toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Morozov, V.A.; Belik, A.A.; Stefanovich, S.Y.; Grebenev, V.V.; Lebedev, O.I.; Van Tendeloo, G.; Lazoryak, B.I. pdf  doi
openurl 
  Title High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7 Type A1 Journal article
  Year 2002 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 165 Issue 2 Pages 278-288  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The double phosphate Ca9In(PO4)(7) was obtained by solid-state reaction and was studied by room and high-temperature Xray powder diffraction, electron diffraction, high-resolution electron microscopy, second-harmonic generation (SHG) technique, differential scanning calorimetry, dielectric and conductivity measurements. The beta-Ca9In(PO4)(7) room-temperature phase is related to the mineral whitlockite and is similar to beta-Ca-3(PO4)(2). It has space group R (3) over barc, with unit cell parameters: a = 10.4008(1) Angstrom, c = 37.272(1) Angstrom, Z = 6. The structure was refined by the Rietveld method (R-wp = 4.69, R-I = 1.81). A reversible first-order beta <----> beta' phase transition of the ferroelectric type with T-c = 902 K is revealed by SHG, differential scanning calorimetry and dielectric measurements. The centrosymmetric beta'-Ca9In(PO4)(7) (973 K) has space group R (3) over barc, a = 10.4611(2) Angstrom, c = 37.874 (1) Angstrom (R-wp = 4.27, R-I = 4.11). Compared to the low-temperature beta-Ca9In(PO4)(7) structure, beta'-Ca9In(PO4)(7) can be described as an orientational disordering of the P1O(4) tetrahedra together with a calcium disordering on the M3 site. (C) 2002 Elsevier Science (USA).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000175916000010 Publication Date 2002-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 57 Open Access  
  Notes Approved Most recent IF: 2.299; 2002 IF: 1.671  
  Call Number UA @ lucian @ c:irua:94926 Serial 1467  
Permanent link to this record
 

 
Author Cunha, D.M.; Gauquelin, N.; Xia, R.; Verbeeck, J.; Huijben, M. url  doi
openurl 
  Title Self-assembled epitaxial cathode-electrolyte nanocomposites for 3D microbatteries Type A1 Journal article
  Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 14 Issue 37 Pages 42208-42214  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) The downscaling of electronic devices requires rechargeable microbatteries with enhanced energy and power densities. Here, we evaluate self-assembled vertically aligned nano-composite (VAN) thin films as a platform to create high-performance three-dimensional (3D) microelectrodes. This study focuses on controlling the VAN formation to enable interface engineering between the LiMn2O4 cathode and the (Li,La)TiO3 solid electrolyte. Electrochemical analysis in a half cell against lithium metal showed the absence of sharp redox peaks due to the confinement in the electrode pillars at the nanoscale. The (100)-oriented VAN thin films showed better rate capability and stability during extensive cycling due to the better alignment to the Li-diffusion channels. However, an enhanced pseudocapacitive contribution was observed for the increased total surface area within the (110)-oriented VAN thin films. These results demonstrate for the first time the electrochemical behavior of cathode-electrolyte VANs for lithium-ion 3D microbatteries while pointing out the importance of control over the vertical interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000852647100001 Publication Date 2022-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 4 Open Access OpenAccess  
  Notes This research was carried out with the support from the Netherlands Organization for Scientific Research (NWO) under VIDI grant no. 13456. Approved Most recent IF: 9.5  
  Call Number UA @ admin @ c:irua:190619 Serial 7206  
Permanent link to this record
 

 
Author Lu, Y.-G.; Verbeeck, J.; Turner, S.; Hardy, A.; Janssens, S.D.; De Dobbelaere, C.; Wagner, P.; Van Bael, M.K.; Van Tendeloo, G. pdf  doi
openurl 
  Title Analytical TEM study of CVD diamond growth on TiO2 sol-gel layers Type A1 Journal article
  Year 2012 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 23 Issue Pages 93-99  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The early growth stages of chemical vapor deposition (CVD) diamond on a solgel TiO2 film with buried ultra dispersed diamond seeds (UDD) have been studied. In order to investigate the diamond growth mechanism and understand the role of the TiO2 layer in the growth process, high resolution transmission electron microscopy (HRTEM), energy-filtered TEM and electron energy loss spectroscopy (EELS) techniques were applied to cross sectional diamond film samples. We find evidence for the formation of TiC crystallites inside the TiO2 layer at different diamond growth stages. However, there is no evidence that diamond nucleation starts from these crystallites. Carbon diffusion into the TiO2 layer and the chemical bonding state of carbon (sp2/sp3) were both extensively investigated. We provide evidence that carbon diffuses through the TiO2 layer and that the diamond seeds partially convert to amorphous carbon during growth. This carbon diffusion and diamond to amorphous carbon conversion make the seed areas below the TiO2 layer grow and bend the TiO2 layer upwards to form the nucleation center of the diamond film. In some of the protuberances a core of diamond seed remains, covered by amorphous carbon. It is however unlikely that the remaining seeds are still active during the growth process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000302887600017 Publication Date 2012-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 16 Open Access  
  Notes Iap; Esteem 026019; Fwo Approved Most recent IF: 2.561; 2012 IF: 1.709  
  Call Number UA @ lucian @ c:irua:95037UA @ admin @ c:irua:95037 Serial 111  
Permanent link to this record
 

 
Author Ustarroz, J.; Hammons, J.A.; Altantzis, T.; Hubin, A.; Bals, S.; Terryn, H. pdf  doi
openurl 
  Title A generalized electrochemical aggregative growth mechanism Type A1 Journal article
  Year 2013 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 135 Issue 31 Pages 11550-11561  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The early stages of nanocrystal nucleation and growth are still an active field of research and remain unrevealed. In this work, by the combination of aberration-corrected transmission electron microscopy (TEM) and electrochemical characterization of the electrodeposition of different metals, we provide a complete reformulation of the VolmerWeber 3D island growth mechanism, which has always been accepted to explain the early stages of metal electrodeposition and thin-film growth on low-energy substrates. We have developed a Generalized Electrochemical Aggregative Growth Mechanism which mimics the atomistic processes during the early stages of thin-film growth, by incorporating nanoclusters as building blocks. We discuss the influence of new processes such as nanocluster self-limiting growth, surface diffusion, aggregation, and coalescence on the growth mechanism and morphology of the resulting nanostructures. Self-limiting growth mechanisms hinder nanocluster growth and favor coalescence driven growth. The size of the primary nanoclusters is independent of the applied potential and deposition time. The balance between nucleation, nanocluster surface diffusion, and coalescence depends on the material and the overpotential, and influences strongly the morphology of the deposits. A small extent of coalescence leads to ultraporous dendritic structures, large surface coverage, and small particle size. Contrarily, full recrystallization leads to larger hemispherical monocrystalline islands and smaller particle density. The mechanism we propose represents a scientific breakthrough from the fundamental point of view and indicates that achieving the right balance between nucleation, self-limiting growth, cluster surface diffusion, and coalescence is essential and opens new, exciting possibilities to build up enhanced supported nanostructures using nanoclusters as building blocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000323019400034 Publication Date 2013-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 124 Open Access  
  Notes Fow; Hercules Approved Most recent IF: 13.858; 2013 IF: 11.444  
  Call Number UA @ lucian @ c:irua:109453 Serial 1323  
Permanent link to this record
 

 
Author Weng, Y.; Ding, L.; Zhang, Z.; Jia, Z.; Wen, B.; Liu, Y.; Muraishi, S.; Li, Y.; Liu, Q. pdf  doi
openurl 
  Title Effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloy Type A1 Journal article
  Year 2019 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 180 Issue 180 Pages 301-316  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloys was systematically investigated by atomic resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atom probe tomography (APT) and density functional theory (DFT) calculation. At the early aging stage, Ag atoms could enter clusters and refine the distribution of these clusters. Then, Ag atoms preferentially segregate at the GP zone/alpha-Al and beta ''/alpha-Al interfaces at the peak aging stage by the replacement of Al atoms in FCC matrix. With prolonging aging time, Ag atoms generally incorporate into the interior of beta '' precipitate, facilitating the formation of QP lattice (a hexagonal network of Si atomic columns) and the local symmetry substructures, Ag sub-unit (1) and Ag sub-unit (2). At the over-aged stage, the Ag sub-unit (1) and Ag sub-unit (2) could transform to the beta'(Ag) (i.e. beta'(Ag1) and beta'(Ag2).) and Q'(Ag) unit cells, respectively. All the precipitates at the over-aging stage have a composite and disordered structure due to the coexistence of different unit cells (beta'(Ag1), beta'(Ag2), Q'(Ag) and beta') and the non-periodic arrangement of Ag atoms within the precipitate. In the equilibrium stage, the incorporated Ag atoms in the precipitates release into the alpha-Al matrix as solute atoms or form Ag particles. In general, Ag atoms undergo a process of “segregate at the precipitate/matrix interface -> incorporate into the interior of precipitate -> release into the alpha-Al matrix” during the precipitation for Al-Mg-Si-Ag alloys. Besides, Ag segregation is found at the interfaces of almost all metastable phases (including GP zone, beta '', beta'/beta'(Ag) phase) in Al-Mg-Si-Ag alloys. The Ag segregation at the beta'/alpha-Al interface could increase the length/diameter ratio of beta' phase and thus promote the additional strengthening potential of these alloys. These findings provide a new route for precipitation hardening by promoting the nucleation and morphology evolution of precipitates. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000495519100028 Publication Date 2019-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited Open Access  
  Notes Approved Most recent IF: 5.301  
  Call Number UA @ admin @ c:irua:164641 Serial 6295  
Permanent link to this record
 

 
Author Weng, Y.; Jia, Z.; Ding, L.; Muraishi, S.; Liu, Q. pdf  url
doi  openurl
  Title Clustering behavior during natural aging and artificial aging in Al-Mg-Si alloys with different Ag and Cu addition Type A1 Journal article
  Year 2018 Publication Microstructure And Processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 732 Issue 732 Pages 273-283  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effect of Ag and Cu addition on clustering behavior of Al-Mg-Si alloys during natural aging (NA) and artificial aging (AA) was investigated by hardness measurement, tensile test and atom probe tomography analysis. The results show that both Ag and Cu atoms could enter clusters and GP-zones, change the Mg/Si ratio and increase their volume fractions. Compared with the Al base alloy, the clusters in the Ag/Cu-added alloys more easily transform to beta" phases for size and compositional similarity, and the strengthening ability of these particles is enhanced by the increased volume fraction and shear modulus. In NA condition, Cu is greater in improving the volume fraction of clusters than Ag and thus produces higher T4 temper hardness. In AA condition, in contrary, Ag is more effective in facilitating the formation and growth of particles than Cu due to the stronger Ag-Mg interaction and the high diffusivity of Ag atoms in Al matrix, leading to highest hardening response. Compared to the Cu-added alloy, the Ag-added alloy shows higher precipitation kinetics during AA treatment and maintains a lower T4 temper hardness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000441486100032 Publication Date 2018-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited 11 Open Access OpenAccess  
  Notes ; This work was supported by the Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing (Grant no. cstc2017zdcy-zdzxX0006), the Fundamental Research Funds for the Central Universities of China (Grant no. 106112016CDJXZ338825 and 106112017CDJQJ308822) and the program of China Scholarships Council (No. 201706050125). ; Approved Most recent IF: 3.094  
  Call Number UA @ lucian @ c:irua:153107 Serial 5083  
Permanent link to this record
 

 
Author Ding, L.; Zhao, M.; Ehlers, F.J.H.; Jia, Z.; Zhang, Z.; Weng, Y.; Schryvers, D.; Liu, Q.; Idrissi, H. pdf  url
doi  openurl
  Title “Branched” structural transformation of the L12-Al3Zr phase manipulated by Cu substitution/segregation in the Al-Cu-Zr alloy system Type A1 Journal Article
  Year 2024 Publication Journal of Materials Science & Technology Abbreviated Journal Journal of Materials Science & Technology  
  Volume 185 Issue Pages 186-206  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract (up) The effect of Cu on the evolution of the Al3Zr phase in an Al-Cu-Zr cast alloy during solution treatment at 500 °C has been thoroughly studied by combining atomic resolution high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy and first-principles cal- culations. The heat treatment initially produces a pure L12-Al3Zr microstructure, allowing for about 13 % Cu to be incorporated in the dispersoid. Cu incorporation increases the energy barrier for anti-phase boundary (APB) activation, thus stabilizing the L12 structure. Additional heating leads to a Cu-induced “branched”path for the L12 structural transformation, with the latter process accelerated once the first APB has been created. Cu atoms may either (i) be repelled by the APBs, promoting the transformation to a Cu-poor D023 phase, or (ii) they may segregate at one Al-Zr layer adjacent to the APB, promoting a transformation to a new thermodynamically favored phase, Al4CuZr, formed when these segregation layers are periodically arranged. Theoretical studies suggest that the branching of the L12 transformation path is linked to the speed at which an APB is created, with Cu attraction triggered by a comparatively slow process. This unexpected transformation behavior of the L12-Al3Zr phase opens a new path to understanding, and potentially regulating the Al3Zr dispersoid evolution for high temperature applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1005-0302 ISBN Additional Links UA library record  
  Impact Factor 10.9 Times cited Open Access  
  Notes This work was supported by the National Key Research and Development Program (No. 2020YFA0405900), the National Natural Science Foundation of China (Grant No. 52371111 and U2141215 ), the Natural Science Foundation of Jiangsu Province (No. BE2022159 ). We are grateful to the High Performance Computing Center of Nanjing Tech University for supporting the computational resources. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR- FNRS). Approved Most recent IF: 10.9; 2024 IF: 2.764  
  Call Number EMAT @ emat @c:irua:202392 Serial 8981  
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Cuong, N.T.; Tikhomirov, V.K.; Jivanescu, M.; Stesmans, A.; Chibotaru, L.F.; Velázquez, J.J.; Rodríguez, V.D.; Kirilenko, D.; Van Tendeloo, G.; Moshchalkov, V.V. pdf  doi
openurl 
  Title Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing Type A1 Journal article
  Year 2012 Publication Optical materials Abbreviated Journal Opt Mater  
  Volume 34 Issue 4 Pages 616-621  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effect of heat treatment on the structure and luminescence of Ag nanoclusters doped oxyfluoride glasses was studied and the implication for drawing the corresponding fibers doped with luminescent Ag nanoclusters has been proposed. The heat treatment results, first, in condensation of the Ag nanoclusters into larger Ag nanoparticles and loss of Ag luminescence, and further heat treatment results in precipitation of a luminescent-loss nano- and microcrystalline Ag phases onto the surface of the glass. Thus, the oxyfluoride fiber doped with luminescent Ag nanoclusters was pulled from the viscous glass melt and its attenuation loss was 0.19 dB/cm in the red part of the spectrum; i.e. near to the maximum of Ag nanoclusters luminescence band. The nucleation centers for the Ag nanoclusters in oxyfluoride glasses have been suggested to be the fluorine vacancies and their nanoclusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300124500006 Publication Date 2011-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-3467; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.238 Times cited 25 Open Access  
  Notes Methusalem Approved Most recent IF: 2.238; 2012 IF: 1.918  
  Call Number UA @ lucian @ c:irua:93632 Serial 811  
Permanent link to this record
 

 
Author O'Donnell, D.; Hassan, S.; Du, Y.; Gauquelin, N.; Krishnan, D.; Verbeeck, J.; Fan, R.; Steadman, P.; Bencok, P.; Dobrynin, A.N. pdf  url
doi  openurl
  Title Etching induced formation of interfacial FeMn in IrMn/CoFe bilayers Type A1 Journal article
  Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 52 Issue 16 Pages 165002  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effect of ion etching on exchange bias in IrMn3/Co70Fe30 bilayers is investigated. In spite of the reduction of saturation magnetization caused by the embedding of Tr from the capping layer into the Co70Fe30 layer during the etching process, the exchange bias in samples with the same thickness of the Co70Fe30 layer is reducing in proportion to the etching power. X-ray magnetic circular dichroism measurements revealed the emergence of an uncompensated Mn magnetization after etching, which is antiferromagnetically coupled to the ferromagnetic layer. This suggests etching induced formation of small interfacial FeMn regions which leads to the decrease of effective exchange coupling between ferromagnetic and antiferromagnetic layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458524800001 Publication Date 2019-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.588 Times cited Open Access OpenAccess  
  Notes ; This work was supported by Seagate Technology (Ireland). Beamline I10, Diamond Light Source, is acknowledged for provided beamtime. ; Approved Most recent IF: 2.588  
  Call Number UA @ admin @ c:irua:157458 Serial 5247  
Permanent link to this record
 

 
Author Khalil-Allafi, J.; Amin-Ahmadi, B. pdf  doi
openurl 
  Title Effect of mold hardness on microstructure and contraction porosity in ductile cast iron Type A1 Journal article
  Year 2011 Publication Journal of iron and steel research international Abbreviated Journal J Iron Steel Res Int  
  Volume 18 Issue 4 Pages 44-47  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effect of mold hardness on the microstructure of ductile iron and the contraction porosity was investigated. Molds with different hardnesses (0.41, 0.48, 0.55, 0.62 MPa) and a sand mold prepared by Co2 method were used. The influence of silicon content on the induced expansion pressure owing to the formation of graphite was also investigated. The contraction during solidification can be compensated by an induced expansion owing to the graphite relief when the hardness of mold increases; therefore, the possibility of achieving a sound product without using any riser increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2011-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1006-706X; ISBN Additional Links UA library record  
  Impact Factor 0.836 Times cited 1 Open Access  
  Notes Approved Most recent IF: 0.836; 2011 IF: 0.213  
  Call Number UA @ lucian @ c:irua:122044 Serial 823  
Permanent link to this record
 

 
Author Marikutsa, A.V.; Rumyantseva, M.N.; Frolov, D.D.; Morozov, I.V.; Boltalin, A.I.; Fedorova, A.A.; Petukhov, I.A.; Yashina, L.V.; Konstantinova, E.A.; Sadovskaya, E.M.; Abakumov, A.M.; Zubavichus, Y.V.; Gaskov, A.M.; doi  openurl
  Title Role of PdOx and RuOy clusters in oxygen exchange between nanocrystalline tin dioxide and the gas phase Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 45 Pages 23858-23867  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effect of palladium- and ruthenium-based clusters on nanocrystalline tin dioxide interaction with oxygen was studied by temperature-programmed oxygen isotopic exchange with mass-spectrometry detection. The modification of aqueous sol-gel prepared SnO2 by palladium and, to a larger extent, by ruthenium, increases surface oxygen concentration on the materials. The revealed effects on oxygen exchange-lowering the threshold temperature, separation of surface oxygen contribution to the process, increase of heteroexchange rate and oxygen diffusion coefficient, decrease of activation energies of exchange and diffusion-were more intensive for Ru-modified SnO2 than in the case of SnO2/Pd. The superior promoting activity of ruthenium on tin dioxide interaction with oxygen was interpreted by favoring the dissociative O-2 adsorption and increasing the oxygen mobility, taking into account the structure and chemical composition of the modifier clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000327110500046 Publication Date 2013-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 20 Open Access  
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ lucian @ c:irua:112706 Serial 2924  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D. doi  openurl
  Title The effect of temperature on the structural, electronic and optical properties of sp3-rich amorphous carbon Type A1 Journal article
  Year 2008 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 20 Issue 3 Pages 035216,1-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effect of temperature on the structural, electronic and optical properties of dense tetrahedral amorphous carbon made of similar to 80% sp(3)-bonded atoms is investigated using a combination of the classical Monte Carlo technique and density functional theory. A structural transformation accompanied by a slight decrease of the sp(3) fraction is evidenced above a temperature of about 600 degrees C. A structural analysis in combination with energy-loss near-edge structure calculations shows that beyond this temperature, the sp(2)-bonded C sites arrange themselves so as to enhance the conjugation of the p electrons. The Tauc optical band gap deduced from the calculated dielectric function shows major changes beyond this temperature in accordance with experimental results. Energy-loss near-edge structure and band gap calculations additionally reveal a massive destabilization of the of sp(3) bonding phase in favour of sp(2) bonding at a temperature of about 1300 degrees C which agrees very well with the reported value of 1100 degrees C.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000252922900026 Publication Date 2007-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.649; 2008 IF: 1.900  
  Call Number UA @ lucian @ c:irua:67461 Serial 840  
Permanent link to this record
 

 
Author Felten, A.; Ghijsen, J.; Pireaux, J.-J.; Drube, W.; Johnson, R.L.; Liang, D.; Hecq, M.; Van Tendeloo, G.; Bittencourt, C. pdf  doi
openurl 
  Title Electronic structure of Pd nanoparticles on carbon nanotubes Type A1 Journal article
  Year 2009 Publication Micron Abbreviated Journal Micron  
  Volume 40 Issue 1 Pages 74-79  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effect of the oxygen plasma treatment on the electronic states of multi-wall carbon nanotubes (MWCNTs) is analyzed by X-ray photoemission measurements (XPS) and UPS, both using synchrotron radiation. It is found that the plasma treatment effectively grafts oxygen at the CNT-surface. Thereafter, the interaction between evaporated Pd and pristine or oxygen plasma-treated MWCNTs is investigated. Pd is found to nucleate at defective sites, whether initially present or introduced by oxygen plasma treatment. The plasma treatment induced a uniform dispersion of Pd clusters at the CNT-surface. The absence of additional features in the Pd 3d and C I s core levels spectra testifies that no Pd-C bond is formed. The shift of the Pd 3d core level towards high-binding energy for the smallest clusters is attributed to the Coulomb energy of the charged final state. (C) 2008 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000261420900015 Publication Date 2008-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 44 Open Access  
  Notes Pai 608 Approved Most recent IF: 1.98; 2009 IF: 1.626  
  Call Number UA @ lucian @ c:irua:94578 Serial 1015  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A. url  doi
openurl 
  Title Size effects and strain state of Ga1-xInxAs/GaAs multiple quantum wells: Monte Carlo study Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 78 Issue 16 Pages 165326,1-165326,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effect of the size of the GaAs barrier and the Ga1−xInxAs well on the structural properties of a Ga1−xInxAs/GaAs multiple quantum well structure is investigated using the Metropolis Monte Carlo approach based on a well-parametrized Tersoff potential. It is found that within the well the Ga-As and In-As bond lengths undergo contractions whose magnitude increases with increasing In content in sharp contrast with bond-length variations in the bulk Ga1−xInxAs systems. For fixed barrier size and In content, the contraction of the bonds is also found to increase with increasing size of the well. Using the local atomic structure of the heterostructures, a more local analysis of the strain state of the systems is given and comparison with the prediction of macroscopic continuum elasticity theory shows deviations from the latter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000260574500084 Publication Date 2008-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:72920 Serial 3036  
Permanent link to this record
 

 
Author Pourbabak, S.; Verlinden, B.; Van Humbeeck, J.; Schryvers, D. pdf  doi
openurl 
  Title DSC cycling effects on phase transformation temperatures of micron and submicron grain Ni50.8Ti49.2 microwires Type A1 Journal article
  Year 2020 Publication Shape memory and superelasticity Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effect of thermal cycling parameters on the phase transformation temperatures of micron and submicron grain size recrystallized Ni-Ti microwires was investigated. The suppression of martensitic transformation by thermal cycling was found to enhance when combined with room temperature aging between the cycles and enhances even more when aged at elevated temperature of 100 degrees C. While aging at room temperature alone has no clear effect on the martensitic transformation, elevated temperature aging at 100 degrees C alone suppresses the martensitic transformation. All aforementioned effects were found to be stronger in large grain samples than in small grain samples. Martensitic transformation suppression in all cases was in line with the formation of Ni4Ti3 precursors in the form of < 111 & rang;(B2) Ni clusters as concluded from the observed diffuse intensity in the electron diffraction patterns revealing short-range ordering enhancement. Performing thermal cycling in some different temperature ranges to separate the effect of martensitic transformation and high temperature range of DSC cycling revealed that both high temperature- and martensitic transformation-included cycles enhance the short-range ordering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530232800001 Publication Date 2020-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-384x; 2199-3858 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access Not_Open_Access  
  Notes ; S.P. would like to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169514 Serial 6492  
Permanent link to this record
 

 
Author Ribbens, S.; Beyers, E.; Schellens, K.; Mertens, M.; Ke, X.; Bals, S.; Van Tendeloo, G.; Meynen, V.; Cool, P. pdf  doi
openurl 
  Title Systematic evaluation of thermal and mechanical stability of different commercial and synthetic photocatalysts in relation to their photocatalytic activity Type A1 Journal article
  Year 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 156 Issue Pages 62-72  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract (up) The effect of thermal treatment and mechanical stress on the structural and photocatalytic properties of eight different (synthetic and commercial) photocatalysts has been thoroughly investigated. Different mesoporous Ti-based materials were prepared via surfactant based synthesis routes (e.g. Pluronic 123, CTMABr = Cetyltrimethylammonium bromide) or via template-free synthesis routes (e.g. trititanate nanotubes). Also, the stabilizing effect of the NaOH/NH4OH post-treatment on the templated mesoporous materials and their photocatalytic activity was investigated. Furthermore, the thermal and mechanical properties of commercially available titanium dioxides such as P25 Evonik® and Millenium PC500® were studied. The various photocatalysts were analyzed with N2-sorption, X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) to obtain information concerning the specific surface area, pore volume, crystal structure, morphology, phase transitions, etc. In general, results show that the NaOH post-treatment leads to an increased control of the crystallization process during calcination resulting in a higher thermal stability, but at the same time diminishes the photocatalytic activity. Mesoporous materials in which pre-synthesized nanoparticles are used as titania source have the best mechanical stability whereas the mechanical stability of the nanotubes is the most limited. At increased temperatures and pressures, the tested commercial titanium dioxides lose their superior photocatalytic activity caused by a decreased accessibility of the active sites. The observed changes in adsorption capacities and photocatalytic activities cannot be assigned to one single phenomenon. In this respect, it shows the need to define a general/standard method to compare different photocatalysts. Furthermore, it is shown that the photocatalytic properties do not necessarily deteriorate under thermal stress, but can be improved due to crystallization, even though the initial material is (partially) destroyed. It is shown that the usefulness of a specific type of photocatalyst strongly depends on the application and the temperature/pressure to which it needs to resist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000303625200010 Publication Date 2012-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 8 Open Access  
  Notes Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365  
  Call Number UA @ lucian @ c:irua:96910 Serial 3466  
Permanent link to this record
 

 
Author Skaltsas, T.; Ke, X.; Bittencourt, C.; Tagmatarchis, N. doi  openurl
  Title Ultrasonication induces oxygenated species and defects onto exfoliated graphene Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 44 Pages 23272-23278  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effect of ultrasonication parameters, such as time and power applied, to exfoliate graphite in o-dichlorobenzene (o-DCB) and N-methyl-1,2-pyrrolidone (NMP) was examined. It was found that the concentration of graphene was higher in o-DCB, while its dispersibility was increased when sonication was applied for a longer period and/or at higher power. However, spectroscopic examination by X-ray photoelectron spectroscopy (XPS) revealed that ultrasonication causes defects and induces oxygen functional groups in the form of carboxylic acids and ethers/epoxides onto the graphene lattice. Additional proof for the latter arose from Raman, IR, and thermogravimetry studies. The carboxylic acids and ethers/epoxides onto exfoliated graphene were derived from air during ultrasonication and found independent of the solvent used for the exfoliation and the power and/or time ultrasonication applied. Quantitative evaluation of the amount of oxygenated species present on exfoliated graphene as performed by high-resolution XPS revealed that the relative oxygen percentage was higher when exfoliation was performed in NMP. Finally, the sonication time and/or power affected the oxygen content on exfoliated graphene, since extended ultrasonication resulted in a decrease in the oxygen content on exfoliated graphene, with a simultaneous increase of defected sp(3) carbon atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000326845400090 Publication Date 2013-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 65 Open Access  
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ lucian @ c:irua:112710 Serial 3797  
Permanent link to this record
 

 
Author Van Aert, S.; Chang, L.Y.; Bals, S.; Kirkland, A.I.; Van Tendeloo, G. pdf  doi
openurl 
  Title Effect of amorphous layers on the interpretation of restored exit waves Type A1 Journal article
  Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 109 Issue 3 Pages 237-246  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effects of amorphous layers on the quality of exit wave restorations have been investigated. Two independently developed software implementations for exit wave restoration have been used to simulated focal series of images of SrTiO3 with amorphous carbon layers incorporated. The restored exit waves have been compared both qualitatively and quantitatively. We have shown that amorphous layers have a strong impact on the quantitative measurements of atomic column positions, however, the error in the position measurements is still in the picometer range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000264280200005 Publication Date 2008-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 10 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067  
  Call Number UA @ lucian @ c:irua:76421 Serial 796  
Permanent link to this record
 

 
Author Zelaya, E.; Schryvers, D.; Tolley, A.; Fitchner, P.F.P. pdf  doi
openurl 
  Title Cavity nucleation and growth in Cu-Zn-Al irradiated with Cu+ ions at different temperatures Type A1 Journal article
  Year 2010 Publication Intermetallics Abbreviated Journal Intermetallics  
  Volume 18 Issue 4 Pages 493-498  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effects of high dose ion irradiation in β CuZnAl were investigated between room temperature and 150 °C. Single crystal samples with surface normal close to [001]β were irradiated with 300 keV Cu+ ions. Microstructural changes were characterized using transmission electron microscopy. Irradiation induced cavities located on the surface exposed to the irradiation were observed. The morphology, size and density distribution of these cavities were analyzed as a function of different irradiation conditions. The shape and location of the cavities with respect to the irradiation surface were not affected by irradiation temperature or irradiation dose. Instead, the cavity size distribution showed a bi-modal shape for a dose of 15 dpa, regardless of irradiation temperature. For a dose of 30 dpa the bi-modal distribution was only observed after room temperature irradiation. The diffusion effects of vacancies produced by irradiation are analyzed in shape memory CuZnAl alloys, which main characteristic is the diffusionless martensitic transformation. Particularly, the cavity size distributions were analyzed in terms of nucleation, growth and coalescence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Chicago, Ill. Editor  
  Language Wos 000276058200014 Publication Date 2009-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0966-9795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.14 Times cited 1 Open Access  
  Notes Iaea Approved Most recent IF: 3.14; 2010 IF: 2.335  
  Call Number UA @ lucian @ c:irua:80924 Serial 302  
Permanent link to this record
 

 
Author Khalil-Allafi, J.; Amin-Ahmadi, B. pdf  doi
openurl 
  Title Influence of mold preheating and silicon content on microstructure and casting properties of ductile iron in permanent mold Type A1 Journal article
  Year 2011 Publication Journal of iron and steel research international Abbreviated Journal J Iron Steel Res Int  
  Volume 18 Issue 3 Pages 34-39  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effects of the mold preheating and the silicon content of ductile iron on the percentage of carbides, graphite nodule counts and shrinkage volume were investigated. The results showed that the percentage of carbides and the shrinkage volume decreased when the mold preheating increased. The ductile iron with the carbon equivalent of 4.45% and the silicon content of 2.5% without any porosity defects was achieved when the mold preheating was 450 °C. Increasing the silicon content in the range of 2.1%3.3% led to the increase in graphite nodule count and graphite size and the decrease in percentage of carbides. It is due to the increase in induced expansion pressure during the graphite formation with the increasing of silicon content. The suitable condition for casting a sound product of ductile iron without the riser at the mold preheating temperature of 300 °C is the silicon content of 3.3% and carbon equivalent of 4.7%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2011-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1006-706X; ISBN Additional Links UA library record  
  Impact Factor 0.836 Times cited 3 Open Access  
  Notes Approved Most recent IF: 0.836; 2011 IF: 0.213  
  Call Number UA @ lucian @ c:irua:122043 Serial 1629  
Permanent link to this record
 

 
Author Nourbakhsh, A.; Cantoro, M.; Klekachev, A.; Clemente, F.; Sorée, B.; van der Veen, M.H.; Vosch, T.; Stesmans, A.; Sels, B.; de Gendt, S. doi  openurl
  Title Tuning the Fermi level of SiO2-supported single-layer graphene by thermal annealing Type A1 Journal article
  Year 2010 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 114 Issue 5 Pages 6894-6900  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract (up) The effects of thermal annealing in inert Ar gas atmosphere of SiO2-supported, exfoliated single-layer graphene are investigated in this work. A systematic, reproducible change in the electronic properties of graphene is observed after annealing. The most prominent Raman features in graphene, the G and 2D peaks, change in accord to what is expected in the case of hole doping. The results of electrical characterization performed on annealed, back-gated field-effect graphene devices show that the neutrality point voltage VNP increases monotonically with the annealing temperature, confirming the occurrence of excess hole accumulation. No degradation of the structural properties of graphene is observed after annealing at temperatures as high as 400 °C. Thermal annealing of single-layer graphene in controlled Ar atmosphere can therefore be considered a technique to reproducibly modify the electronic structure of graphene by tuning its Fermi level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000276562500002 Publication Date 2010-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 54 Open Access  
  Notes Approved Most recent IF: 4.536; 2010 IF: 4.524  
  Call Number UA @ lucian @ c:irua:89508 Serial 3757  
Permanent link to this record
 

 
Author Zelaya, E.; Tolley, A.; Condo, A.M.; Schumacher, G. pdf  doi
openurl 
  Title Swift heavy ion irradiation of Cu-Zn-Al and Cu-Al-Ni alloys Type A1 Journal article
  Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 21 Issue 18 Pages 185009-185009,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The effects produced by swift heavy ions in the martensitic (18R) and austenitic phase (beta) of Cu based shape memory alloys were characterized. Single crystal samples with a surface normal close to [210](18R) and [001](beta) were irradiated with 200 MeV of Kr(15+), 230 MeV of Xe(15+), 350 and 600 MeV of Au(26+) and Au(29+). Changes in the microstructure were studied with transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). It was found that swift heavy ion irradiation induced nanometer sized defects in the 18R martensitic phase. In contrast, a hexagonal close-packed phase formed on the irradiated surface of beta phase samples. HRTEM images of the nanometer sized defects observed in the 18R martensitic phase were compared with computer simulated images in order to interpret the origin of the observed contrast. The best agreement was obtained when the defects were assumed to consist of local composition modulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000264934400014 Publication Date 2009-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.649; 2009 IF: 1.964  
  Call Number UA @ lucian @ c:irua:94551 Serial 3399  
Permanent link to this record
 

 
Author Geenen, F.A.; van Stiphout, K.; Nanakoudis, A.; Bals, S.; Vantomme, A.; Jordan-Sweet, J.; Lavoie, C.; Detavernier, C. pdf  url
doi  openurl
  Title Controlling the formation and stability of ultra-thin nickel silicides : an alloying strategy for preventing agglomeration Type A1 Journal article
  Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 123 Issue 123 Pages 075303  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The electrical contact of the source and drain regions in state-of-the-art CMOS transistors is nowadays facilitated through NiSi, which is often alloyed with Pt in order to avoid morphological agglomeration of the silicide film. However, the solid-state reaction between as-deposited Ni and the Si substrate exhibits a peculiar change for as-deposited Ni films thinner than a critical thickness of t(c) = 5 nm. Whereas thicker films form polycrystalline NiSi upon annealing above 450 degrees C, thinner films form epitaxial NiSi2 films that exhibit a high resistance toward agglomeration. For industrial applications, it is therefore of utmost importance to assess the critical thickness with high certainty and find novel methodologies to either increase or decrease its value, depending on the aimed silicide formation. This paper investigates Ni films between 0 and 15 nm initial thickness by use of “thickness gradients,” which provide semi-continuous information on silicide formation and stability as a function of as-deposited layer thickness. The alloying of these Ni layers with 10% Al, Co, Ge, Pd, or Pt renders a significant change in the phase sequence as a function of thickness and dependent on the alloying element. The addition of these ternary impurities therefore changes the critical thickness t(c). The results are discussed in the framework of classical nucleation theory. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000425807400018 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 23 Open Access OpenAccess  
  Notes ; The authors acknowledge the FWO Vlaanderen, the Hercules Foundation, and BOF-UGent (GOA 01G01513) for providing financial support for this work. This research used resources of the National Synchrotron Light Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886. ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:149912UA @ admin @ c:irua:149912 Serial 4929  
Permanent link to this record
 

 
Author Van Daele, S.; Hintjens, L.; Hoekx, S.; Bohlen, B.; Neukermans, S.; Daems, N.; Hereijgers, J.; Breugelmans, T. pdf  doi
openurl 
  Title How flue gas impurities affect the electrochemical reduction of CO₂ to CO and formate Type A1 Journal article
  Year 2024 Publication Applied catalysis : B : environmental Abbreviated Journal  
  Volume 341 Issue Pages 123345-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Applied Electrochemistry & Catalysis (ELCAT); Electron microscopy for materials research (EMAT)  
  Abstract (up) The electrochemical CO2 reduction offers a promising solution to convert waste CO2 into valuable products like CO and formate. However, CO2 capture and purification remains an energy intensive process and therefore the direct usage of industrially available waste CO2 streams containing SO2, NO and O2 impurities becomes more interesting. This work demonstrates an efficient (Faradaic efficiency > 90 %) and stable performance over 20 h with 200 ppm SO2 or NO in the feed gas stream. However, the addition of 1 % O2 to the CO2 feed causes a significant drop in Faradaic efficiency to C-products due to the competitive oxygen reduction reaction. A potential mitigation strategy is to operate at higher total current density to firstly reduce most O2 and achieve sufficient product output from CO2 reduction. These results aid in understanding the impact of flue gas impurities during CO2 electrolysis which is crucial for potentially bypassing the CO2 purification step.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001102999000001 Publication Date 2023-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:199490 Serial 9044  
Permanent link to this record
 

 
Author Drozhzhin, O.A.; Sumanov, V.D.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Baranov, A.N.; Stevenson, K.J.; Antipov, E.V. pdf  url
doi  openurl
  Title Switching between solid solution and two-phase regimes in the Li1-xFe1-yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 191 Issue 191 Pages 149-157  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The electrochemical properties and phase transformations during (de)insertion of Li+ in LiFePO4, LiFe0.9Mn0.1PO4 and LiFe0.5Mn0.5PO4 are studied by means of galvanostatic cycling, potential intermittent titration technique (PITT) and in situ X-ray powder diffraction. Different modes of switching between the solid solution and two-phase regimes are revealed which are influenced by the Mn content in Li1-xFe1-yMnyPO4. Additionally, an increase in electrochemical capacity with the Mn content is observed at high rates of galvanostatic cycling (10C, 20C), which is in good agreement with the numerically estimated contribution of the solid solution mechanism determined from PITT data. The observed asymmetric behavior of the phase transformations in Li1-xFe0.5Mn0.5PO4 during charge and discharge is discussed. For the first time, the crystal structures of electrochemically deintercalated Li1-xFe0.5Mn0.5PO4 with different Li content – LiFe0.5Mn0.5PO4, Li0.5Fe0.5Mn0.5PO4 and Li0.1Fe0.5Mn0.5PO4 – are refined, including the occupancy factors of the Li position. This refinement is done using electron diffraction tomography data. The crystallographic analyses of Li1-xFe0.5Mn0.5PO4 reveal that at x = 0.5 and 0.9 the structure retains the Pnma symmetry and the main motif of the pristine x = 0 structure without noticeable short range order effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371143200018 Publication Date 2016-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 27 Open Access  
  Notes This work was supported by the Russian Foundation of Basic Research (grants No. 14-29-04064 and 14-03-31473), Skolkovo Institute of Science and Technology, and the Lomonosov Moscow State University Program of Development. J. Hadermann, O. M. Karakulina and A. M. Abakumov acknowl- edge support from FWO under grant G040116N. Approved Most recent IF: 4.798  
  Call Number c:irua:131911 Serial 4032  
Permanent link to this record
 

 
Author Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.; Li, J.; Wang, Z.; Xie, H.; Li, H.; Chen, P.; Bladt, E.; Quintero-Bermudez, R.; Sham, T.-K.; Bals, S.; Hofkens, J.; Sinton, D.; Chen, G.; Sargent, E.H. pdf  url
doi  openurl
  Title Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons Type A1 Journal article
  Year 2018 Publication Nature chemistry Abbreviated Journal Nat Chem  
  Volume 10 Issue 10 Pages 974-980  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The electrochemical reduction of CO2 to multi-carbon products has attracted much attention because it provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the efficiency of CO2 conversion to C-2 products remains below that necessary for its implementation at scale. Modifying the local electronic structure of copper with positive valence sites has been predicted to boost conversion to C-2 products. Here, we use boron to tune the ratio of Cu delta+ to Cu-0 active sites and improve both stability and C-2-product generation. Simulations show that the ability to tune the average oxidation state of copper enables control over CO adsorption and dimerization, and makes it possible to implement a preference for the electrosynthesis of C-2 products. We report experimentally a C-2 Faradaic efficiency of 79 +/- 2% on boron-doped copper catalysts and further show that boron doping leads to catalysts that are stable for in excess of similar to 40 hours while electrochemically reducing CO2 to multi-carbon hydrocarbons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000442395200013 Publication Date 2018-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 700 Open Access OpenAccess  
  Notes ; This work was supported financially by funding from TOTAL S.A., the Ontario Research Fund: Research Excellence Program, the Natural Sciences and Engineering Research Council of Canada, the CIFAR Bio-Inspired Solar Energy programme, a University of Toronto Connaught grant, the Ministry of Science, Natural Science Foundation of China (21471040, 21271055 and 21501035), the Innovation-Driven Plan in Central South University project (2017CX003), a project from State Key Laboratory of Powder Metallurgy in Central South University, the Thousand Youth Talents Plan of China and Hundred Youth Talents Program of Hunan and the China Scholarship Council programme. This work benefited from the soft X-ray microcharacterization beamline at CLS, sector 20BM at the APS and the Ontario Centre for the Characterisation of Advanced Materials at the University of Toronto. H.Y. acknowledges financial support from the Research Foundation-Flanders (FWO postdoctoral fellowship). C.Z. acknowledges support from the International Academic Exchange Fund for Joint PhD Students from Tianjin University. P.D.L. acknowledges financial support from the Natural Sciences and Engineering Research Council in the form of the Canada Graduate Scholarship-Doctoral award. S.B. and E.B. acknowledge financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). The authors thank B. Zhang, N. Wang, C. T. Dinh, T. Zhuang, J. Li and Y. Zhao for fruitful discussions, as well as Y. Hu and Q. Xiao from CLS, and Z. Finfrock and M. Ward from APS for their help during the course of study. Computations were performed on the SOSCIP Consortium's Blue Gene/Q computing platform. SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada, Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions. ; ecas_sara Approved Most recent IF: 25.87  
  Call Number UA @ lucian @ c:irua:153693UA @ admin @ c:irua:153693 Serial 5091  
Permanent link to this record
 

 
Author Mernissi Cherigui, E.A.; Sentosun, K.; Bouckenooge, P.; Vanrompay, H.; Bals, S.; Terryn, H.; Ustarroz, J. url  doi
openurl 
  Title A Comprehensive Study of the Electrodeposition of Nickel Nanostructures from Deep Eutectic Solvents: Self-Limiting Growth by Electrolysis of Residual Water Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 9337-9347  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride – urea (1:2 ChCl-U) deep eutectic solvent (DES). By combining electrochemical techniques with ex-situ FE-SEM, XPS, HAADF-STEM and EDX, the electrochemical processes occurring during nickel deposition were better understood. Special attention was given to the interaction between the solvent and the growing nickel nanoparticles. The application of a suffciently negative potential results into the electrocatlytic hydrolisis of residual water in the DES, which leads to the formation of a mixed layer of Ni/Ni(OH)2(ads). In addition, hydrogen bonds between hydroxide species and the DES components could be formed, quenching the growth of the nickel clusters favouring their aggregation. Due to these processes, a highly dense distribution of nickel nanostructures can be obtained within a wide potential range. Understanding the role of residual water and the interactions at the interface during metal electrodeposition from DESs is essential to produce supported nanostructures in a controllable way for a broad range of applications and technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400881100027 Publication Date 2017-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 66 Open Access OpenAccess  
  Notes E.A. Mernissi Cherigui acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S. Bals acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). H.V. gratefully acknowledges financial support by the Flemish Fund for Scientifi c Research (FWO Vlaanderen). Finally, J. Ustarroz acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @ c:irua:142208UA @ admin @ c:irua:142208 Serial 4551  
Permanent link to this record
 

 
Author Cherigui, E.A.M.; Şentosun, K.; Mamme, M.H.; Lukaczynska, M.; Terryn, H.; Bals, S.; Ustarroz, J. url  doi
openurl 
  Title On the control and effect of water content during the electrodeposition of Ni nanostructures from deep eutectic solvents Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 122 Pages 23129-23142  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride urea deep eutectic solvent (DES) containing different amounts of water. By combining electrochemical techniques, with ex situ field emission scanning electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, the effect of water content on the electrochemical processes occurring during nickel deposition was better understood. At highly negative potentials and depending on water content, Ni growth is halted due to water splitting and formation of a mixed layer of Ni/NiOx(OH)(2(1-x)(ads)). Moreover, under certain conditions, the DES components can also be (electro)chemically reduced at the electrode surface, blocking further three-dimensional growth of the Ni NPs. Hence, a two-dimensional crystalline Ni-containing network can be formed in the interparticle region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000447471700038 Publication Date 2018-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 27 Open Access OpenAccess  
  Notes ; E.A.M.C. and M.H.M. acknowledge funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S.B. acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). Finally, J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_sara Approved Most recent IF: 4.536  
  Call Number UA @ lucian @ c:irua:154731 Serial 5121  
Permanent link to this record
 

 
Author Bigiani, L.; Barreca, D.; Gasparotto, A.; Andreu, T.; Verbeeck, J.; Sada, C.; Modin, E.; Lebedev, O.I.; Morante, J.R.; Maccato, C. pdf  url
doi  openurl
  Title Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process Type A1 Journal article
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 284 Issue Pages 119684  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) The electrolysis of seawater, a significantly more abundant natural reservoir than freshwater, stands as a promising alternative for sustainable hydrogen production, provided that the competitive chloride electro-oxidation is minimized. Herein, we propose an original material combination to selectively trigger oxygen evolution from seawater at expenses of chlorine generation. The target systems, based on MnO2 or Mn2O3 decorated with Fe2O3 or Co3O4, are fabricated by plasma enhanced-chemical vapor deposition of manganese oxides, functionalization with Fe2O3 and Co3O4 by sputtering, and annealing in air/Ar to obtain Mn(IV)/Mn(III) oxides. Among the various options, MnO2 decorated with Co3O4 yields the best performances in alkaline seawater splitting, with an outstanding Tafel slope of approximate to 40 mV x dec(-1) and an overpotential of 450 mV, enabling to rule out chlorine evolution. These attractive performances, resulting from the synergistic contribution of catalytic and electronic effects, open the door to low-cost hydrogen generation from seawater under real-world conditions, paving the way to eventual large-scale applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623591500008 Publication Date 2020-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 67 Open Access OpenAccess  
  Notes The authors thank Padova University (DOR 2017–2020 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects), as well as the INSTM Consortium (INSTMPD004 – NETTUNO project) and AMGA Foundation (Mn4Energy project), for financial support. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from a GOA project 'Solarpaint' (University of Antwerp) and from the EU-H2020 programme (grant agreement No. 823717 – ESTEEM3). J.R.M. and T.A. acknowledge Generalitat de Catalunya for financial support through the CERCA Programme, 27 M2E (2017SGR1246) and by ERDEF-MINECO coordinated projects ENE2017-85087-C3 and ENE2016-80788-C5-5-R. Thanks are also due to Proff. Gloria Tabacchi and Ettore Fois (Department of Science and High Technology, Insubria University, Como, Italy) for valuable discussions and support. Dr. Daniele Valbusa, Dr. Gianluca Corrò, Dr. Andrea Gallo and Dr. Dileep Khrishnan are gratefully acknowledged for helpful technical assistance. Approved Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:176718 Serial 6733  
Permanent link to this record
 

 
Author Sandoval, S.; Kepic, D.; Perez del Pino, A.; Gyorgy, E.; Gomez, A.; Pfannmöller, M.; Van Tendeloo, G.; Ballesteros, B.; Tobias, G. url  doi
openurl 
  Title Selective laser-assisted synthesis of tubular van der Waals heterostructures of single-layered PbI2 within carbon nanotubes exhibiting carrier photogeneration Type A1 Journal article
  Year 2018 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 12 Issue 7 Pages 6648-6656  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) The electronic and optical properties of two-dimensional layered materials allow the miniaturization of nanoelectronic and optoelectronic devices in a competitive manner. Even larger opportunities arise when two or more layers of different materials are combined. Here, we report on an ultrafast energy efficient strategy, using laser irradiation, which allows bulk synthesis of crystalline single-layered lead iodide in the cavities of carbon nanotubes by forming cylindrical van der Waals heterostructures. In contrast to the filling of van der Waals solids into carbon nanotubes by conventional thermal annealing, which favors the formation of inorganic nanowires, the present strategy is highly selective toward the growth of monolayers forming lead iodide nanotubes. The irradiated bulk material bearing the nanotubes reveals a decrease of the resistivity as well as a significant increase in the current flow upon illumination. Both effects are attributed to the presence of single-walled lead iodide nanotubes in the cavities of carbon nanotubes, which dominate the properties of the whole matrix. The present study brings in a simple, ultrafast and energy efficient strategy for the tailored synthesis of rolled-up single-layers of lead iodide (i.e., single-walled PbI2 nanotubes), which we believe could be expanded to other two-dimensional (2D) van der Waals solids. In fact, initial tests with ZnI2 already reveal the formation of single-walled ZnI2 nanotubes, thus proving the versatility of the approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440505000029 Publication Date 2018-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 8 Open Access OpenAccess  
  Notes ; We acknowledge funding from MINECO (Spain), through MAT2017-86616-R, ENE2017-89210-C2-1-R, and “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496, SEV-2013-0295), CERCA programme for funding ICN2 and support from AGAUR of Generalitat de Catalunya through the projects 2017 SGR 1086, 2017 SGR 581 and 2017 SGR 327. We thank Thomas Swan Co., Ltd., for supplying MWCNT Elicarb samples. D.K. acknowledges financial support from the Ministry of Education, Science, and Technological Development of the Republic of Serbia for postdoctoral research. We are grateful to R Rurali (ICMAB-CSIC) for providing the structural model of the PbI<INF>2</INF> nanotube employed for the schematic representation of PbI<INF>2</INF>@MVWCNT. ; Approved Most recent IF: 13.942  
  Call Number UA @ lucian @ c:irua:153169 Serial 5127  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: