toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Quan, L.N.; Ma, D.; Zhao, Y.; Voznyy, O.; Yuan, H.; Bladt, E.; Pan, J.; de Arquer, F.P.G.; Sabatini, R.; Piontkowski, Z.; Emwas, A.-H.; Todorovic, P.; Quintero-Bermudez, R.; Walters, G.; Fan, J.Z.; Liu, M.; Tan, H.; Saidaminov, M., I; Gao, L.; Li, Y.; Anjum, D.H.; Wei, N.; Tang, J.; McCamant, D.W.; Roeffaers, M.B.J.; Bals, S.; Hofkens, J.; Bakr, O.M.; Lu, Z.-H.; Sargent, E.H. url  doi
openurl 
  Title Edge stabilization in reduced-dimensional perovskites Type A1 Journal article
  Year 2020 Publication Nature Communications Abbreviated Journal (up) Nat Commun  
  Volume 11 Issue 1 Pages 170  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Reduced-dimensional perovskites are attractive light-emitting materials due to their efficient luminescence, color purity, tunable bandgap, and structural diversity. A major limitation in perovskite light-emitting diodes is their limited operational stability. Here we demonstrate that rapid photodegradation arises from edge-initiated photooxidation, wherein oxidative attack is powered by photogenerated and electrically-injected carriers that diffuse to the nanoplatelet edges and produce superoxide. We report an edge-stabilization strategy wherein phosphine oxides passivate unsaturated lead sites during perovskite crystallization. With this approach, we synthesize reduced-dimensional perovskites that exhibit 97 +/- 3% photoluminescence quantum yields and stabilities that exceed 300 h upon continuous illumination in an air ambient. We achieve green-emitting devices with a peak external quantum efficiency (EQE) of 14% at 1000 cd m(-2); their maximum luminance is 4.5 x 10(4) cd m(-2) (corresponding to an EQE of 5%); and, at 4000 cd m(-2), they achieve an operational half-lifetime of 3.5 h.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000551458200001 Publication Date 2020-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 147 Open Access OpenAccess  
  Notes ; This publication is based in part on work supported by an award (KUS-11-009-21) from the King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, by the Ontario Research Fund (ORF), by the Natural Sciences and Engineering Research Council (NSERC) of Canada, and by the US Department of Navy, Office of Naval Research (Grant Award No. N00014-17-12524). H.Y. acknowledges the Research Foundation-Flanders (FWO Vlaanderen) for a postdoctoral fellowship. E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #815128-REALNANO). M.B.J.R. and J.H. acknowledge the Research Foundation-Flanders (FWO, Grants G.0962.13, G.0B39.15, AKUL/11/14 and G0H6316N), KU Leuven Research Fund (C14/15/053) and the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ ERC Grant Agreement No. [307523], ERC-Stg LIGHT to M.B.J.R. DFT calculations were performed on the IBM BlueGene Q supercomputer with support from the Southern Ontario Smart Computing Innovation Platform (SOSCIP). M.I.S. acknowledges the Banting Postdoctoral Fellowship program from the Natural Sciences and Engineering Research Council of Canada (NSERC). H.T. acknowledges the Netherlands Organisation for Scientific Research (NWO) for a Rubicon grant (680-50-1511). ; sygma Approved Most recent IF: 16.6; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:171327 Serial 6496  
Permanent link to this record
 

 
Author Sentosun, K.; Lobato, I.; Bladt, E.; Zhang, Y.; Palenstijn, W.J.; Batenburg, K.J.; Van Dyck, D.; Bals, S. pdf  url
doi  openurl
  Title Artifact Reduction Based on Sinogram Interpolation for the 3D Reconstruction of Nanoparticles Using Electron Tomography Type A1 Journal article
  Year 2017 Publication Particle and particle systems characterization Abbreviated Journal (up) Part. Part. Syst. Charact.  
  Volume 34 Issue 34 Pages 1700287  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Electron tomography is a well-known technique providing a 3D characterization of the morphology and chemical composition of nanoparticles. However, several reasons hamper the acquisition of tilt series with a large number of projection images, which deteriorate the quality of the 3D reconstruction. Here, an inpainting method that is based on sinogram interpolation is proposed, which enables one to reduce artifacts in the reconstruction related to a limited tilt series of projection images. The advantages of the approach will be demonstrated for the 3D characterization of nanoparticles using phantoms and several case studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418416100005 Publication Date 2017-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1521-4117 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes K.S. and S.B. acknowledge support from the Fund for Scientific ResearchFlanders (FWO) (G019014N and G021814N). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). Y.Z. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]2 Marie Skłodowska-Curie fellowship (12U4917N). The authors would like to thank Prof. Luis Liz-Marzán for provision of the samples. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:147857UA @ admin @ c:irua:147857 Serial 4798  
Permanent link to this record
 

 
Author De Backer, A.; Zhang, Z.; van den Bos, K.H.W.; Bladt, E.; Sánchez‐Iglesias, A.; Liz‐Marzán, L.M.; Nellist, P.D.; Bals, S.; Van Aert, S. url  doi
openurl 
  Title Element Specific Atom Counting at the Atomic Scale by Combining High Angle Annular Dark Field Scanning Transmission Electron Microscopy and Energy Dispersive X‐ray Spectroscopy Type A1 Journal article
  Year 2022 Publication Small methods Abbreviated Journal (up) Small Methods  
  Volume Issue Pages 2200875  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A new methodology is presented to count the number of atoms in multimetallic nanocrystals by combining energy dispersive X-ray spectroscopy (EDX) and high angle annular dark field scanning transmission electron microscopy (HAADF STEM). For this purpose, the existence of a linear relationship between the incoherent HAADF STEM and EDX images is exploited. Next to the number of atoms for each element in the atomic columns, the method also allows quantification of the error in the obtained number of atoms, which is of importance given the noisy nature of the acquired EDX signals. Using experimental images of an Au@Ag core–shell nanorod, it is demonstrated that 3D structural information can be extracted at the atomic scale. Furthermore, simulated data of an Au@Pt core–shell nanorod show the prospect to characterize heterogeneous nanostructures with adjacent atomic numbers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000862072700001 Publication Date 2022-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.4 Times cited 5 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A., Grant 815128 REALNANO to S.B., and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0267.18N, G.0502.18N, G.0346.21N) and a postdoctoral grant to A.D.B.; esteem3reported; esteem3JRA Approved Most recent IF: 12.4  
  Call Number EMAT @ emat @c:irua:191570 Serial 7109  
Permanent link to this record
 

 
Author Bladt, E.; Pelt, D.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Electron tomography based on highly limited data using a neural network reconstruction technique Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 158 Issue 158 Pages 81-88  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000361574800011 Publication Date 2015-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 25 Open Access OpenAccess  
  Notes 335078 COLOURATOM; FWO; COST Action MP1207; 312483 ESTEEM2; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:126675 c:irua:126675 Serial 988  
Permanent link to this record
 

 
Author Vanrompay, H.; Skorikov, A.; Bladt, E.; Béché, A.; Freitag, B.; Verbeeck, J.; Bals, S. url  doi
openurl 
  Title Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 221 Issue Pages 113191  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract HAADF-STEM tomography is a widely used experimental technique for analyzing nanometer-scale crystalline structures of a large variety of materials in three dimensions. Unfortunately, the acquisition of conventional HAADF-STEM tilt series can easily take up one hour or more, depending on the complexity of the experiment. It is therefore far from straightforward to investigate samples that do not withstand long acquisition or to acquire large amounts of tilt series during a single TEM experiment. The latter would lead to the ability to obtain statistically meaningful 3D data, or to perform in situ 3D characterizations with a much shorter time resolution. Various HAADF-STEM acquisition strategies have been proposed to accelerate the tomographic acquisition and reduce the required electron dose. These methods include tilting the holder continuously while acquiring a projection “movie” and a hybrid, incremental, methodology which combines the benefits of the conventional and continuous technique. However, until now an experimental evaluation has been lacking. In this paper, the different acquisition strategies will be experimentally compared in terms of speed, resolution and electron dose. This evaluation will be performed based on experimental tilt series acquired for various metallic nanoparticles with different shapes and sizes. We discuss the data processing involved with the fast HAADF-STEM tilt series and provide a general guideline when which acquisition strategy should be preferentially used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612539600003 Publication Date 2020-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 15 Open Access OpenAccess  
  Notes We acknowledge Prof. Luis M. Liz-Marzán and co-workers of the Bionanoplasmonics Laboratory, CIC biomaGUNE, Spain for providing the Au@Ag nanoparticles, Prof. Sara. E. Skrabalak and co-workers of Indiana University, United States for the provision of the Au octopods and Prof. Teri W. Odom of Northwestern University, United States for the provision of the Au nanostars. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). The authors acknowledge the entire EMAT technical staff for their support.; sygma Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:174551 Serial 6660  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: