is investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000274998200133 Publication Date 2010-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 211 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the Brazilian Council for Research (CNPq), and the Canadian NSERC Grant No. OGP0121756. ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:81767 Serial 1159  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Fabry-Pérot resonances in graphene microstructures: influence of a magnetic field Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 11 Pages 115417-115417,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Fabry-Pérot resonances in the transmission through single and double, graphene-based barriers (of height V) and wells are investigated and their dependence on an applied perpendicular magnetic field. For rectangular barriers the conductance decreases with increasing magnetic field while the resonances weaken (become more pronounced) with increasing magnetic field for EF<V (EF>V). The position of the resonances exhibit a linear shift with magnetic field which move to lower (higher) energy for EF<V (EF>V). Compared to semielliptic- or Gaussian-shaped barriers they show a smaller number of resonances in the absence of a magnetic field and an overall lower conductance but the resonant structure is more pronounced. The conductance of asymmetric double barriers show two major regions of resonances while the symmetric ones show one, that of three asymmetric barriers three, and so on.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281723100007 Publication Date 2010-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 74 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the Canadian NSERC under Grant No. OGP0121756. ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84871 Serial 1167  
Permanent link to this record
 

 
Author Leenaerts, O.; Peelaers, H.; Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title First-principles investigation of graphene fluoride and graphane Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 19 Pages 195436,1-195436,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Different stoichiometric configurations of graphane and graphene fluoride are investigated within density-functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various configurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Youngs moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000284399200004 Publication Date 2010-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 367 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the NOI-BOF of the University of Antwerp, the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Grant No. FW/08/01). A.D.H. also acknowledges support from ANPCyT (Grant No. PICT 2008-2236). ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:86916 Serial 1212  
Permanent link to this record
 

 
Author Ding, F.; Akopian, N.; Li, B.; Perinetti, U.; Govorov, A.; Peeters, F.M.; Bufon, C.C.; Deneke, C.; Chen, Y.H.; Rastelli, A.; Schmidt, O.G.; Zwiller, V. url  doi
openurl 
  Title Gate controlled Aharonov-Bohm-type oscillations from single neutral excitons in quantum rings Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 7 Pages 8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000280813100005 Publication Date 2010-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 58 Open Access  
  Notes ; We acknowledge L. P. Kouwenhoven and Z. G. Wang for support, L. Wang, V. Fomin, S. Kiravittaya, M. Tadic, Wen-Hao Chang, I. Sellers, A. Avetisyan, and C. Pryor for fruitful discussions and the financial support of NWO (VIDI), the CAS-MPG program, the DFG (FOR730), BMBF (Grant No. 01BM459), NSFC (Grant No. 60625402), and Flemish Science Foundation (FWO-V1). Access to the TEM of B. Rellinghaus is acknowledged. ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83992 Serial 1321  
Permanent link to this record
 

 
Author Pogosov, W.V.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Geometry-induced localization of thermal fluctuations in ultrathin superconducting structures Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 5 Pages 054523-054523,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thermal fluctuations of the order parameter in an ultrathin triangular-shaped superconducting structure are studied near Tc, in zero applied field. We find that the order parameter is prone to much larger fluctuations in the corners of the structure as compared to its interior. This geometry-induced localization of thermal fluctuations is attributed to the fact that condensate confinement in the corners is characterized by a lower effective dimensionality, which favors stronger fluctuations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281294700006 Publication Date 2010-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish government, FWO-Vl, and the Belgian Science Policy (IAP). W. V. P. acknowledges supports from the RFBR [Project No. 09-02-00248] and the “Dynasty Foundation.” ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84470 Serial 1334  
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M. url  doi
openurl 
  Title Giant drop in the Bardeen-Cooper-Schrieffer coherence length induced by quantum size effects in superconducting nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 10 Pages 104524-104524,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The BCS coherence length in low-dimensional superconductors is dramatically modified by quantum-size effects. In particular, for nanowires made of conventional superconducting materials, we show that the longitudinal zero-temperature coherence length exhibits width-dependent drops by 23 orders of magnitude each time when the bottom of one of single-electron subbands formed due to the transverse quantization of electron motion is situated in a close vicinity to the Fermi level. This phenomenon has strong similarities to the well-known BCS-BEC (Bose-Einstein condensation) crossover in ultracold fermionic condensates but with an important exception: it is driven by the transverse quantization of the electron motion rather than by the externally controlled strength of the fermion-fermion interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000282269600005 Publication Date 2010-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-network: INSTANS. M. D. C. acknowledges support from the Alexander von Humboldt Foundation. A. A. S. thanks R. G. Mints, W. V. Pogosov, D. Y. Vodolazov, A. Perali, and A. Bianconi for fruitful discussions. ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85419 Serial 1337  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Graphene nanoribbons subjected to axial stress Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 8 Pages 085432-085432,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomistic simulations are used to study the bending of rectangular graphene nanoribbons subjected to axial stress both for free boundary and supported boundary conditions. The shapes of the deformations of the buckled graphene nanoribbons, for small values of the stress, are sine waves where the number of nodal lines depend on the longitudinal size of the system and the applied boundary condition. The buckling strain for the supported boundary condition is found to be independent of the longitudinal size and estimated to be 0.86%. From a calculation of the free energy at finite temperature we find that the equilibrium projected two-dimensional area of the graphene nanoribbon is less than the area of a flat sheet. At the optimum length the boundary strain for the supported boundary condition is 0.48%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281065100007 Publication Date 2010-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 92 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84583 Serial 1373  
Permanent link to this record
 

 
Author Ao, Z.M.; Peeters, F.M. url  doi
openurl 
  Title High-capacity hydrogen storage in Al-adsorbed graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 20 Pages 205406,1-205406,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A high-capacity hydrogen storage mediumAl-adsorbed grapheneis proposed based on density-functional theory calculations. We find that a graphene layer with Al adsorbed on both sides can store hydrogen up to 13.79 wt % with average adsorption energy −0.193 eV/H2. Its hydrogen storage capacity is in excess of 6 wt %, surpassing U. S. Department of Energy (DOEs) target. Based on the binding-energy criterion and molecular-dynamics calculations, we find that hydrogen storage can be recycled at near ambient conditions. This high-capacity hydrogen storage is due to the adsorbed Al atoms that act as bridges to link the electron clouds of the H2 molecules and the graphene layer. As a consequence, a two-layer arrangement of H2 molecules is formed on each side of the Al-adsorbed graphene layer. The H2 concentration in the hydrogen storage medium can be measured by the change in the conductivity of the graphene layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278144500082 Publication Date 2010-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 219 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO) and the Belgian Science Policy (IAP). ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83386 Serial 1422  
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M. url  doi
openurl 
  Title Hollow nanocylinder: multisubband superconductivity induced by quantum confinement Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 13 Pages 134523-134523:11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantization of the transverse electron motion in high-quality superconducting metallic nanowires and nanofilms results in the formation of well-distinguished single-electron subbands. They shift in energy with changing thickness, which is known to cause quantum-size superconducting oscillations. The formation of multiple subbands results in a multigap structure induced by the interplay between quantum confinement and Andreev mechanism. We investigate multisubband superconductivity in a hollow nanocylinder by numerically solving the Bogoliubov-de Gennes equations. When changing the inner radius and thickness of the hollow nanocylinder, we find a crossover from an irregular pattern of quantum-size superconducting oscillations, typical of nanowires, to an almost regular regime, specific for superconducting nanofilms. At this crossover the multigap structure becomes degenerate. The ratio of the critical temperature to the energy gap increases and approaches its bulk value while being reduced by 20-30% due to Andreev-type states driven by quantum confinement in the irregular regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000277207900098 Publication Date 2010-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Interuniversity Attraction Poles Programme, Belgian States, Belgian Science Policy (IAP) and the ESF-AQDJJ network. ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:95623 Serial 1481  
Permanent link to this record
 

 
Author Li, L.L.; Xu, W.; Peeters, F.M. url  doi
openurl 
  Title Intrinsic optical anisotropy of [001]-grown short-period InAs/GaSb superlattices Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 23 Pages 235422-235422,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the intrinsic optical anisotropy or polarization induced by the microscopic interface asymmetry (MIA) in no-common-atom (NCA) InAs/GaSb superlattices (SLs) grown along the [001] direction. The eight-band K⋅P model is used to calculate the electronic band structures and incorporates the MIA effect. A Boltzmann equation approach is employed to calculate the optical properties. We found that in NCA InAs/GaSb SLs, the MIA effect causes a large in-plane optical anisotropy for linearly polarized light and the largest anisotropy occurs for light polarized along the [110] and [11̅ 0] directions. The relative difference between the optical-absorption coefficient for [110]-polarized light and that for [11̅ 0]-polarized light is found to be larger than 50%. The dependence of the in-plane optical anisotropy on temperature, photoexcited carrier density, and layer width is examined in detail. This study is important for optical devices which require the polarization control and selectivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286768800007 Publication Date 2010-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported partly by the Flemish Science Foundation (FWO-VL), the Belgium Science Policy (IAP), the NSF of China (Grants No. 10664006, No. 10504036, and No. 90503005), Special Funds of 973 Project of China (Grant No. 2005CB623603), and Knowledge Innovation Program of the Chinese Academy of Sciences. ; Approved (up) Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:88909 Serial 1717  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: