toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Anisimovas, E.; Peeters, F.M. pdf  doi
openurl 
  Title Negative trions in coupled quantum dots Type A1 Journal article
  Year 2004 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 15th International Conference on Electronic Properties of, Two-Dimensional Systems (EP2DS-15), JUL 14-18, 2003, Nara, JAPAN Abbreviated Journal Physica E  
  Volume 22 Issue 1-3 Pages 566-569  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) We present an exact diagonalization study of negatively charged excitonic trions in two vertically coupled parabolic quantum dots. The electrons and the hole are confined to different dots. We obtain the energy spectra as a function of inter-dot separation and external magnetic field strength and identify different ground-state angular momentum transitions which are accompanied by abrupt charge redistributions in the dots. (C) 2003 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000221140800137 Publication Date 2004-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2004 IF: 0.898  
  Call Number UA @ lucian @ c:irua:102771 Serial 2292  
Permanent link to this record
 

 
Author Schweigert, I.V.; Alexandrov, A.L.; Ariskin, D.A.; Peeters, F.M.; Stefanović, I.; Kovačević, E.; Berndt, J.; Winter, J. url  doi
openurl 
  Title Effect of transport of growing nanoparticles on capacitively coupled rf discharge dynamics Type A1 Journal article
  Year 2008 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 78 Issue 2 Pages 026410,1-026410,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We present experimental and numerical studies of the properties of a capacitively coupled 13.56 MHz discharge in a mixture of Ar and C2H2 with growing nanosize particles. It is found that at the initial stage of the growth, nanoparticles are accumulated near the sheath-plasma boundaries, where the ionization by electrons is maximal. The nanoparticles suppress the ionization due to the absorbing fast electrons and stimulate a quick change of the plasma parameters followed by a transition between different modes of discharge operation. At that moment the peaked distribution of the dust particles transforms into a flat one.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000259263700071 Publication Date 2008-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 36 Open Access  
  Notes Approved Most recent IF: 2.366; 2008 IF: 2.508  
  Call Number UA @ lucian @ c:irua:76552 Serial 851  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Phonon band structures of Si nanowires Type A1 Journal article
  Year 2009 Publication AIP conference proceedings Abbreviated Journal  
  Volume 1199 Issue Pages 323-324  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We present full ab initio calculations of the phonon band structure of thin Si nanowires oriented along the [110] direction. Using these phonon dispersion relations we investigate the structural stability of these wires. We found that all studied wires were stable also when doped with either B or P, if the unit cell was taken sufficiently large along the wire axis. The evolution of the phonon dispersion relations and of the sound velocities with respect to the wire diameters is discussed. Softening is observed for acoustic modes and hardening for optical phonon modes with increasing wire diameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000281590800153 Publication Date 2010-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:84891 Serial 2602  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Phonon band structure of Si nanowires: a stability analysis Type A1 Journal article
  Year 2009 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 9 Issue 1 Pages 107-111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We present full ab initio calculations of the phonon band structure of thin Si nanowires oriented along the [110] direction. Using these phonon dispersion relations, we investigate the structural stability of these wires. We found that all studied wires were stable also when doped with either B or P, if the unit cell was taken sufficiently large along the wire axis. The evolution of the phonon dispersion relations and of the sound velocities with respect to the wire diameters is discussed. Softening is observed for acoustic modes and hardening for optical phonon modes with increasing wire diameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000262519100020 Publication Date 2008-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 51 Open Access  
  Notes Approved Most recent IF: 12.712; 2009 IF: 9.991  
  Call Number UA @ lucian @ c:irua:76022 Serial 2601  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. pdf  doi
openurl 
  Title Tight-binding studio : a technical software package to find the parameters of tight-binding Hamiltonian Type A1 Journal article
  Year 2020 Publication Computer Physics Communications Abbreviated Journal Comput Phys Commun  
  Volume 254 Issue Pages 107379-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We present the Tight-Binding Studio (TB Studio) software package that calculates the different parameters of a tight-binding Hamiltonian from a set of Bloch energy bands obtained from first principle theories such as density functional theory, Hartree-Fock calculations or semi-empirical band-structure theory. This will be helpful for scientists who are interested in studying electronic and optical properties of structures using Green's function theory within the tight-binding approximation. TB Studio is a cross-platform application written in C++ with a graphical user interface design that is user-friendly and easy to work with. This software is powered by Linear Algebra Package C interface library for solving the eigenvalue problems and the standard high performance OpenGL graphic library for real time plotting. TB Studio and its examples together with the tutorials are available for download from tight-binding.com. Program summary Program Title: Tight-Binding Studio Program Files doi:http://dx.doi.org/10.17632/j6x5mwzm2d.1 Licensing provisions: LGPL Programming language: C++ External routines: BLAS, LAPACK, LAPACKE, wxWidgets, OpenGL, MathGL Nature of problem: Obtaining Tight-Binding Hamiltonian from a set of Bloch energy bands obtained from first-principles calculations. Solution method: Starting from the simplified LCAO method, a tight-binding model in the two-center approximation is constructed. The Slater and Koster (SK) approach is used to calculate the parameters of the TB Hamiltonian. By using non-linear fitting approaches the optimal values of the SK parameters are obtained such that the TB energy eigenvalues are as close as possible to those from first-principles calculations. We obtain the expression for the Hamiltonian and the overlap matrix elements between the different orbitals of the different atoms in an orthogonal or non-orthogonal basis set. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000541251200030 Publication Date 2020-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.3 Times cited 14 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government, Belgium and M. Nakhaee was supported by a BOF-fellowship (UAntwerpen), Belgium. ; Approved Most recent IF: 6.3; 2020 IF: 3.936  
  Call Number UA @ admin @ c:irua:170149 Serial 6630  
Permanent link to this record
 

 
Author Suslu, A.; Wu, K.; Sahin, H.; Chen, B.; Yang, S.; Cai, H.; Aoki, T.; Horzum, S.; Kang, J.; Peeters, F.M.; Tongay, S.; url  doi
openurl 
  Title Unusual dimensionality effects and surface charge density in 2D Mg(OH)2 Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 20525  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) We present two-dimensional Mg(OH)(2) sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)(2) sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)(2) have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)(2) is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)(2) sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)(2) sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)(2), naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)(2), but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000369510300001 Publication Date 2016-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 39 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus-short Marie Curie Fellowship. We acknowledge the use of John M. Cowley Center for High Resolution Electron Microscopy at Arizona State University. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:131615 Serial 4272  
Permanent link to this record
 

 
Author Covaci, L.; Peeters, F.M.; Berciu, M. url  doi
openurl 
  Title Efficient numerical approach to inhomogeneous superconductivity: the Chebyshev-Bogoliubov-de Gennes method Type A1 Journal article
  Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 105 Issue 16 Pages 167006,1-167006,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We propose a highly efficient numerical method to describe inhomogeneous superconductivity by using the kernel polynomial method in order to calculate the Greens functions of a superconductor. Broken translational invariance of any type (impurities, surfaces, or magnetic fields) can be easily incorporated. We show that limitations due to system size can be easily circumvented and therefore this method opens the way for the study of scenarios and/or geometries that were unaccessible before. The proposed method is highly efficient and amenable to large scale parallel computation. Although we only use it in the context of superconductivity, it is applicable to other inhomogeneous mean-field theories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000282816300018 Publication Date 2010-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 80 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), CIfAR, and NSERC. Discussions with Frank Marsiglio are gratefully acknowledged. ; Approved Most recent IF: 8.462; 2010 IF: 7.622  
  Call Number UA @ lucian @ c:irua:84899 Serial 875  
Permanent link to this record
 

 
Author Ivanov, V.A.; Krstajic, P.M.; Peeters, F.M.; Fleurov, V.; Kikoin, K. pdf  doi
openurl 
  Title On the ferromagnetic exchange in Mn-doped III-V semiconductors Type A1 Journal article
  Year 2003 Publication Physica: B : condensed matter T2 – 23rd International Conference on Low Temperature Physics (LT23), AUG 20-27, 2002, HIROSHIMA, JAPAN Abbreviated Journal Physica B  
  Volume 329 Issue Part 2 Pages 1282-1283  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We propose a microscopic model for double exchange in GaAs:Mn, GaP:Mn which is based on the interaction between the transition metal impurities and the heavy holes of host semiconductor. The kinematic exchange is derived and the Curie temperature is calculated which agrees with recent experiments. (C) 2003 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000183802700400 Publication Date 2003-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.386 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.386; 2003 IF: 0.908  
  Call Number UA @ lucian @ c:irua:103813 Serial 2435  
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M.; Peeters, F.M.; Farias, G.A. doi  openurl
  Title Electrostatically confined quantum rings in bilayer graphene Type A1 Journal article
  Year 2009 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 9 Issue 12 Pages 4088-4092  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B0) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B0 ¨ −B0 transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000272395400023 Publication Date 2009-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 42 Open Access  
  Notes Approved Most recent IF: 12.712; 2009 IF: 9.991  
  Call Number UA @ lucian @ c:irua:80318 Serial 1024  
Permanent link to this record
 

 
Author Villegas, C.E.P.; Tavares, M.R.S.; Hai, G.-Q.; Peeters, F.M. url  doi
openurl 
  Title Sorting the modes contributing to guidance in strain-induced graphene waveguides Type A1 Journal article
  Year 2013 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 15 Issue Pages 023015-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We propose a simple way of probing the number of modes contributing to the channeling in graphene waveguides which are formed by a gauge potential produced by mechanical strain. The energy mode structure for both homogeneous and non-homogeneous strain regimes is carefully studied using the continuum description of the Dirac equation. We found that high strain values privilege negative (instead of positive) group velocities throughout the guidance, sorting the types of modes flowing through it. We also show how the effect of a substrate-induced gap competes against the strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000314868000002 Publication Date 2013-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 7 Open Access  
  Notes ; This work was supported by FAPESP, CNPq and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.786; 2013 IF: 3.671  
  Call Number UA @ lucian @ c:irua:107667 Serial 3056  
Permanent link to this record
 

 
Author Rezaei, M.; Sisakht, E.T.; Fazileh, F.; Aslani, Z.; Peeters, F.M. url  doi
openurl 
  Title Tight-binding model investigation of the biaxial strain induced topological phase transition in GeCH3 Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 8 Pages 085441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We propose a tight-binding (TB) model, that includes spin-orbit coupling (SOC), to describe the electronic properties of methyl-substituted germanane (GeCH3). This model gives an electronic spectrum in agreement with first principle results close to the Fermi level. Using the Z(2) formalism, we show that a topological phase transition from a normal insulator (NI) to a quantum spin Hall (QSH) phase occurs at 11.6% biaxial tensile strain. The sensitivity of the electronic properties of this system on strain, in particular its transition to the topological insulating phase, makes it very attractive for applications in strain sensors and other microelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000408570800004 Publication Date 2017-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:145697 Serial 4755  
Permanent link to this record
 

 
Author Grujić, M.M.; Ezawa, M.; Tadic, M.Z.; Peeters, F.M. url  doi
openurl 
  Title Tunable skewed edges in puckered structures Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 245413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field E-z. A topological argument is presented, revealing the condition for the emergence of such edge states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377802700010 Publication Date 2016-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). M.E. is thankful for the support by the Grants-in-Aid for Scientific Research from MEXT KAKENHI (Grants No. 25400317 and No. 15H05854). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134599 Serial 4268  
Permanent link to this record
 

 
Author Degani, M.H.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Bound states and lifetime of an electron on a bulk helium surface Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 72 Issue 12 Pages 125408-125408,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We propose an effective potential for an excess electron near the helium liquid-vapor interface that takes into account the diffuseness of the liquid-vapor interface and the classical image potential. The splitting of the first two excited states of the excess electron bound to the helium liquid-vapor interface as a function of an external constant electric field applied perpendicular to the interface is in excellent agreement with recent experiments. The effect of a parallel magnetic field on the energy levels are calculated. Single-electron tunneling of the electron out of its surface state is studied as a function of the electric field applied to the system. We found that the tunneling time has a linear dependence on the electric field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000232229400125 Publication Date 2005-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:94719 Serial 251  
Permanent link to this record
 

 
Author Scuracchio, P.; Dobry, A.; Costamagna, S.; Peeters, F.M. pdf  doi
openurl 
  Title Tuning the polarized quantum phonon transmission in graphene nanoribbons Type A1 Journal article
  Year 2015 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 26 Issue 26 Pages 305401  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) We propose systems that allow a tuning of the phonon transmission function T(omega) in graphene nanoribbons by using C-13 isotope barriers, antidot structures, and distinct boundary conditions. Phonon modes are obtained by an interatomic fifth-nearest neighbor force-constant model (5NNFCM) and T(omega) is calculated using the non-equilibrium Green's function formalism. We show that by imposing partial fixed boundary conditions it is possible to restrict contributions of the in-plane phonon modes to T(omega) at low energy. On the contrary, the transmission functions of out-of-plane phonon modes can be diminished by proper antidot or isotope arrangements. In particular, we show that a periodic array of them leads to sharp dips in the transmission function at certain frequencies omega(nu) which can be pre-defined as desired by controlling their relative distance and size. With this, we demonstrated that by adequate engineering it is possible to govern the magnitude of the ballistic transmission functions T(omega) in graphene nanoribbons. We discuss the implications of these results in the design of controlled thermal transport at the nanoscale as well as in the enhancement of thermo-electric features of graphene-based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000358675900010 Publication Date 2015-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 5 Open Access  
  Notes ; Discussions with C E Repetto, C R Stia and K H Michel are gratefully acknowledged. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and PIP 11220090100392 of CONICET (Argentina). We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. ; Approved Most recent IF: 3.44; 2015 IF: 3.821  
  Call Number c:irua:127186 Serial 3759  
Permanent link to this record
 

 
Author Zarenia, M.; Perali, A.; Neilson, D.; Peeters, F.M. url  doi
openurl 
  Title Enhancement of electron-hole superfluidity in double few-layer graphene Type A1 Journal article
  Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 4 Issue 4 Pages 7319  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) We propose two coupled electron-hole sheets of few-layer graphene as a new nanostructure to observe superfluidity at enhanced densities and enhanced transition temperatures. For ABC stacked few-layer graphene we show that the strongly correlated electron-hole pairing regime is readily accessible experimentally using current technologies. We find for double trilayer and quadlayer graphene sheets spatially separated by a nano-thick hexagonal boron-nitride insulating barrier, that the transition temperature for electron-hole superfluidity can approach temperatures of 40 K.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000346272900001 Publication Date 2014-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 38 Open Access  
  Notes ; We thank L. Benfatto, S. De Palo, and G. Senatore for helpful comments. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (POLATOM). ; Approved Most recent IF: 4.259; 2014 IF: 5.578  
  Call Number UA @ lucian @ c:irua:122743 Serial 1062  
Permanent link to this record
 

 
Author Ghosh, S.; Tongay, S.; Hebard, A.F.; Sahin, H.; Peeters, F.M. doi  openurl
  Title Ferromagnetism in stacked bilayers of Pd/C60 Type A1 Journal article
  Year 2014 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 349 Issue Pages 128-134  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We provide experimental evidence for the existence of ferromagnetism in bilayers of Pd/C-60 which is supported by theoretical calculations based on density functional theory (DFT). The observed ferromagnetism is surprising as C-60 and Pd films are both non-ferromagnetic in the non-interacting limit. Magnetization (M) versus applied field (H) data acquired at different temperatures (T) show magnetic hysteresis with typical coercive fields (H-c) on the order of 50 Oe. From the temperature-dependent magnetization M(T) we extract a Curie temperature (T-c >= 550 K) using Bloch-like power law extrapolations to high temperatures. Using DFT calculations we investigated all plausible scenarios for the interaction between the C-60 molecules and the Pd slabs, Pd single atoms and Pd clusters. DFT shows that while the C-60 molecules are nonmagnetic, Pd films have a degenerate ground state that subject to a weak perturbation, can become ferromagnetic. Calculations also show that the interaction of C-60 molecules with excess Pd atoms and with sharp edges of a Pd slab is the most likely configuration that render the system ferromagnetic Interestingly, the calculated charge transfer (0.016 e per surface Pd atom, 0.064 e per Pd for intimate contact region) between C-60 and Pd does not appear to play an important role. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000326037600022 Publication Date 2013-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 8 Open Access  
  Notes ; We thank Prof. Amlan Biswas and Daniel Grant for Atomic Force Microscopy measurements. This work is supported by the National Science Foundation (NSF) under Contract Number 1005301 (AFH). The authors also thank S. Ciraci for fruitful discussions. All the computational resources have been provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. Sahin is also supported by a FWO Pegasus Marie Curie Long Fellowship during the study. ; Approved Most recent IF: 2.63; 2014 IF: 1.970  
  Call Number UA @ lucian @ c:irua:112214 Serial 1184  
Permanent link to this record
 

 
Author Latimer, M.L.; Berdiyorov, G.R.; Xiao, Z.L.; Peeters, F.M.; Kwok, W.K. url  doi
openurl 
  Title Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 6 Pages 067001-67005  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000322799200013 Publication Date 2013-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 63 Open Access  
  Notes ; This work was supported by the US Department of Energy DOE BES under Contract No. DE-AC02-06CH11357 (transport measurements), the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government (numerical simulations). G. R. B. acknowledges an individual grant from FWO-Vl. The nanopatterning and morphological analysis were performed at Argonne's Center for Nanoscale Materials (CNM) which is funded by DOE BES under Contract No. DE-AC02-06CH11357. We are grateful to Dr. Charles Reichhardt in Los Alamos National Laboratory for stimulating discussions and critical comments. Z. L. X. acknowledges DOE BES Grant No. DE-FG02-06ER46334 (sample fabrication and imaging). M. L. L. was a recipient of the NIU/ANL Distinguished Graduate Fellowship grant. ; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:110750 Serial 2836  
Permanent link to this record
 

 
Author Akbali, B.; Yagmurcukardes, M.; Peeters, F.M.; Lin, H.-Y.; Lin, T.-Y.; Chen, W.-H.; Maher, S.; Chen, T.-Y.; Huang, C.-H. pdf  doi
openurl 
  Title Determining the molecular orientation on the metal nanoparticle surface through surface-enhanced Raman spectroscopy and density functional theory simulations Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 29 Pages 16289-16295  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) We report here the efficacy of surface-enhanced Raman spectroscopy (SERS) measurements as a probe for molecular orientation. 4-Aminobenzoic acid (PABA) on a surface consisting of silver (Ag) nanoparticles (NPs) is investigated. We find that the orientation of the PABA molecule on the SERS substrate is estimated based on the relative change in the magnitude of the C-H stretching bands on the SERS substrate, and it is found that the molecule assumes a horizontal orientation on the Ag-NP surface. The strong molecule-metal interaction is determined by an abnormal enhanced SERS band appearing at 980 cm(-1), and the peak is assigned to an out-of-plane amine vibrational mode, which is supported by our ab initio calculations. DFT-based Raman activity calculations corroborate the SERS results, revealing that (i) the PABA molecule attaches to the surface of Ag-NPs with its alpha dimers rather than single-molecule binding and (ii) the molecule preserves its alpha dimers in an aqueous environment. Our results demonstrate that SERS can be used to gain deeper insights into the molecular orientation on metal nanoparticle surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000680445800055 Publication Date 2021-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 2 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:180455 Serial 6978  
Permanent link to this record
 

 
Author Tomecka, D.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Multistep radial melting in small two-dimensional classical clusters Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 71 Issue Pages 062401,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We report on a molecular dynamics study of small classical two-dimensional clusters with ringlike configurations. We focus on the particles motion at low temperatures before the radial and angular melting sets in. It is shown that in magic number configurations a local radial melting of subshells occur, which is related to the intershell rotation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000230274500084 Publication Date 2005-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:62447 Serial 2241  
Permanent link to this record
 

 
Author Geim, A.K.; Grigorieva, I.V.; Lok, J.G.S.; Maan, J.C.; Dubonos, S.V.; Li, X.Q.; Peeters, F.M.; Nazarov, Y.V. doi  openurl
  Title Precision magnetometry on a submicron scale: magnetisation of superconducting quantum dots Type A1 Journal article
  Year 1998 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst  
  Volume 23 Issue 1 Pages 151-160  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We report on magnetisation of individual superconducting particles with size down to 0.1 micron. The non-invasive access to properties of such small objects has become possible using submicron Hall probes which detect a local magnetic field and work effectively as micro-fluxmeters similar to, e.g., SQUIDs but with an effective detection loop of only about a square micron. We have found that the spatial confinement of superconductivity in a small volume gives rise to dramatic changes in thermodynamic properties of mesoscopic superconductors. (C) 1998 Academic Press Limited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000072338200025 Publication Date 2002-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.123 Times cited 12 Open Access  
  Notes Approved Most recent IF: 2.123; 1998 IF: 0.831  
  Call Number UA @ lucian @ c:irua:95842 Serial 2691  
Permanent link to this record
 

 
Author Euán-Díaz, E.C.; Misko, V.R.; Peeters, F.M.; Herrera-Velarde, S.; Castaneda-Priego, R. url  doi
openurl 
  Title Single-file diffusion in periodic energy landscapes : the role of hydrodynamic interactions Type A1 Journal article
  Year 2012 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 86 Issue 3Part 1 Pages 031123  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We report on the dynamical properties of interacting colloids confined to one dimension and subjected to external periodic energy landscapes. We particularly focus on the influence of hydrodynamic interactions on the mean-square displacement. Using Brownian dynamics simulations, we study colloidal systems with two types of repulsive interparticle interactions, namely, Yukawa and superparamagnetic potentials. We find that in the homogeneous case, hydrodynamic interactions lead to an enhancement of the particle mobility and the mean-square displacement at long times scales as t(alpha), with alpha = 1/2 + epsilon and epsilon being a small correction. This correction, however, becomes much more important in the presence of an external field, which breaks the homogeneity of the particle distribution along the line and, therefore, promotes a richer dynamical scenario due to the hydrodynamical coupling among particles. We provide here the complete dynamical scenario in terms of the external potential parameters: amplitude and commensurability.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000308873500002 Publication Date 2012-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 14 Open Access  
  Notes ; This work was partially supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-Vl), and PIFI 3.4-PROMEP and CONACyT (Grant Nos. 61418/2007 and 102339/2008, Ph.D. Scholarship No. 230171/ 2010). ; Approved Most recent IF: 2.366; 2012 IF: 2.313  
  Call Number UA @ lucian @ c:irua:101840 Serial 3021  
Permanent link to this record
 

 
Author Euan-Diaz, E.; Herrera-Velarde, S.; Misko, V.R.; Peeters, F.M.; Castaneda-Priego, R. doi  openurl
  Title Structural transitions and long-time self-diffusion of interacting colloids confined by a parabolic potential Type A1 Journal article
  Year 2015 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 142 Issue 142 Pages 024902  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We report on the ordering and dynamics of interacting colloidal particles confined by a parabolic potential. By means of Brownian dynamics simulations, we find that by varying the magnitude of the trap stiffness, it is possible to control the dimension of the system and, thus, explore both the structural transitions and the long-time self-diffusion coefficient as a function of the degree of confinement. We particularly study the structural ordering in the directions perpendicular and parallel to the confinement. Further analysis of the local distribution of the first-neighbors layer allows us to identify the different structural phases induced by the parabolic potential. These results are summarized in a structural state diagram that describes the way in which the colloidal suspension undergoes a structural re-ordering while increasing the confinement. To fully understand the particle dynamics, we take into account hydrodynamic interactions between colloids; the parabolic potential constricts the available space for the colloids, but it does not act on the solvent. Our findings show a non-linear behavior of the long-time self-diffusion coefficient that is associated to the structural transitions induced by the external field. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000348129700053 Publication Date 2015-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited 7 Open Access  
  Notes ; This work was partially supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-Vl), PIFI 3.4 – PROMEP, and CONACyT (Grant Nos. 61418/2007, 102339/2008, Ph.D. scholarship 230171/2010). R.C.-P. also acknowledges financial support provided by the Marcos Moshinsky fellowship 2013-2014. The authors also thank to the General Coordination of Information and Communications Technologies (CGSTIC) at Cinvestav for providing HPC resources on the Hybrid Cluster Super-computer Xiuhcoatl, which have contributed partially to the research results reported in this paper. ; Approved Most recent IF: 2.965; 2015 IF: 2.952  
  Call Number c:irua:123832 Serial 3267  
Permanent link to this record
 

 
Author Volodin, A.; Van Haesendonck, C.; Leenaerts, O.; Partoens, B.; Peeters, F.M. pdf  doi
openurl 
  Title Stress dependence of the suspended graphene work function : vacuum Kelvin probe force microscopy and density functional theory Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 110 Issue 19 Pages 193101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We report on work function measurements on graphene, which is exfoliated over a predefined array of wells in silicon oxide, by Kelvin probe force microscopy operating in a vacuum. The obtained graphene sealed microchambers can support large pressure differences, providing controllable stretching of the nearly impermeable graphene membranes. These measurements allow detecting variations of the work function induced by the mechanical stresses in the suspended graphene where the work function varies linearly with the strain and changes by 62 +/- 2 meV for 1 percent of strain. Our related ab initio calculations result in a work function variation that is a factor of 1.4 larger than the experimental value. The limited discrepancy between the theory and the experiment can be accounted for by a charge transfer from the unstrained to the strained graphene regions. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000402319200036 Publication Date 2017-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 8 Open Access  
  Notes ; The authors wish to thank A. Klekachev (IMEC Leuven, Belgium) for the fabrication of the samples. This work was supported by the Science Foundation-Flanders (FWO, Belgium). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-Department EWI. The Hercules Foundation also funded the scanning probe microscopy equipment. ; Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:144279 Serial 4690  
Permanent link to this record
 

 
Author Novoselov, K.S.; Geim, A.K.; Dubonos, S.V.; Cornelissens, Y.G.; Peeters, F.M.; Maan, J.C. url  doi
openurl 
  Title Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 65 Issue 23 Pages 233312-233314  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We report quenching of the Hall effect with increasing magnetic field confined in a micron-sized spot. Such fields were created by placing tall ferromagnetic pillars on top of a two-dimensional electron gas, which allowed us to achieve the field strength up to 0.4 T under the pillars in the absence of external field. The quenching is accompanied by an anomalous increase in resistance and occurs when the cyclotron diameter matches the size of the magnetic spot. The results are explained by a rapid increase in the number of electrons that are scattered or quasilocalized by the magnetic region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000176767900029 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:103349 Serial 2949  
Permanent link to this record
 

 
Author Ackerman, M.L.; Kumar, P.; Neek-Amal, M.; Thibado, P.M.; Peeters, F.M.; Singh, S. url  doi
openurl 
  Title Anomalous dynamical behavior of freestanding graphene membranes Type A1 Journal article
  Year 2016 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 117 Issue 117 Pages 126801  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We report subnanometer, high-bandwidth measurements of the out-of-plane (vertical) motion of atoms in freestanding graphene using scanning tunneling microscopy. By tracking the vertical position over a long time period, a 1000-fold increase in the ability to measure space-time dynamics of atomically thin membranes is achieved over the current state-of-the-art imaging technologies. We observe that the vertical motion of a graphene membrane exhibits rare long-scale excursions characterized by both anomalous mean-squared displacements and Cauchy-Lorentz power law jump distributions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000383171800010 Publication Date 2016-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 46 Open Access  
  Notes ; The authors thank Theodore L. Einstein, Michael F. Shlesinger, and Woodrow L. Shew for their careful reading of the manuscript and insightful comments. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. P. M. T. was supported by the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. M.N.-A. was supported by Iran Science Elites Federation (ISEF) under Grant No. 11/66332. ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @ c:irua:137125 Serial 4347  
Permanent link to this record
 

 
Author Tomak, A.; Bacaksiz, C.; Mendirek, G.; Sahin, H.; Hur, D.; Gorgun, K.; Senger, R.T.; Birer, O.; Peeters, F.M.; Zareie, H.M. pdf  doi
openurl 
  Title Structural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 335601  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) We report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000383780500012 Publication Date 2016-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 2 Open Access  
  Notes ; The authors acknowledge financial support from TUBITAK (PROJECT NO: 112T507). This work was also supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid-Infrastructure). HS is supported by an FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:137155 Serial 4363  
Permanent link to this record
 

 
Author Villarreal, R.; Lin, P.-C.; Faraji, F.; Hassani, N.; Bana, H.; Zarkua, Z.; Nair, M.N.; Tsai, H.-C.; Auge, M.; Junge, F.; Hofsaess, H.C.; De Gendt, S.; De Feyter, S.; Brems, S.; Ahlgren, E.H.; Neyts, E.C.; Covaci, L.; Peeters, F.M.; Neek-Amal, M.; Pereira, L.M.C. url  doi
openurl 
  Title Breakdown of universal scaling for nanometer-sized bubbles in graphene Type A1 Journal article
  Year 2021 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 21 Issue 19 Pages 8103-8110  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) We report the formation of nanobubbles on graphene with a radius of the order of 1 nm, using ultralow energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in much larger aspect ratios. Moreover, we observe that the bubble stability and aspect ratio depend on the substrate onto which the graphene is grown (bubbles are stable for Pt but not for Cu) and trapped element. We interpret these dependencies in terms of the atomic compressibility of the noble gas as well as of the adhesion energies between graphene, the substrate, and trapped atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000709549100026 Publication Date 2021-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access OpenAccess  
  Notes Approved Most recent IF: 12.712  
  Call Number UA @ admin @ c:irua:184137 Serial 6857  
Permanent link to this record
 

 
Author Novoselov, K.S.; Geim, A.K.; Dubonos, S.V.; Cornelissens, Y.G.; Peeters, F.M.; Maan, J.C. pdf  doi
openurl 
  Title Quenching of the Hall effect in localised high magnetic field regions Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 12 Issue 1/4 Pages 244-247  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We report the suppression of the Hall effect in a mesoscopic Hall cross with a strong magnetic field only in the centre and vanishingly small outside, The local magnetic field is produced by placing Dy pillar on top of a structure with a high-mobility two-dimensional electron gas. The effect is found to be due to a sharp increase of the number of back-scattered and quasi-localised electron orbits. The possibility of localising electrons inside the magnetic inhomogeneity region is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000175206300061 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107  
  Call Number UA @ lucian @ c:irua:94939 Serial 2804  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M. pdf  doi
openurl 
  Title Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines Type A1 Journal article
  Year 2010 Publication Philosophical transactions of the Royal Society : mathematical, physical and engineering sciences Abbreviated Journal Philos T R Soc A  
  Volume 368 Issue 1932 Pages 5499-5524  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We review the energy spectrum and transport properties of several types of one-dimensional superlattices (SLs) on single-layer and bilayer graphene. In single-layer graphene, for certain SL parameters an electron beam incident on an SL is highly collimated. On the other hand, there are extra Dirac points generated for other SL parameters. Using rectangular barriers allows us to find analytical expressions for the location of new Dirac points in the spectrum and for the renormalization of the electron velocities. The influence of these extra Dirac points on the conductivity is investigated. In the limit of δ-function barriers, the transmission T through and conductance G of a finite number of barriers as well as the energy spectra of SLs are periodic functions of the dimensionless strength P of the barriers, Graphic, with vF the Fermi velocity. For a KronigPenney SL with alternating sign of the height of the barriers, the Dirac point becomes a Dirac line for P = π/2+nπ with n an integer. In bilayer graphene, with an appropriate bias applied to the barriers and wells, we show that several new types of SLs are produced and two of them are similar to type I and type II semiconductor SLs. Similar to single-layer graphene SLs, extra Dirac points are found in bilayer graphene SLs. Non-ballistic transport is also considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000283660000011 Publication Date 2010-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-503X;1471-2962; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.97 Times cited 64 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the Canadian NSERC through grant no. OGP0121756. ; Approved Most recent IF: 2.97; 2010 IF: 2.459  
  Call Number UA @ lucian @ c:irua:85597 Serial 3023  
Permanent link to this record
 

 
Author Pereira, J.M.; Peeters, F.M.; Chaves, A.; Farias, G.A. pdf  doi
openurl 
  Title Klein tunneling in single and multiple barriers in graphene Type A1 Journal article
  Year 2010 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume 25 Issue 3 Pages 033002,1-033002,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We review the transmission properties of carriers interacting with potential barriers in graphene. The tunneling of electrons and holes in quantum structures in graphene is found to display features that are in marked contrast with those of other systems. In particular, the interaction between the carriers with electrostatic potential barriers can be related to the propagation of electromagnetic waves in media with negative refraction indices, also known as metamaterials. This behavior becomes evident as one calculates the time evolution of wavepackets propagating across the barrier interface. In addition, we discuss the effect of trigonal warping on the tunneling through potential barriers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000274318300004 Publication Date 2010-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242;1361-6641; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.305 Times cited 83 Open Access  
  Notes ; We want to acknowledge our collaborators in this work: P Vasilopoulos and M Barbier. This work was supported by the Brazilian Council for Research (CNPq), the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 2.305; 2010 IF: 1.333  
  Call Number UA @ lucian @ c:irua:80961 Serial 1764  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: