toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M.N.; Dixit, H.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title A simplified approach to the band gap correction of defect formation energies : Al, Ga, and In-doped ZnO Type A1 Journal article
  Year (down) 2013 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids  
  Volume 74 Issue 1 Pages 45-50  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the HeydScuseriaErnzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000311062500009 Publication Date 2012-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3697; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.059 Times cited 36 Open Access  
  Notes Fwo; Bof-Nio Approved Most recent IF: 2.059; 2013 IF: 1.594  
  Call Number UA @ lucian @ c:irua:101782 Serial 3004  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: