toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De Jong, M.; Sleegers, N.; Florea, A.; Van Loon, J.; van Nuijs, A.L.N.; Samyn, N.; De Wael, K. url  doi
openurl 
  Title Unraveling the mechanisms behind the complete suppression of cocaine electrochemical signals by chlorpromazine, promethazine, procaine, and dextromethorphan Type A1 Journal article
  Year 2019 Publication Analytical chemistry Abbreviated Journal (up) Anal Chem  
  Volume 91 Issue 24 Pages 15453-15460  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre; Product development  
  Abstract The present work investigates the challenges accompanied by the electrochemical cocaine detection in physiological conditions (pH 7) in the presence of chlorpromazine, promethazine, procaine, and dextromethorphan, frequently used cutting agents in cocaine street samples. The problem translates into the absence of the cocaine oxidation signal (signal suppression) when in a mixture with one of these compounds, leading to false negative results. Although a solution to this problem was provided through earlier experiments of our group, the mechanisms behind the suppression are now fundamentally investigated via electrochemical and liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS) strategies. The latter was used to confirm the passivation of the electrodes due to their interaction with promethazine and chlorpromazine. Electron transfer mechanisms were further identified via linear sweep voltammetry. Next, adsorption experiments were performed on the graphite screen printed electrodes both with and without potential assistance in order to confirm if the suppression of the cocaine signals is due to passivation induced by the cutting agents or their oxidized products. The proposed strategies allowed us to identify the mechanisms of cocaine suppression for each cutting agent mentioned. Suppression due to procaine and dextromethorphan is caused by fouling of the electrode surface by their oxidized forms, while for chlorpromazine and promethazine the suppression of the cocaine signal is related to the strong adsorption of these (nonoxidized) cutting agents onto the graphite electrode surface. These findings provide fundamental insights in possible suppression and other interfering mechanisms using electrochemistry in general not only in the drug detection sector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503910600018 Publication Date 2019-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access  
  Notes ; The authors acknowledge financial support from IOF-SBO/POC (UAntwerp) and the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:165727 Serial 5887  
Permanent link to this record
 

 
Author Ayalew, E.; Janssens, K.; De Wael, K. url  doi
openurl 
  Title Unraveling the reactivity of minium towards bicarbonate and the role of lead oxides therein Type A1 Journal article
  Year 2016 Publication Analytical chemistry Abbreviated Journal (up) Anal Chem  
  Volume 88 Issue 3 Pages 1564-1569  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Understanding the reactivity of (semiconductor) pigments provides vital information on how to improve conservation strategies for works of art in order to avoid rapid degradation of the pigments. This study focuses on the photoactivity of minium (Pb3O4), a semiconductor pigment, that gives rise to strong discoloration phenomena upon exposure to various environmental conditions. To demonstrate its photoactivity, an electrochemical setup with minium-modified graphite electrode (C|Pb3O4) was used. It is confirmed that minium is a p-type semiconductor which is photoactive during illumination and becomes inactive in the dark. Raman measurements confirm the formation of the degradation products. The photoactivity of a semiconductor pigment is partly defined by the presence of lead oxide (PbO) impurities; these introduce new states in the original band gap. It will be experi-mentally evidenced that the presence of PbO particles in minium leads to an upward shift of the valence band that reduces the band gap. Thus, upon photoexcitation, the electron/hole separation is more easily initialized. The PbO/Pb3O4 composite electrodes demonstrate a higher reductive photocurrent compared to the photocurrent registered at pure PbO or Pb3O4 modified electrodes. Upon exposure to light with energy close to and above the band gap, electrons are excited from the valence band to the conduction band to initialize the reduction of Pb(IV) to Pb(II), resulting in the initial formation of PbO. However in the presence of bicarbonate ions, a significantly higher photoreduction current is recorded since the PbO reacts further to form hydrocerussite. Therefore the presence of bicarbonates in the environment stimulates the photodecomposition process of minium and plays an important role in the degradation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369471100014 Publication Date 2015-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 9 Open Access  
  Notes ; The authors acknowledge Sanne Aerts from the Laboratory of Adsorption and Catalysis (LADCA) of the University of Antwerp for her help with the UV-vis-DR. Financial support from the SOLARPAINT BOF-GOA project (University of Antwerp Research Council) is acknowledged. The authors are also indebted to F. Vanmeert for performing the XRD measurements. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:129963 Serial 5888  
Permanent link to this record
 

 
Author De Wael, K.; Daems, D.; Van Camp, G.; Nagels, L.J. doi  openurl
  Title The use of potentiometric sensors to study (bio)molecular interactions Type A1 Journal article
  Year 2012 Publication Analytical chemistry Abbreviated Journal (up) Anal Chem  
  Volume 84 Issue 11 Pages 4921-4927  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Potentiometric sensors were used to study molecular interactions in liquid environments, with sensorgram methodology. This is demonstrated with a lipophilic rubber-, and with a collagen based hydrogel sensor coating. The investigated molecules were promazine and tartaric acid respectively. The sensors were placed in a hydrodynamic wall jet system for the recording of sensorgrams. mV sensor responses were first converted to a signal, expressing the concentration of adsorbed organic ions. Using a linearization method, a pseudo first order kinetic model of adsorption was shown to fit the experimental results perfectly. Kass, kon and koff values were calculated.. The technique can be used over 4 decades of concentration, and it is very sensitive to low MW compounds as well as to multiply charged large biomolecules. This study is the first to demonstrate the application of potentiometric sensors as an alternative and complement to SPR methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304783100041 Publication Date 2012-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 10 Open Access  
  Notes ; Financial support for this work was provided by the University of Antwerp by granting D.D. a BOF interdisciplinary research project. We thank J. Everaert for his help in interpreting the results. K.D.W. and D.D. contributed equally to this work. ; Approved Most recent IF: 6.32; 2012 IF: 5.695  
  Call Number UA @ admin @ c:irua:97520 Serial 5898  
Permanent link to this record
 

 
Author Dik, J.; Janssens, K.; van der Snickt, G.; van der Loeff, L.; Rickers, K.; Cotte, M. doi  openurl
  Title Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping Type A1 Journal article
  Year 2008 Publication Analytical chemistry Abbreviated Journal (up) Anal Chem  
  Volume 80 Issue 16 Pages 6436-6442  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Vincent van Gogh (1853−1890), one of the founding fathers of modern painting, is best known for his vivid colors, his vibrant painting style, and his short but highly productive career. His productivity is even higher than generally realized, as many of his known paintings cover a previous composition. This is thought to be the case in one-third of his early period paintings. Van Gogh would often reuse the canvas of an abandoned painting and paint a new or modified composition on top. These hidden paintings offer a unique and intimate insight into the genesis of his works. Yet, current museum-based imaging tools are unable to properly visualize many of these hidden images. We present the first-time use of synchrotron radiation based X-ray fluorescence mapping, applied to visualize a womans head hidden under the work Patch of Grass by Van Gogh. We recorded decimeter-scale, X-ray fluorescence intensity maps, reflecting the distribution of specific elements in the paint layers. In doing so we succeeded in visualizing the hidden face with unprecedented detail. In particular, the distribution of Hg and Sb in the red and light tones, respectively, enabled an approximate color reconstruction of the flesh tones. This reconstruction proved to be the missing link for the comparison of the hidden face with Van Goghs known paintings. Our approach literally opens up new vistas in the nondestructive study of hidden paint layers, which applies to the oeuvre of Van Gogh in particular and to old master paintings in general.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000258448100039 Publication Date 2008-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 178 Open Access  
  Notes Approved Most recent IF: 6.32; 2008 IF: 5.712  
  Call Number UA @ admin @ c:irua:74466 Serial 5906  
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Sleegers, N.; Samyn, N.; Bijvoets, S.M.; Heerschop, M.W.J.; van Nuijs, A.L.N.; De Wael, K. pdf  doi
openurl 
  Title Identifying Electrochemical Fingerprints of Ketamine with Voltammetry and Liquid Chromatography–Mass Spectrometry for Its Detection in Seized Samples Type A1 Journal article
  Year 2020 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem  
  Volume 92 Issue 19 Pages 13485-13492  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract Herein, a straightforward electrochemical approach for the determination of ketamine in street samples and seizures is presented by employing screen-printed electrodes (SPE). Square wave voltammetry (SWV) is used to study the electrochemical behavior of the illicit drug, thus profiling the different oxidation states of the substance at different pHs. Besides, the oxidation pathway of ketamine on SPE is investigated for the first time with liquid chromatography–high-resolution mass spectrometry. Under the optimized conditions, the calibration curve of ketamine at buffer solution (pH 12) exhibits a sensitivity of 8.2 μA μM–1, a linear relationship between 50 and 2500 μM with excellent reproducibility (RSD = 2.2%, at 500 μM, n = 7), and a limit of detection (LOD) of 11.7 μM. Subsequently, binary mixtures of ketamine with adulterants and illicit drugs are analyzed with SWV to investigate the electrochemical fingerprint. Moreover, the profile overlapping between different substances is addressed by the introduction of an electrode pretreatment and the integration of a tailor-made script for data treatment. Finally, the approach is tested on street samples from forensic seizures. Overall, this system allows for the on-site identification of ketamine by law enforcement agents in an easy-to-use and rapid manner on cargos and seizures, thereby disrupting the distribution channel and avoiding the illicit drug reaching the end-user.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580426800091 Publication Date 2020-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access  
  Notes Universiteit Antwerpen; H2020 Societal Challenges, 833787 ; Fonds Wetenschappelijk Onderzoek, 1S3765817N 1SB8120N ; Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number AXES @ axes @c:irua:170523 Serial 6435  
Permanent link to this record
 

 
Author Aghaei, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Flowing Atmospheric Pressure Afterglow for Ambient Ionization: Reaction Pathways Revealed by Modeling Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem  
  Volume 93 Issue 17 Pages 6620-6628  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We describe the plasma chemistry in a helium flowing atmospheric pressure afterglow (FAPA) used for analytical spectrometry, by means of a quasione-dimensional (1D) plasma chemical kinetics model. We study the effect of typical impurities present in the feed gas, as well as the afterglow in ambient humid air. The model provides the species density profiles in the discharge and afterglow regions and the chemical pathways. We demonstrate that H, N, and O atoms are formed in the discharge region, while the dominant reactive neutral species in the afterglow are O3 and NO. He* and He2* are responsible for Penning ionization of O2, N2, H2O, H2, and N, and especially O and H atoms. Besides, He2+ also contributes to ionization of N2, O2, H2O, and O through charge transfer reactions. From the pool of ions created in the discharge, NO+ and (H2O)3H+ are the dominant ions in the afterglow. Moreover, negatively charged clusters, such as NO3H2O− and NO2H2O−, are formed and their pathway is discussed as well. Our model predictions are in line with earlier observations in the literature about the important reagent ions and provide a comprehensive overview of the underlying pathways. The model explains in detail why helium provides a high analytical sensitivity because of high reagent ion formation by both Penning ionization and charge transfer. Such insights are very valuable for improving the analytical performance of this (and other) ambient desorption/ionization source(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000648505900008 Publication Date 2021-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 6713 ; The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO) grant number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the UA. The authors also thank J. T. Shelley for providing experimental data for the gas velocity behind the anode disk and before the mass spectrometer interface, to validate our model. Approved Most recent IF: 6.32  
  Call Number PLASMANT @ plasmant @c:irua:178126 Serial 6762  
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Ching, H.Y.V.; Khan, S.U.; Colomier, C.; Patel, H.H.; Gorun, S.M.; Verbruggen, S.; Van Doorslaer, S.; De Wael, K. pdf  url
doi  openurl
  Title Correlation between the fluorination degree of perfluorinated zinc phthalocyanines, their singlet oxygen generation ability, and their photoelectrochemical response for phenol sensing Type A1 Journal article
  Year 2022 Publication Analytical chemistry Abbreviated Journal (up) Anal Chem  
  Volume 94 Issue 13 Pages 5221-5230  
  Keywords A1 Journal article; Organic synthesis (ORSY); Sustainable Energy, Air and Water Technology (DuEL); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Electron-withdrawing perfluoroalkyl peripheral groups grafted on phthalocyanine (Pc) macrocycles improve their single-site isolation, solubility, and resistance to self-oxidation, all beneficial features for catalytic applications. A high degree of fluorination also enhances the reducibility of Pcs and could alter their singlet oxygen (1O2) photoproduction. The ethanol/toluene 20:80 vol % solvent mixture was found to dissolve perfluorinated FnPcZn complexes, n = 16, 52, and 64, and minimize the aggregation of the sterically unencumbered F16PcZn. The 1O2 production ability of FnPcZn complexes was examined using 9,10-dimethylanthracene (DMA) and 2,2,6,6-tetramethylpiperidine (TEMP) in combination with UV–vis and electron paramagnetic resonance (EPR) spectroscopy, respectively. While the photoreduction of F52PcZn and F64PcZn in the presence of redox-active TEMP lowered 1O2 production, DMA was a suitable 1O2 trap for ranking the complexes. The solution reactivity was complemented by solid-state studies via the construction of photoelectrochemical sensors based on TiO2-supported FnPcZn, FnPcZn|TiO2. Phenol photo-oxidation by 1O2, followed by its electrochemical reduction, defines a redox cycle, the 1O2 production having been found to depend on the value of n and structural features of the supported complexes. Consistent with solution studies, F52PcZn was found to be the most efficient 1O2 generator. The insights on reactivity testing and structural–activity relationships obtained may be useful for designing efficient and robust sensors and for other 1O2-related applications of FnPcZn.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000786254500002 Publication Date 2022-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:187522 Serial 7141  
Permanent link to this record
 

 
Author Girard-Sahun, F.; Lefrancois, P.; Badets, V.; Arbault, S.; Clement, F. pdf  url
doi  openurl
  Title Direct sensing of superoxide and its relatives reactive oxygen and nitrogen species in phosphate buffers during cold atmospheric plasmas exposures Type A1 Journal article
  Year 2022 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem  
  Volume 94 Issue 14 Pages 5555-5565  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This study aims at sensing in situ reactive oxygen and nitrogen species (RONS) and specifically superoxide anion (O-2(center dot-)) in aqueous buffer solutions exposed to cold atmospheric plasmas (CAPs). CAPs were generated by ionizing He gas shielded with variable N-2/O-2 mixtures. Thanks to ultramicroelectrodes protected against the high electric fields transported by the ionization waves of CAPs, the production of superoxide and several RONS was electrochemically directly detected in liquids during their plasma exposure. Complementarily, optical emissive spectroscopy (OES) was used to study the plasma phase composition and its correlation with the chemistry in the exposed liquid. The specific production of O-2(center dot-), a biologically reactive redox species, was analyzed by cyclic voltammetry (CV), in both alkaline (pH 11), where the species is fairly stable, and physiological (pH 7.4) conditions, where it is unstable. To understand its generation with respect to the plasma chemistry, we varied the shielding gas composition of CAPs to directly impact on the RONS composition at the plasma-liquid interface. We observed that the production and accumulation of RONS in liquids, including O(2)(center dot-)depends on the plasma composition, with N-2-based shieldings providing the highest superoxide concentrations (few 10s of micromolar at most) and of its derivatives (hundreds of micromolar). In situ spectroscopic and electrochemical analyses provide a high resolution kinetic and quantitative understanding of the interactions between CAPs and physiological solutions for biomedical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000805334400013 Publication Date 2022-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:189093 Serial 7143  
Permanent link to this record
 

 
Author Khan, S.U.; Trashin, S.; Beltran, V.; Korostei, Y.S.; Pelmus, M.; Gorun, S.M.; Dubinina, T., V.; Verbruggen, S.W.; De Wael, K. pdf  url
doi  openurl
  Title Photoelectrochemical behavior of phthalocyanine-sensitized TiO₂ in the presence of electron-shuttling mediators Type A1 Journal article
  Year 2022 Publication Analytical chemistry Abbreviated Journal (up) Anal Chem  
  Volume 94 Issue 37 Pages 12723-12731  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Dye-sensitized TiO(2 )has found many applications for dye sensitized solar cells (DSSC), solar-to-chemical energy conversion, water/air purification systems, and (electro)chemical sensors. We report an electrochemical system for testing dye-sensitized materials that can be utilized in photoelectrochemical (PEC) sensors and energy conversion. Unlike related systems, the reported system does not require a direct electron transfer from semiconductors to electrodes. Rather, it relies on electron shuttling by redox mediators. A range of model photocatalytic materials were prepared using three different TiO2 materials (P25, P90, and PC500) and three sterically hindered phthalocyanines (Pcs) with electron-rich tert-butyl substituents (t-Bu4PcZn, t-Bu4PcAlCl, and t-Bu4PcH2). The materials were compared with previously developed TiO(2 )modified by electron-deficient, also sterically hindered fluorinated phthalocyanine F64PcZn, a singlet oxygen (O-1(2)) producer, as well as its metal-free derivative, F64PcH2. The PEC activity depended on the redox mediator, as well as the type of TiO2 and Pc. By comparing the responses of one-electron shuttles, such as K4Fe(CN)(4), and O-1(2)-reactive electron shuttles, such as phenol, it is possible to reveal the action mechanism of the supported photosensitizers, while the overall activity can be assessed using hydroquinone. t-Bu4PcAlCl showed significantly lower blank responses and higher specific responses toward chlorophenols compared to t-Bu4PcZn due to the electron-withdrawing effect of the Al3+ metal center. The combination of reactivity insights and the need for only microgram amounts of sensing materials renders the reported system advantageous for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000855284300001 Publication Date 2022-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:190602 Serial 7190  
Permanent link to this record
 

 
Author Monico, L.; Cotte, M.; Vanmeert, F.; Amidani, L.; Janssens, K.; Nuyts, G.; Garrevoet, J.; Falkenberg, G.; Glatzel, P.; Romani, A.; Miliani, C. pdf  url
doi  openurl
  Title Damages induced by synchrotron radiation-based X-ray microanalysis in chrome yellow paints and related Cr-compounds : assessment, quantification, and mitigation strategies Type A1 Journal article
  Year 2020 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem  
  Volume 92 Issue 20 Pages 14164-14173  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Synchrotron radiation (SR)-based X-ray methods are powerful analytical tools for several purposes. They are widely used to probe the degradation mechanisms of inorganic artists' pigments in paintings, including chrome yellows (PbCr1-xSxO4; 0 <= x <= 0.8), a class of compounds often found in Van Gogh masterpieces. However, the high intensity and brightness of SR beams raise important issues regarding the potential damage inflicted on the analyzed samples. A thorough knowledge of the SR X-ray sensitivity of each class of pigment in the painting matrix is therefore required to find analytical strategies that seek to minimize the damage for preserving the integrity of the analyzed samples and to avoid data misinterpretation. Here, we employ a combination of Cr K-edge X-ray absorption near-edge structure spectroscopy, Cr-K-beta X-ray emission spectroscopy, and X-ray diffraction to monitor and quantify the effects of SR X-rays on the stability of chrome yellows and related Cr compounds and to define mitigation strategies. We found that the SR X-ray beam exposure induces changes in the oxidation state and local coordination environment of Cr ions and leads to a loss of the compound's crystalline structure. The extent of X-ray damage depends on some intrinsic properties of the samples (chemical composition of the pigment and the presence/absence and nature of the binder). It can be minimized by optimizing the overall fluence/dose released to the samples and by working in vacuum and under cryogenic conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000584418100072 Publication Date 2020-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access  
  Notes Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number UA @ admin @ c:irua:174363 Serial 7754  
Permanent link to this record
 

 
Author Sleegers, N.; van Nuijs, A.L.N.; van den Berg, M.; De Wael, K. pdf  doi
openurl 
  Title Electrochemistry of intact versus degraded cephalosporin antibiotics facilitated by LC–MS analysis Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem  
  Volume 93 Issue 4 Pages 2394-2402  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract The electrochemical detection of cephalosporins is a promising approach for the monitoring of cephalosporin levels in process waters. However, this class of antibiotics, like penicillins, is composed of chemically active molecules and susceptible to hydrolysis and aminolysis of the four membered β-lactam ring present. In order to develop a smart monitoring strategy for cephalosporins, the influence of degradation (hydrolysis and aminolysis) on the electrochemical fingerprint has to be taken into account. Therefore, an investigation was carried out to understand the changes of the voltammetric fingerprints upon acidic and alkaline degradation. Changes in fingerprints were correlated to the degradation pathways through the combination of square wave voltammetry and liquid chromatography quadrupole time-of-flight analysis. The characteristic electrochemical signals of the β-lactam ring disappeared upon hydrolysis. Additional oxidation signals that appeared after degradation were elucidated and linked to different degradation products, and therefore, enrich the voltammetric fingerprints with information of the state of the cephalosporins. The applicability of the electrochemical monitoring system was explored by the analysis of the intact and degraded industrial process waters containing the key intermediate 7-aminodeacetoxycephalosporanic acid (7-ADCA). Clearly, the intact process samples exhibited the expected core signals of 7-ADCA and could be quantified, while the degraded samples only showed the newly formed degradation products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000618089100063 Publication Date 2021-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:176206 Serial 7864  
Permanent link to this record
 

 
Author Wiorek, A.; Parrilla, M.; Cuartero, M.; Crespo, G.A. url  doi
openurl 
  Title Epidermal patch with glucose biosensor : pH and temperature correction toward more accurate sweat analysis during sport practice Type A1 Journal article
  Year 2020 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem  
  Volume 92 Issue 14 Pages 10153-10161  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract We present an epidermal patch for glucose analysis in sweat incorporating for the first time pH and temperature correction according to local dynamic fluctuations in sweat during on-body tests. This sort of correction is indeed the main novelty of the paper, being crucial toward reliable measurements in every sensor based on an enzymatic element whose activity strongly depends on pH and temperature. The results herein reported for corrected glucose detection during on-body measurements are supported by a two-step validation protocol: with the biosensor operating off- and on-bodily, correlating the results with UV-vis spectrometry and/or ion chromatography. Importantly, the wearable device is a flexible skin patch that comprises a microfluidic cell designed with a sweat collection zone coupled to a fluidic channel in where the needed electrodes are placed: glucose biosensor, pH potentiometric electrode and a temperature sensor. The glucose biosensor presents a linear range of response within the expected physiological levels of glucose in sweat (10-200 mu M), and the calibration parameters are dynamically adjusted to any change in pH and temperature during the sport practice by means of a new “correction approach”. In addition, the sensor displays a fast response time, appropriate selectivity, and excellent reversibility. A total of 9 validated on-body tests are presented: the outcomes revealed a great potential of the wearable glucose sensor toward the provision of reliable physiological data linked to individuals during sport activity. In particular, the developed “correction approach” is expected to impact into the next generation of wearable devices that digitalize physiological activities through chemical information in a trustable manner for both sport and healthcare applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000554986200089 Publication Date 2020-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access  
  Notes Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number UA @ admin @ c:irua:175265 Serial 7931  
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Newsome, G.A.; Janssens, K. pdf  url
doi  openurl
  Title High-resolution mass spectrometry and nontraditional mass defect analysis of brominated historical pigments Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem  
  Volume 93 Issue 44 Pages 14851-14858  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract The implementation of high-resolution mass spectrometry systems offers new possibilities for the analysis of complex art samples such as historical oil paintings. However, these multicomponent systems generate large and complex data sets that require advanced visualization tools to aid interpretation, especially when no chromatographic separation is performed. In the context of this research, it was crucial to propose a data analysis tool to identify the products generated during the synthesis, drying, and aging of historical pigments. This study reports for the first time a nontraditional mass defect analysis of oil paint samples containing a fugitive brominated-organic pigment, eosin or geranium lake, by using direct infusion electrospray ionization in combination with a high-resolution Orbitrap mass spectrometer. The use of nontraditional Kendrick mass defect plots is presented in this study as a processing and visualization tool to recognize brominated species based on their specific mass defect and isotope pattern. The results demonstrate that this approach could provide valuable molecular compositional information on the degradation pathways of this pigment. We anticipate that mass defect analysis will become highly relevant in future degradation studies of many more historical organic pigments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000718171600037 Publication Date 2021-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:182347 Serial 8038  
Permanent link to this record
 

 
Author Newsome, G.A.; Kavich, G.; Alvarez-Martin, A. pdf  doi
openurl 
  Title Interface for reproducible, multishot direct analysis of solid-phase microextraction samples Type A1 Journal article
  Year 2020 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem  
  Volume 92 Issue 6 Pages 4182-4186  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract An enclosed interface that joins a direct analysis in real time (DART) probe, solid-phase microextraction (SPME) fiber, and the inlet of a high-resolution mass spectrometer is described. Unlike other systems to couple SPME sampling to ambient mass spectrometry, the interface is able to perform discrete analyses on different areas of a single SPME fiber device for up to three technical replicate measurements of one sampling event. Inlet flow speed and desorption temperature are optimized, and reproducibility is demonstrated between replicate analyses on the same derivatized SPME fiber and with sequential fiber sampling events, yielding analyte measurement center of variance (CV) from 3 to 6%. Conditioning is also performed with the enclosed DART. The interface is a straightforward addition to commercially available technologies, and machine diagrams for custom components operated with SPME/DART/MS equipment are included.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526563900004 Publication Date 2020-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access  
  Notes Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number UA @ admin @ c:irua:181926 Serial 8113  
Permanent link to this record
 

 
Author Trashin, S.; Morales-Yánez, F.; Thiruvottriyur Shanmugam, S.; Paredis, L.; Carrión, E.N.; Sariego, I.; Muyldermans, S.; Polman, K.; Gorun, S.M.; De Wael, K. pdf  url
doi  openurl
  Title Nanobody-based immunosensor detection enhanced by photocatalytic-electrochemical redox cycling Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem  
  Volume 93 Issue 40 Pages 13606-13614  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Detection of antigenic biomarkers present in trace amounts is of crucial importance for medical diagnosis. A parasitic disease, human toxocariasis, lacks an adequate diagnostic method despite its worldwide occurrence. The currently used serology tests may stay positive even years after a possibly unnoticed infection, whereas the direct detection of a re-infection or a still active infection remains a diagnostic challenge due to the low concentration of circulating parasitic antigens. We report a time-efficient sandwich immunosensor using small recombinant single-domain antibodies (nanobodies) derived from camelid heavy-chain antibodies specific to Toxocara canis antigens. An enhanced sensitivity to pg/mL levels is achieved by using a redox cycle consisting of a photocatalytic oxidation and electrochemical reduction steps. The photocatalytic oxidation is achieved by a photosensitizer generating singlet oxygen (1O2) that, in turn, readily reacts with p-nitrophenol enzymatically produced under alkaline conditions. The photooxidation produces benzoquinone that is electrochemically reduced to hydroquinone, generating an amperometric response. The light-driven process could be easily separated from the background, thus making amperometric detection more reliable. The proposed method for detection of the toxocariasis antigen marker shows superior performances compared to other detection schemes with the same nanobodies and outperforms by at least two orders of magnitude the assays based on regular antibodies, thus suggesting new opportunities for electrochemical immunoassays of challenging low levels of antigens.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708550500025 Publication Date 2021-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:181795 Serial 8290  
Permanent link to this record
 

 
Author Liu, Y.; Cánovas, R.; Crespo, G.A.; Cuartero, M. doi  openurl
  Title Thin-layer potentiometry for creatinine detection in undiluted human urine using ion-exchange membranes as barriers for charged interferences Type A1 Journal article
  Year 2020 Publication Analytical Chemistry Abbreviated Journal (up) Anal Chem  
  Volume 92 Issue 4 Pages 3315-3323  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Herein, thin-layer potentiometry combined with ion-exchange membranes as barriers for charged interferences is demonstrated for the analytical detection of creatinine (CRE) in undiluted human urine. Briefly, CRE diffuses through an anion-exchange membrane (AEM) from a sample contained in one fluidic compartment to a second reservoir, containing the enzyme CRE deiminase. There, CRE reacts with the enzyme, and the formation of ammonium is dynamically monitored by potentiometric ammonium-selective electrodes. This analytical concept is integrated into a lab-on-a-chip microfluidic cell that allows for a high sample throughput and the operation under stop-flow mode, which allows CRE to passively diffuse across the AEM. Conveniently, positively charged species (i.e., potassium, sodium, and ammonium, among others) are repelled by the AEM and never reach the ammonium-selective electrodes; thus, possible interference in the response can be avoided. As a result, the dynamic potential response of the electrodes is entirely ascribed to the stoichiometric formation of ammonium. The new CRE biosensor exhibits a Nernstian slope, within a linear range of response from 1 to 50 mM CRE concentration. As expected, the response time (15–60 min) primarily depends on the CRE diffusion across the AEM. CRE analysis in urine samples displayed excellent results, without requiring sample pretreatment (before the introduction of the sample in the microfluidic chip) and with high compatibility with development into a potential point-of-care clinical tool. In an attempt to decrease the analysis time, the presented analytical methodology for CRE detection is translated into an all-solid-state platform, in which the enzyme is immobilized on the surface of the ammonium-selective electrode and with the AEM on top. While more work is necessary in this direction, the CRE sensor appears to be promising for CRE analysis in both urine and blood.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record  
  Impact Factor 7.4 Times cited Open Access  
  Notes Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number UA @ admin @ c:irua:184380 Serial 8667  
Permanent link to this record
 

 
Author Janssens, K.; Alfeld, M.; van der Snickt, G.; de Nolf, W.; Vanmeert, F.; Radepont, M.; Monico, L.; et al. doi  openurl
  Title The use of synchrotron radiation for the characterization of artists' pigments and paintings Type A1 Journal article
  Year 2013 Publication Annual review of analytical chemistry Abbreviated Journal (up) Annu Rev Anal Chem  
  Volume 6 Issue Pages 399-425  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract We review methods and recent studies in which macroscopic to (sub)microscopic X-ray beams were used for nondestructive analysis and characterization of pigments, paint microsamples, and/or entire paintings. We discuss the use of portable laboratory- and synchrotron-based instrumentation and describe several variants of X-ray fluorescence (XRF) analysis used for elemental analysis and imaging and combined with X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Macroscopic and microscopic (μ-)XRF variants of this method are suitable for visualizing the elemental distribution of key elements in paint multilayers. Technical innovations such as multielement, large-area XRF detectors have enabled such developments. The use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that take place during natural pigment alteration processes. However, synchrotron-based combinations of μ-XRF, μ-XAS, and μ-XRD are suitable for such studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000323887500019 Publication Date 2013-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-1327 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.435 Times cited 46 Open Access  
  Notes ; ; Approved Most recent IF: 7.435; 2013 IF: 7.814  
  Call Number UA @ admin @ c:irua:111315 Serial 5902  
Permanent link to this record
 

 
Author Robben, J.; Dufour, D.; Gijbels, R. doi  openurl
  Title Design and development of a new program for data processing of mass spectra acquired by means of a high-resolution double-focusing glow-discharge mass spectrometer Type A1 Journal article
  Year 2001 Publication Fresenius' journal of analytical chemistry Abbreviated Journal (up) Fresen J Anal Chem  
  Volume 370 Issue Pages 663-670  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000170115200033 Publication Date 2002-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0937-0633;1432-1130; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:37252 Serial 657  
Permanent link to this record
 

 
Author Lenaerts, J.; Verlinden, G.; Ignatova, V.A.; van Vaeck, L.; Gijbels, R.; Geuens, I. doi  openurl
  Title Modeling of the sputtering process of cubic silver halide microcrystals and its relevance in depth profiling by secondary ion-mass spectrometry (SIMS) Type A1 Journal article
  Year 2001 Publication Fresenius' journal of analytical chemistry Abbreviated Journal (up) Fresen J Anal Chem  
  Volume 370 Issue 5 Pages 654-662  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000170115200032 Publication Date 2002-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0937-0633;1432-1130; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:37251 Serial 2135  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title New developments and applications in GDMS Type A1 Journal article
  Year 1999 Publication Fresenius' journal of analytical chemistry Abbreviated Journal (up) Fresen J Anal Chem  
  Volume 364 Issue Pages 367-375  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000081637500002 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0937-0633;1432-1130; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 17 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:24923 Serial 2311  
Permanent link to this record
 

 
Author Gijbels, R.; Bogaerts, A. doi  openurl
  Title Recent trends in solids mass spectrometry: GDMS and other methods Type A1 Journal article
  Year 1997 Publication Fresenius' journal of analytical chemistry Abbreviated Journal (up) Fresen J Anal Chem  
  Volume 359 Issue Pages 326-330  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos A1997YC02800004 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0937-0633;1432-1130; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:19607 Serial 2841  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Three-dimensional modeling of a direct current glow discharge in argon: is it better than one-dimensional modeling? Type A1 Journal article
  Year 1997 Publication Fresenius' journal of analytical chemistry Abbreviated Journal (up) Fresen J Anal Chem  
  Volume 359 Issue Pages 331-337  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos A1997YC02800005 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0937-0633;1432-1130; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:19608 Serial 3654  
Permanent link to this record
 

 
Author Hellar-Kihampa, H.; Potgieter-Vermaak, S.; De Wael, K.; Lugwisha, E.; van Espen, P.; Van Grieken, R. doi  openurl
  Title Concentration profiles of metal contaminants in fluvial sediments of a rural-urban drainage basin in Tanzania Type A1 Journal article
  Year 2014 Publication International journal of environmental analytical chemistry Abbreviated Journal (up) Int J Environ An Ch  
  Volume 94 Issue 1 Pages 77-98  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This study investigated concentration profiles of trace, rare earth and platinum group metals in fluvial sediments from the Pangani river basin (43,650 km2), one of the largest river basins in Tanzania, to assess its environmental quality. Sediment samples were collected in two distinct seasons from 12 representative sites of diverse land-use practices and characterised by ICP-MS after optimised microwave digestion. Ecological risks were assessed by evaluation of pollution index and comparison with legislated sediment quality guidelines (SQG). The results revealed contamination by some trace metals (e.g. Pb, V, Cu, Cr, Ni, Cd, As, Co, Mn and Zn) in concentrations ranging from 0.7 to 2940 mg kg−1, and four rare earth elements (Y, Ce, Nd, Yb) in concentrations ranging from 0.9 (Yb) to 500 mg kg−1 dry weight (Ce), which significantly exceeded the estimated background values at some stations. Palladium was the only platinum group element that was detected in quantifiable concentrations (0.33.5 mg kg−1). Concentrations of some trace metals exceeded the SQGs at some localised areas. Principal component analysis and multivariate correlations indicated geochemical characteristics of the area as the major control of metal concentrations and spatial variability. Organic matter and clay contents also played a significant role in metal distributions. Assessment of land-use practices upstream of the sampling locations was used to trace potential anthropogenic sources of metal enrichments, where highest levels were found in areas close to urban centres and agricultural activities. The study provides baseline data for future monitoring programs, and highlights the need for more comprehensive analysis involving a wider spatio-temporal scale and ecotoxicological risk assessment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000329774500007 Publication Date 2013-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-7319 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.208 Times cited 5 Open Access  
  Notes ; The participants of this research gratefully acknowledge the financial support of the Belgian Development Agency (BTC). The contribution of the Pangani Basin Water Board (PBWB), especially Ms Arafa Maggidi in provision of valuable information and assistance with the sampling campaigns is greatly appreciated. We sincerely acknowledge the assistance of Mr. Elisa Dunstan Kiwelu of Ardhi University, Dar es Salaam, Tanzania in mapping the study area; Mr Peter Machibya of the Department of Geology, University of Dar es Salaam, Tanzania in sediment characterisation; and Dr Valentine Kayawe Mubiana of the Department of Biology, University of Antwerp in ICP-MS analysis. The contributions of six anonymous reviewers, which greatly improved the manuscript for this paper, are highly appreciated. ; Approved Most recent IF: 1.208; 2014 IF: 1.295  
  Call Number UA @ admin @ c:irua:109234 Serial 5547  
Permanent link to this record
 

 
Author Bottari, F.; De Wael, K. pdf  url
doi  openurl
  Title Electrodeposition of gold nanoparticles on boron doped diamond electrodes for the enhanced reduction of small organic molecules Type A1 Journal article
  Year 2017 Publication Journal of electroanalytical chemistry : an international journal devoted to all aspects of electrode kynetics, interfacial structure, properties of electrolytes, colloid and biological electrochemistry. Abbreviated Journal (up) J Electroanal Chem  
  Volume 801 Issue Pages 521-526  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The performance of gold nanoparticles electrodeposited on boron doped diamond (BDD) electrodes was investigated in respect to the reduction of chloramphenicol (CAP), an antibiotic of the phenicols family. The chosen deposition protocol, three nucleation-growing pulses, shows a remarkable surface coverage, with an even distribution of average-sized gold particles (~ 50 nm), and it was proven capable of generating a three-fold increase in the CAP reduction current. A calibration plot for CAP detection was obtained in the micromolar range (535 μM) with good correlation coefficient (0.9959) and an improved sensitivity of 0.053 μA μM− 1 mm− 2 compared to the electrochemistry of CAP at a bare BDD electrode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411847500065 Publication Date 2017-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1572-6657 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.012 Times cited 4 Open Access  
  Notes ; This work was financially supported by the University of Antwerp (BOF) and the Research Foundation Flanders (FWO) (project G037415N). ; Approved Most recent IF: 3.012  
  Call Number UA @ admin @ c:irua:146372 Serial 5600  
Permanent link to this record
 

 
Author Barich, H.; Cánovas, R.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical identification of hazardous phenols and their complex mixtures in real samples using unmodified screen-printed electrodes Type A1 Journal article
  Year 2022 Publication Journal of electroanalytical chemistry : an international journal devoted to all aspects of electrode kynetics, interfacial structure, properties of electrolytes, colloid and biological electrochemistry. Abbreviated Journal (up) J Electroanal Chem  
  Volume 904 Issue Pages 115878  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The electrochemical behavior of some of the most relevant endocrine-disrupting phenols using unmodified carbon screen-printed electrodes (SPEs) is described for the first time. Experiments were made to assess the electrochemical behavior of phenol (PHOH), pentachlorophenol (PCP), 4-tert octylphenol (OP) and bisphenol A (BPA) and their determination in the most favorable conditions, using voltammetric methods such as cyclic voltammetry (CV), linear sweep voltammetry (LSV) and square wave voltammetry (SWV) in Britton Robinson (BR) buffer. Further, the usefulness of the electrochemical approach was validated with real samples from a local river and was compared to commercial phenols test kit, which is commonly used for on-site screening in industrial streams and wastewaters. Finally, the approach was compared with a lab-bench standard method using real samples, i.e., high-performance liquid chromatography with a photodiode array detector (HPLC-DAD).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000741151200005 Publication Date 2021-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.5  
  Call Number UA @ admin @ c:irua:184384 Serial 7150  
Permanent link to this record
 

 
Author Ortiz-Aguayo, D.; De Wael, K.; del Valle, M. url  doi
openurl 
  Title Voltammetric sensing using an array of modified SPCE coupled with machine learning strategies for the improved identification of opioids in presence of cutting agents Type A1 Journal article
  Year 2021 Publication Journal Of Electroanalytical Chemistry Abbreviated Journal (up) J Electroanal Chem  
  Volume 902 Issue Pages 115770  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This work reports the use of modified screen-printed carbon electrodes (SPCEs) for the identification of three drugs of abuse and two habitual cutting agents, caffeine and paracetamol, combining voltammetric sensing and chemometrics. In order to achieve this goal, codeine, heroin and morphine were subjected to Square Wave Voltammetry (SWV) at pH 7, in order to elucidate their electrochemical fingerprints. The optimized SPCEs electrode array, which have a differentiated response for the three oxidizable compounds, was derived from Carbon, Prussian blue, Cobalt (II) phthalocyanine, Copper (II) oxide, Polypyrrole and Palladium nanoparticles ink-modified carbon electrodes. Finally, Principal Component Analysis (PCA) coupled with Silhouette parameter assessment was used to select the most suitable combination of sensors for identification of drugs of abuse in presence of cutting agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000714415500006 Publication Date 2021-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.012 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.012  
  Call Number UA @ admin @ c:irua:184018 Serial 8745  
Permanent link to this record
 

 
Author Janssens, K.; Bogaerts, A.; van Grieken, R. doi  openurl
  Title Colloquium Spectroscopicum Internationale 34, Antwerp, Belgium, 4-9 September 2005: preface Type Editorial
  Year 2006 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal (up) Talanta  
  Volume 70 Issue 5 Pages 907-908  
  Keywords Editorial; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Pergamon Place of Publication Oxford Editor  
  Language Wos 000242871900001 Publication Date 2006-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.162 Times cited Open Access  
  Notes Approved Most recent IF: 4.162; 2006 IF: 2.810  
  Call Number UA @ lucian @ c:irua:61094 Serial 392  
Permanent link to this record
 

 
Author Mueller, G.; Stahnke, F.; Bleiner, D. pdf  doi
openurl 
  Title Fast steel-cleanness characterization by means of laser-assisted plasma spectrometric methods Type A1 Journal article
  Year 2006 Publication Talanta : the international journal of pure and applied analytical chemistry T2 – 34th Colloquium Spectroscopicum Internationale, SEP 04-09, 2005, Univ Antwerp, Antwerp, BELGIUM Abbreviated Journal (up) Talanta  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Laser-assisted plasma spectrometry is a palette of analytical techniques (L-OES, LA-ICP-MS) capable of fast spatially-resolved elemental analysis in the micrometer range. For fast estimation of the occurrence in steel samples of non-metallic inclusions, which degrade the material's technical properties, simultaneous OES detection and sequential ICP-MS detection were compared. Histograms were obtained for the intensity distribution of the acquired signals (laser pulse statistics). The skewness coefficient of the histograms for Al (indicator of non-metallic inclusions) was found to be clearly dependent on the fraction of non-metallic inclusions in the case of scanning L-OES. For LA-ICP-MS less clear dependence was observed, which was influenced by the acquisition characteristics. In fact, less measurement throughput limited for LA-ICP-MS the counting statistics to an extent that overrides the benefit of higher detection power as compared to L-OES. (c) 2006 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Pergamon Place of Publication Oxford Editor  
  Language Wos 000242871900015 Publication Date 2006-07-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited 12 Open Access  
  Notes Approved Most recent IF: 4.162; 2006 IF: 2.810  
  Call Number UA @ lucian @ c:irua:103122 Serial 4518  
Permanent link to this record
 

 
Author Bleiner, D.; Macri, M.; Gasser, P.; Sautter, V.; Maras, A. pdf  doi
openurl 
  Title FIB, TEM and LA-ICPMS investigations on melt inclusions in Martian meteorites – Analytical capabilities and geochemical insights Type A1 Journal article
  Year 2006 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal (up) Talanta  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In order to obtain full information coverage on melt inclusions in Martian meteorites (subgroup nakhlites) complementary micro-analytical techniques were used, i.e. focused ion beam, transmission electron microscopy and laser ablation. Using focused ion beam several lamellae for transmission electron microscopy were prepared and secondary electron images of cross-sections could be acquired. Laser ablation-inductively coupled plasma mass spectrometry analyses were performed on selected inclusions to obtain mass-oriented bulk composition of inclusions at depth. The differences in composition between melt inclusions in olivine and augite crystals would suggest a xenocrystic origin for olivine. Furthermore, electron diffraction patterns clearly indicated that the SiO2-rich phase in inclusions from augite in meteorites from Northwest Africa site is re-crystallized, whereas it is still vitreous in the inclusions from Nakhla sampling site. Therefore, different post-entrapment evolutions were active for the two nakhlite meteorite sets, the Nakhla and the NWA817 set. Melt inclusions in Nakhla olivine presented alteration veins, which were presumably produced before their landing on Earth. If this is the case, this would indicate a alteration stage already on Mars with all the consequence in terms of climate history. Melt inclusions in Nakhla augite resulted unaffected by any alteration or modification following the entrapment, and therefore represent the best candidate to indicate the pristine magma composition. (c) 2005 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Pergamon Place of Publication Oxford Editor  
  Language Wos 000235509900028 Publication Date 2005-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited 9 Open Access  
  Notes Approved Most recent IF: 4.162; 2006 IF: 2.810  
  Call Number UA @ lucian @ c:irua:95092 Serial 4519  
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Meynen, V.; De Wael, K. pdf  url
doi  openurl
  Title An adhesive conducting electrode material based on commercial mesoporous titanium dioxide as a support for Horseradish peroxidase for bioelectrochemical applications Type A1 Journal article
  Year 2016 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal (up) Talanta  
  Volume 146 Issue Pages 689-693  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract An adhesive conducting electrode material containing of graphite, biocompatible ion exchange polymer nafion® and commercial mesoporous TiO2 impregnated with horseradish peroxidase (HRP) is prepared and characterized by amperometric, UVvis and N2 sorption methods. The factors influencing the performance of the resulting biosensor are studied in detail. The optimal electrode material consists of 45% graphite, 50% impregnated HRPTiO2 and 5% nafion®. The optimum conditions for H2O2 reduction are an applied potential of 0.3 V and 0.1 mM hydroquinone. Sensitivity and limit of detection in the optimum conditions are 1 A M−1 cm−2 and 1 µM correspondingly. The N2 sorption results show that the pore volume of TiO2 decreases sharply upon adsorption of HRP. The preparation process of the proposed enzyme electrode is straightforward and potentially can be used for preparation of carbon paste electrodes for bioelectrochemical detections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000363815600093 Publication Date 2015-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited 7 Open Access  
  Notes ; The authors thank the Fund for Scientific Research – Flanders (FWO) (Grant G.0687.13), the GOA-BOF UA 2013-2016 (project-ID 28312) for funding and Ward Huybrechts of the University of Antwerp, Laboratory of Adsorption and Catalysis (LADCA) for help with the N<INF>2</INF> sorption. ; Approved Most recent IF: 4.162  
  Call Number UA @ admin @ c:irua:126495 Serial 5458  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: