toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Iyikanat, F.; Senger, R.T.; Peeters, F.M.; Sahin, H.
  Title Quantum-Transport Characteristics of a p-n Junction on Single-Layer TiS3 Type A1 Journal article
  Year (down) 2016 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
  Volume 17 Issue 17 Pages 3985-3991
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract By using density functional theory and non-equilibrium Green's function-based methods, we investigated the electronic and transport properties of a TiS3 monolayer p-n junction. We constructed a lateral p-n junction on a TiS3 monolayer using Li and F adatoms. An applied bias voltage caused significant variability in the electronic and transport properties of the TiS3 p-n junction. In addition, the spin-dependent current-volt-age characteristics of the constructed TiS3 p-n junction were analyzed. Important device characteristics were found, such as negative differential resistance and rectifying diode behaviors for spin-polarized currents in the TiS3 p-n junction. These prominent conduction properties of the TiS3 p-n junction offer remarkable opportunities for the design of nanoelectronic devices based on a recently synthesized single-layered material.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000389534800018 Publication Date 2016-09-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.075 Times cited 12 Open Access
  Notes ; This work was supported by the bilateral project between TUBITAK (through Grant No. 113T050) and the Flemish Science Foundation (FWO-Vl). The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). FI, HS, and RTS acknowledge the support from TUBITAK Project No 114F397. H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.075
  Call Number UA @ lucian @ c:irua:140245 Serial 4458
Permanent link to this record
 

 
Author Belov, I.; Paulussen, S.; Bogaerts, A.
  Title Analysis and comparison of the co2 and co dielectric barrier discharge solid products Type P1 Proceeding
  Year (down) 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The CO and CO2 Dielectric Barrier Discharges (DBD) and their solid products were analyzed keeping similar energy input regimes. Gas chromatography analysis revealed the presence of CO2, CO and O-2 mixture in the exhaust of the CO2 DBD, while no O-2 was found when CO was used as a feed gas. It was shown that the C-2 Swan lines observed with optical emission spectroscopy were distinct in the CO plasma while they were not observed in the CO2 emission spectrum. Also the solid products of the plasmas exhibited remarkable differences. Nanoparticles with a diameter between10 and 300 nm, composed of Fe, O and C (Fe: O: C similar to 13: 50: 30) were produced by the CO2 DBD, while microscopic dendrite-like carbon structure (C: O similar to 73: 27) were formed in the CO plasma. The growth rate in the CO2 and CO DBDs was evaluated to be on the level of 0.15 mg/min and 15 mg/min, respectively. The difference of the CO and CO2 discharges and their products might be attributed to the oxygen content in the latter (6.4 mol.% O-2 in the exhaust) and subsequent etching of the carbonaceous film.
  Address
  Corporate Author Thesis
  Publisher Masarykova univ Place of Publication Brno Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-80-210-8318-9 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:141554 Serial 4516
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Berthelot, A.; Heijkers, S.; Wang, W.; Sun, S.; Van Laer, K.; Ramakers, M.; Michielsen, I.; Uytdenhouwen, Y.; Meynen, V.; Cool, P.
  Title Plasma based co2 conversion: a combined modeling and experimental study Type P1 Proceeding
  Year (down) 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In recent years there is increased interest in plasma-based CO2 conversion. Several plasma setups are being investigated for this purpose, but the most commonly used ones are a dielectric barrier discharge (DBD), a microwave (MW) plasma and a gliding arc (GA) reactor. In this proceedings paper, we will show results from our experiments in a (packed bed) DBD reactor and in a vortex-flow GA reactor, as well as from our model calculations for the detailed plasma chemistry in a DBD, MW and GA, for pure CO2 as well as mixtures of CO2 with N-2, CH4 and H2O.
  Address
  Corporate Author Thesis
  Publisher Masarykova univ Place of Publication Brno Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-80-210-8318-9 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:141553 Serial 4526
Permanent link to this record
 

 
Author De Dobbelaere, C.; Lourdes Calzada, M.; Bretos, I.; Jimenez, R.; Ricote, J.; Hadermann, J.; Hardy, A.; Van Bael, M.K.
  Title Gaining new insight into low-temperature aqueous photochemical solution deposited ferroelectric PbTiO3 films Type A1 Journal article
  Year (down) 2016 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys
  Volume 174 Issue Pages 28-40
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The nature of the low-temperature photochemical assisted formation process of ferroelectric lead titanate (PbTiO3) films is studied in the present work. Films are obtained by the deposition of an aqueous solution containing citric acid based (citrato) metal ion complexes with intrinsic UV activity. This UV activity is crucial for the aqueous photochemical solution deposition (aqueous PCSD) route being used. UV irradiation enhances the early decomposition of organics and results in improved electrical properties for the crystalline oxide film, even if the film is crystallized at low temperature. GATR-FTIR shows that UV irradiation promotes the decomposition of organic precursor components, resulting in homogeneous films if applied in the right temperature window during film processing. The organic content, morphology and crystallinity of the irradiated films, achieved at different processing atmospheres and temperatures, is studied and eventually correlated to the functional behavior of the obtained films. This is an important issue, as crystalline films obtained at low temperatures often lack ferroelectric responses. In this work, the film prepared in pure oxygen at the very low temperature of 400 degrees C and after an optimized UV treatment presents a significant remanent polarization value of P-r = 8.8 mu C cm(-2). This value is attributed to the better crystallinity, the larger grain size and the reduced porosity obtained thanks to the early film crystallization effectively achieved through the UV treatment in oxygen. (C) 2016 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000373865700005 Publication Date 2016-03-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.084 Times cited 4 Open Access
  Notes Approved Most recent IF: 2.084
  Call Number UA @ lucian @ c:irua:144729 Serial 4659
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Gulseren, O.; Peeters, F.M.
  Title Mo2C as a high capacity anode material: a first-principles study Type A1 Journal article
  Year (down) 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
  Volume 4 Issue 16 Pages 6029-6035
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g(-1) by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000374790700033 Publication Date 2016-03-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.867 Times cited 202 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C. S. acknowledges the support from Turkish Academy of Sciences (TUBA-GEBIP). C. S acknowledges the support from Anadolu University (Grant No. 1407F335). We acknowledge the support from TUBITAK, The Scientific and Technological Research Council of Turkey (Grant No. 115F024). ; Approved Most recent IF: 8.867
  Call Number UA @ lucian @ c:irua:144763 Serial 4669
Permanent link to this record
 

 
Author Kamaraj, B.; Purohit, R.
  Title Mutational Analysis on Membrane Associated Transporter Protein (MATP) and Their Structural Consequences in Oculocutaeous Albinism Type 4 (OCA4)A Molecular Dynamics Approach Type A1 Journal article
  Year (down) 2016 Publication Journal of cellular biochemistry Abbreviated Journal J Cell Biochem
  Volume 117 Issue 11 Pages 2608-2619
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000383626800017 Publication Date 2016-03-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0730-2312 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.085 Times cited 28 Open Access
  Notes Approved Most recent IF: 3.085
  Call Number UA @ lucian @ c:irua:144634 Serial 4671
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Meynen, V.; De Wael, K.
  Title An adhesive conducting electrode material based on commercial mesoporous titanium dioxide as a support for Horseradish peroxidase for bioelectrochemical applications Type A1 Journal article
  Year (down) 2016 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal Talanta
  Volume 146 Issue Pages 689-693
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract An adhesive conducting electrode material containing of graphite, biocompatible ion exchange polymer nafion® and commercial mesoporous TiO2 impregnated with horseradish peroxidase (HRP) is prepared and characterized by amperometric, UVvis and N2 sorption methods. The factors influencing the performance of the resulting biosensor are studied in detail. The optimal electrode material consists of 45% graphite, 50% impregnated HRPTiO2 and 5% nafion®. The optimum conditions for H2O2 reduction are an applied potential of 0.3 V and 0.1 mM hydroquinone. Sensitivity and limit of detection in the optimum conditions are 1 A M−1 cm−2 and 1 µM correspondingly. The N2 sorption results show that the pore volume of TiO2 decreases sharply upon adsorption of HRP. The preparation process of the proposed enzyme electrode is straightforward and potentially can be used for preparation of carbon paste electrodes for bioelectrochemical detections.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000363815600093 Publication Date 2015-06-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.162 Times cited 7 Open Access
  Notes ; The authors thank the Fund for Scientific Research – Flanders (FWO) (Grant G.0687.13), the GOA-BOF UA 2013-2016 (project-ID 28312) for funding and Ward Huybrechts of the University of Antwerp, Laboratory of Adsorption and Catalysis (LADCA) for help with the N<INF>2</INF> sorption. ; Approved Most recent IF: 4.162
  Call Number UA @ admin @ c:irua:126495 Serial 5458
Permanent link to this record
 

 
Author Trashin, S.; De Jong, M.; Meynen, V.; Dewilde, S.; De Wael, K.
  Title Attaching redox proteins onto electrode surfaces by bis-silane Type A1 Journal article
  Year (down) 2016 Publication ChemElectroChem Abbreviated Journal Chemelectrochem
  Volume 3 Issue 7 Pages 1035-1038
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Immobilization of redox proteins on electrode surfaces is of special interest for mechanistic studies and applications because of a well-controlled redox state of protein molecules by a polarized electrode and fast electron transfer kinetics, free from diffusion limitation. Here, bis-organosilane (1,2-bis(trimethoxysilyl)ethane) was applied as a fresh solution in a pH 7 phosphate buffer without use of any organic solvent, sol-gel or mesoporous bulk matrix. A short aging period of 30 minutes before deposition on the electrodes was optimal for the immobilization of proteins. Three redox proteins (cytochrome c, neuroglobin and GLB-12) were confined to the gold surface of electrodes with high coverages and stability, indicating that the suggested technique is simple, efficient and generic in nature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000380043500001 Publication Date 2016-03-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.136 Times cited 4 Open Access
  Notes ; The authors thank the Fund for Scientific Research-Flanders (FWO) (Grant G.0687.13) and the GOA-BOF UA 2013-2016 (project ID 28312) for funding. ; Approved Most recent IF: 4.136
  Call Number UA @ admin @ c:irua:132628 Serial 5485
Permanent link to this record
 

 
Author van der Snickt, G.; Legrand, S.; Caen, J.; Vanmeert, F.; Alfeld, M.; Janssens, K.
  Title Chemical imaging of stained-glass windows by means of macro X-ray fluorescence (MA-XRF) scanning Type A1 Journal article
  Year (down) 2016 Publication Microchemical journal Abbreviated Journal Microchem J
  Volume 124 Issue Pages 615-622
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
  Abstract Since the recent development of a mobile setup, MA-XRF scanning proved a valuable tool for the non-invasive, technical study of paintings. In this work, the applicability of MA-XRF scanning for investigating stained-glass windows inside a conservation studio is assessed by analysis of a high-profile, well-studied late-mediaeval panel. Although accurate quantification of components is not feasible with this analytical imaging technique, plotting the detected intensities of K versus Ca in a scatter plot allowed distinguishing glass fragments of different compositional types within the same panel. In particular, clusters in the Ca/K correlation plot revealed the presence of two subtypes of potash glass and three subtypes of high lime low alkali glass. MA-XRF results proved consistent with previous quantitative SEM-EDX analysis on two samples and analytical-based theories on glass production in the Low Countries formulated in literature. A bi-plot of the intensities of the more energetic Rb-K versus Sr-K emission lines yielded a similar glass type differentiation and is here presented as suitable alternative in case the Ca/K signal ratio is affected by superimposed weathering crusts. Apart from identification of the chromophores responsible for the green, blue and red glass colors, contrasting the associated elemental distribution maps obtained on the exterior and interior side of the glass permitted discriminating between colored pot metal glass and multi-layered flashed glass as well. Finally, the benefit of obtaining compositional information from the entire surface, as opposed to point analysis, was illustrated by the discovery of what appears to be a green cobalt glass a feature that was previously missed on this well-studied stained-glass window, both by connoisseurs and spectroscopic sample analysis. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000367755600074 Publication Date 2015-10-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.034 Times cited 22 Open Access
  Notes ; The staff of the Museums of the City of Bruges, i.e. Director Till-Holger Borchert and Deputy Curator Kristel Van Audenaeren, are acknowledged for this pleasant collaboration and the authorization for the publication of the images in this article. This research was supported by the InBev-Baillet Latour fund. ; Approved Most recent IF: 3.034
  Call Number UA @ admin @ c:irua:131100 Serial 5514
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Cotte, M.; Sorace, L.; Vanmeert, F.; Brunetti, B.G.; Miliani, C.
  Title Chromium speciation methods and infrared spectroscopy for studying the chemical reactivity of lead chromate-based pigments in oil medium Type A1 Journal article
  Year (down) 2016 Publication Microchemical journal T2 – TECHNART Conference, APR 27-30, 2015, Catania, ITALY Abbreviated Journal Microchem J
  Volume 124 Issue Pages 272-282
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Environmental factors, such as light, humidity and temperature are triggering agents for the alteration of organic and/or inorganic constituents of oil paintings. The oxidation of the organic material is favored by increasing of relative humidity and temperature, whereas processes involving changes of the oxidation states of a number of inorganic pigments (e.g., vermilion, cadmium yellows, zinc yellows, chrome yellows) are mainly activated by light-exposure. In view of the optimization of the long-term conservation and restoration strategies of paintings it is of relevant interest to establish the consequences of thermal parameters (temperature and relative humidity) on the chemical/photochemical-reactivity and the nature of the alteration products of light sensitive-pigments in oil medium. To this aim here we propose a multi-method analytical approach based on the combination of diffuse reflectance UV-Vis, FTIR, synchrotron radiation (SR)-based micro X-ray fluorescence (mu-XRF)/micro-X-ray absorption neat edge structure ()CANES) and electron paramagnetic resonance (EPR) spectroscopies for studying the effects of different relative humidity conditions before and after light exposure on the reactivity of a series of lead chromate-based pigments [such as PbCrO4 center dot PbO (monoclinic), PbCrO4 (monoclinic) and PbCr0.2S0.8O4 (orthorhombic)] in an oil medium. The investigation of paint models was also compared to that of a late 19th century historical orthorhombic PbCr0.4S0.6O4 oil paint. Diffuse reflectance UV-Vis and FTIR spectroscopies were used to obtain information associated with chromatic changes and the formation of organo-metal degradation products at the paint surface. SR-based Cr K-edge mu-XANES/mu-XRF mapping analysis and EPR spectroscopy were employed in a complementary fashion to determine the amount, nature and distribution of Cr(III) and Cr(V)-based alteration compounds within the paints with micrometric spatial resolution. Under the employed thermal aging conditions, lead(II)-carboxylates and reduced Cr-compounds (in abundance of up to about 35% at the surface) have been identified in the lead chromate-based paints. The tendency of chromates to become reduced increased with increasing moisture levels and was favored for the orthorhombic PbCr0.2S0.8O4 compounds. The redox process gave rise to the formation of Cr(V)-species in relative amount much higher than that was formed in the equivalent paint which was exposed only to light. After light-exposure of the thermally aged paints, compounds ascribable to the oxidation of the organic binder were detected for all the types of pigments. Nevertheless, the previous thermal treatment increased the tendency toward photo-reduction of only the PbCr0.2S0.8O4 pigment. For this light-sensitive compound, the thickness variation of the reduced Cr-rich (ca. 70%) photo-alteration layer with moisture levels could be ascribed to a surface passivation phenomenon that had already occurred before photochemical aging. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000367755600042 Publication Date 2015-09-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.034 Times cited 23 Open Access
  Notes ; ; Approved Most recent IF: 3.034
  Call Number UA @ admin @ c:irua:131099 Serial 5519
Permanent link to this record
 

 
Author Trashin, S.; De Jong, M.; Luyckx, E.; Dewilde, S.; De Wael, K.
  Title Electrochemical evidence for neuroglobin activity on NO at physiological concentrations Type A1 Journal article
  Year (down) 2016 Publication Journal of biological chemistry Abbreviated Journal J Biol Chem
  Volume 291 Issue 36 Pages 18959-18966
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The true function of neuroglobin (Ngb) and, particularly, human Ngb (NGB) has been under debate since its discovery 15 years ago. It has been expected to play a role in oxygen binding/supply, but a variety of other functions have been put forward, including NO dioxygenase activity. However, in vitro studies that could unravel these potential roles have been hampered by the lack of an Ngb-specific reductase. In this work, we used electrochemical measurements to investigate the role of an intermittent internal disulfide bridge in determining NO oxidation kinetics at physiological NO concentrations. The use of a polarized electrode to efficiently interconvert the ferric (Fe3+) and ferrous (Fe2+) forms of an immobilized NGB showed that the disulfide bridge both defines the kinetics of NO dioxygenase activity and regulates appearance of the free ferrous deoxy-NGB, which is the redox active form of the protein in contrast to oxy-NGB. Our studies further identified a role for the distal histidine, interacting with the hexacoordinated iron atom of the heme, in oxidation kinetics. These findings may be relevant in vivo, for example in blocking apoptosis by reduction of ferric cytochrome c, and gentle tuning of NO concentration in the tissues.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000383242300031 Publication Date 2016-07-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9258; 1083-351x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.125 Times cited 11 Open Access
  Notes ; This work was supported by Fonds Wetenschappelijk Onderzoek (FWO) Grant G.0687.13 and Universiteit Antwerpen GOA BOF 28312. The authors declare that they have no conflicts of interest with the contents of this article. ; Approved Most recent IF: 4.125
  Call Number UA @ admin @ c:irua:134340 Serial 5590
Permanent link to this record
 

 
Author De Jong, M.; Sleegers, N.; Kim, J.; Van Durme, F.; Samyn, N.; Wang, J.; De Wael, K.
  Title Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders Type A1 Journal article
  Year (down) 2016 Publication Chemical science Abbreviated Journal Chem Sci
  Volume Issue Pages 1-7
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract We report on a wearable fingertip sensor for on-the-spot identification of cocaine and its cutting agents in street samples. Traditionally, on-site screening is performed by means of colour tests which are difficult to interpret and lack selectivity. By presenting the distinct voltammetric response of cocaine, cutting agents, binary mixtures of cocaine and street samples in solution and powder street samples, we were able to elucidate the electrochemical fingerprint of all these compounds. The new electrochemical concept holds considerable promise as an on-site screening method.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000371021900094 Publication Date 2016-01-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.668 Times cited 37 Open Access
  Notes ; The authors acknowledge BELSPO for funding the APTADRU project (BR/314/PI/ APTADRU). ; Approved Most recent IF: 8.668
  Call Number UA @ admin @ c:irua:130404 Serial 5591
Permanent link to this record
 

 
Author Thirumalraj, alamurugan; Palanisamy, S.; Chen, S.-M.; De Wael, K.
  Title A graphene/gelatin composite material for the entrapment of hemoglobin for bioelectrochemical sensing applications Type A1 Journal article
  Year (down) 2016 Publication Journal of the electrochemical society Abbreviated Journal J Electrochem Soc
  Volume 163 Issue 7 Pages 265-271
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract In the present work, a novel graphene (GN) and gelatin (GTN) composite was prepared and used as an immobilization matrix for hemoglobin (Hb). Compared with Hb immobilized on a bare, GN or GTN modified glassy carbon electrode (GCE), a stable and pair of well-defined quasi redox couple was observed at an Hb modified GN/GTN composite GCE at a formal potential of −0.306 V versus Ag|AgCl. The direct electrochemical behavior of Hb was greatly enhanced by the presence of both GTN and GN. A heterogeneous electron transfer rate constant (Ks) was calculated as 3.82 s−1 for Hb immobilized at GN/GTN modified GCE, which indicates the fast direct electron transfer of Hb toward the electrode surface. The biosensor shows a stable and wide linear response for H2O2 in the linear response range from 0.1 μM to 786.6 μM with an analytical sensitivity and limit of detection of 0.48 μAμM−1 cm−2 and 0.04 μM, respectively. The fabricated biosensor holds its high selectivity in the presence of potentially active interfering species and metal ions. The biosensor shows its satisfactory practical ability in the commercial contact lens solution and human serum samples.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000377412900047 Publication Date 2016-04-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0013-4651 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.259 Times cited 9 Open Access
  Notes ; This project was supported by the Ministry of Science and Technology (project no. NSC1012113M027001MY3), Taiwan (Republic of China). The authors express their sincere thanks to Prof. Bih-Show Lou, Chemistry Division, Center for General Education, Chang Gung University, Tao-Yuan, Taiwan for providing the human serum samples. ; Approved Most recent IF: 3.259
  Call Number UA @ admin @ c:irua:132627 Serial 5635
Permanent link to this record
 

 
Author Pauwels, D.; Hereijgers, J.; Verhulst, K.; De Wael, K.; Breugelmans, T.
  Title Investigation of the electrosynthetic pathway of the aldol condensation of acetone Type A1 Journal article
  Year (down) 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
  Volume 289 Issue Pages 554-561
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
  Abstract The potential-controlled electrochemical aldol condensation of acetone to diacetone alcohol in a standard batch electrolysis set-up was studied in this work. It is confirmed that the reaction proceeds at the cathode and that, contrary to what is mentioned in earlier literature, water in the electrolyte has a disadvantageous effect on the reaction. Similar to the chemical reaction, the electrochemical reaction reaches a maximum yield when the equilibrium is reached. Separating the anode and cathode prevents cross-over and degradation of products, leading to a higher yield. Starting with pure acetone and support electrolyte, it was possible to obtain a diacetone alcohol concentration of 15 m% after two hours electrolysis in a divided set-up with a platinum electrode at -2.5 V. The concentration gradient throughout the electrolysis follows an exponential curve up to its equilibrium concentration.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000371559900061 Publication Date 2016-01-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.216 Times cited 6 Open Access
  Notes ; ; Approved Most recent IF: 6.216
  Call Number UA @ admin @ c:irua:130396 Serial 5675
Permanent link to this record
 

 
Author Ricciardi, P.; Legrand, S.; Bertolotti, G.; Janssens, K.
  Title Macro X-ray fluorescence (MA-XRF) scanning of illuminated manuscript fragments: potentialities and challenges Type A1 Journal article
  Year (down) 2016 Publication Microchemical journal T2 – TECHNART Conference, APR 27-30, 2015, Catania, ITALY Abbreviated Journal Microchem J
  Volume 124 Issue Pages 785-791
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Macro X-ray fluorescence scanning (MA-XRF) is gradually becoming an established technique for the non-invasive analytical investigation of painted surfaces. This paper discusses some of the benefits and limitations of employing MA-XRF for the study of manuscript illuminations. Art historical research on this type of artefacts that is based on scientific measurements is often limited by the fact that usually no sampling can take place. Hence there is a need for non-invasive analytical tools that make it possible to conduct systematic investigations. As a representative example of this type of objects, a 15th century Italian manuscript fragment from the collection of the Fitzwilliam Museum in Cambridge (UK) is investigated. The aims of the study were to gain insight into the materials and techniques employed by Renaissance illuminators and to help answer specific questions regarding the fragment's authorship and geographic origin. The complementarity and advantages of MA-XRF mapping versus site-specific analyses are discussed. For this purpose, MA-XRF data are evaluated and compared with the results of other analytical techniques. The interpretation of the elemental maps is discussed along with the challenges faced during the analysis. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000367755600096 Publication Date 2015-10-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.034 Times cited 24 Open Access
  Notes ; ; Approved Most recent IF: 3.034
  Call Number UA @ admin @ c:irua:144767 Serial 5698
Permanent link to this record
 

 
Author Pauwels, D.; Pilehvar, S.; Geboes, B.; Hubin, A.; De Wael, K.; Breugelmans, T.
  Title A new multisine-based impedimetric aptasensing platform Type A1 Journal article
  Year (down) 2016 Publication Electrochemistry communications Abbreviated Journal Electrochem Commun
  Volume 71 Issue Pages 23-27
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)
  Abstract In this work an aptamer-based biosensor is combined with a multisine electrochemical impedance spectroscopy sensing methodology into a novel and promising biosensing strategy. Employing a multisine instead of a traditional single sine measuring method allows the detection and quantification of parameters that provide information about the accuracy and reliability of the results, such as noise and distortions. This does not only lead to a shorter measurement time, but it also enables an easy and fast evaluation of the quality of the data and fitting, leading to more accurate results.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000383445000006 Publication Date 2016-07-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.396 Times cited 1 Open Access
  Notes ; ; Approved Most recent IF: 4.396
  Call Number UA @ admin @ c:irua:134765 Serial 5746
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Alfeld, M.; Noble, P.; van Loon, A.; Delaney, J.; Conover, D.; Zeibel, J.; Dik, J.
  Title Rembrandt's 'Saul and David' (c. 1652) : use of multiple types of smalt evidenced by means of non-destructive imaging Type A1 Journal article
  Year (down) 2016 Publication Microchemical journal Abbreviated Journal Microchem J
  Volume 126 Issue Pages 515-523
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The painting Saul and David, considered to date from c. 1652 and previously attributed to Rembrandt van Rijn and/or his studio, is a complex work of art that has been recently subjected to intensive investigation and conservation treatment. The goal of the research was to give insight into the painting's physical construction and condition in preparation for conservation treatment. It was also anticipated that analysis would shed light on authenticity questions and Rembrandt's role in the creation of the painting. The painting depicts the Old Testament figures of King Saul and David. At left is Saul, seated, holding a spear and wiping a tear from his eye with a curtain. David kneels before him at the right playing his harp. In the past, the large sections with the life-size figures were cut apart and later reassembled. A third piece of canvas was added to replace a missing piece of canvas above the head of David. As part of the investigation into the authenticity of the curtain area, a number of paint micro samples were examined with LM and SEM-EDX. Given that the earth, smalt and lake pigments used in the painting could not be imaged with traditional imaging techniques, the entire painting was also examined with state of the art non-destructive imaging techniques. Special attention was devoted to the presence of cobalt-containing materials, specifically the blue glass pigment smalt considered characteristic for the late Rembrandt. A combination of quantitative electron microprobe analysis and macroscopic X-ray fluorescence scanning revealed that three types of cobalt-containing materials are present in the painting. The first type is a cobalt drier that was found in the overpaint used to cover up the canvas inset and the joins that were added in the 19th century. The other two Co-containing materials are part of the original paint used by Rembrandt and comprise two varieties of smalt, a K-rich glass pigment that derives its gray-blue color by doping with Co-ions. Smalt paint with a higher Ni content (NiO:CoO ratio of around 1:4) was used to depict the blue stripes in Saul's colorful turban, while smalt with a lower Ni content was employed (NiO:CoO ratio of around 1:5) for the broad expanses of Saul's garments. The presence of two types of smalt not only supports the recent re-attribution of the painting to Rembrandt, but also that the picture was painted in two phases. Saul's dark red garment is painted in a rough, “loose” manner and the now discolored smalt-rich layer was found to have been partially removed during a past restoration treatment/s. In contrast, the blue-green smalt in the turban is much better preserved and provides a colorful accent. While the use of different types of smalt in a Rembrandt painting has been previously identified using quantitative EDX analysis of paint cross-sections, to the best of our knowledge this is the first time such a distinction has been observed in a 17th-century painting using non-destructive imaging techniques. In addition to the XRF-based non-invasive elemental mapping, hyperspectral imaging in the visual to near-infrared (VNIR) region was also carried out. (C) 2016 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000373647500063 Publication Date 2016-01-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.034 Times cited 18 Open Access
  Notes ; This research is part of the ReVisualising late Rembrandt: Developing and Applying New Imaging Techniques research project, supported by the Science4Arts research program of the Netherlands Organisation for Scientific Research (NWO, The Hague, NL, ReVisRembrandt project) and the National Science Foundation (NSF, Washington DC, USA, award 1041827). We would like to thank colleagues of the Mauritshuis (The Hague, NL) and the Dutch Cultural Heritage Agency (RCE) in Rijswijk, NL for their support and assistance during the scanning of the Saul and David painting. The GOA project “SOLARPAINT” (University of Antwerp) and the Fund Baillet Latour (Brussels, B) are acknowledged for financial support to GvdS and KJ. We also like to acknowledge the help of Eliza Longhini and Stijn Legrand during some of the XRF scanning stages. ; Approved Most recent IF: 3.034
  Call Number UA @ admin @ c:irua:133258 Serial 5813
Permanent link to this record
 

 
Author Hamidi-Asl, E.; Dardenne, F.; Pilehvar, S.; Blust, R.; De Wael, K.
  Title Unique properties of core shell Ag@Au nanoparticles for the aptasensing of bacterial cells Type A1 Journal article
  Year (down) 2016 Publication Chemosensors Abbreviated Journal
  Volume 4 Issue 3 Pages 16
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract In this article, it is shown that the efficiency of an electrochemical aptasensing device is influenced by the use of different nanoparticles (NPs) such as gold nanoparticles (Au), silver nanoparticles (Ag), hollow gold nanospheres (HGN), hollow silver nanospheres (HSN), silvergold core shell (Ag@Au), goldsilver core shell (Au@Ag), and silvergold alloy nanoparticles (Ag/Au). Among these nanomaterials, Ag@Au core shell NPs are advantageous for aptasensing applications because the core improves the physical properties and the shell provides chemical stability and biocompatibility for the immobilization of aptamers. Self-assembly of the NPs on a cysteamine film at the surface of a carbon paste electrode is followed by the immobilization of thiolated aptamers at these nanoframes. The nanostructured (Ag@Au) aptadevice for Escherichia coli as a target shows four times better performance in comparison to the response obtained at an aptamer modified planar gold electrode. A comparison with other (core shell) NPs is performed by cyclic voltammetry and differential pulse voltammetry. Also, the selectivity of the aptasensor is investigated using other kinds of bacteria. The synthesized NPs and the morphology of the modified electrode are characterized by UV-Vis absorption spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, and electrochemical impedance spectroscopy.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000382480000006 Publication Date 2016-08-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2227-9040 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 9 Open Access
  Notes ; Ezat Hamidi-Asl was financially supported by Belspo (University of Antwerp). The authors are thankful to Femke De Croock for her technical support and to Stanislav Trashin for his worthwhile comments on the manuscript. ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:135411 Serial 5886
Permanent link to this record
 

 
Author Ayalew, E.; Janssens, K.; De Wael, K.
  Title Unraveling the reactivity of minium towards bicarbonate and the role of lead oxides therein Type A1 Journal article
  Year (down) 2016 Publication Analytical chemistry Abbreviated Journal Anal Chem
  Volume 88 Issue 3 Pages 1564-1569
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Understanding the reactivity of (semiconductor) pigments provides vital information on how to improve conservation strategies for works of art in order to avoid rapid degradation of the pigments. This study focuses on the photoactivity of minium (Pb3O4), a semiconductor pigment, that gives rise to strong discoloration phenomena upon exposure to various environmental conditions. To demonstrate its photoactivity, an electrochemical setup with minium-modified graphite electrode (C|Pb3O4) was used. It is confirmed that minium is a p-type semiconductor which is photoactive during illumination and becomes inactive in the dark. Raman measurements confirm the formation of the degradation products. The photoactivity of a semiconductor pigment is partly defined by the presence of lead oxide (PbO) impurities; these introduce new states in the original band gap. It will be experi-mentally evidenced that the presence of PbO particles in minium leads to an upward shift of the valence band that reduces the band gap. Thus, upon photoexcitation, the electron/hole separation is more easily initialized. The PbO/Pb3O4 composite electrodes demonstrate a higher reductive photocurrent compared to the photocurrent registered at pure PbO or Pb3O4 modified electrodes. Upon exposure to light with energy close to and above the band gap, electrons are excited from the valence band to the conduction band to initialize the reduction of Pb(IV) to Pb(II), resulting in the initial formation of PbO. However in the presence of bicarbonate ions, a significantly higher photoreduction current is recorded since the PbO reacts further to form hydrocerussite. Therefore the presence of bicarbonates in the environment stimulates the photodecomposition process of minium and plays an important role in the degradation process.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000369471100014 Publication Date 2015-12-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.32 Times cited 9 Open Access
  Notes ; The authors acknowledge Sanne Aerts from the Laboratory of Adsorption and Catalysis (LADCA) of the University of Antwerp for her help with the UV-vis-DR. Financial support from the SOLARPAINT BOF-GOA project (University of Antwerp Research Council) is acknowledged. The authors are also indebted to F. Vanmeert for performing the XRD measurements. ; Approved Most recent IF: 6.32
  Call Number UA @ admin @ c:irua:129963 Serial 5888
Permanent link to this record
 

 
Author van Walsem, J.; Verbruggen, S.W.; Modde, B.; Lenaerts, S.; Denys, S.
  Title CFD investigation of a multi-tube photocatalytic reactor in non-steady-state conditions Type A1 Journal article
  Year (down) 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
  Volume 304 Issue Pages 808-816
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract A novel multi-tube photoreactor is presented with a high efficiency (over 90% conversion) toward the degradation of acetaldehyde in air under UV conditions with an incident intensity of 2.1 mW cm−2. A CFD model was developed to simulate the transient adsorption and photocatalytic degradation processes of acetaldehyde in this reactor design and to estimate the corresponding kinetic parameters through an optimization routine using the experimentally determined outlet concentration profiles. The CFD model takes into account the entire reactor geometry and all relevant flow parameters, in contrast to analytical methods that often oversimplify the physical and chemical process characteristics. Using CFD, we show that both adsorption and desorption rate constants increase by respectively one and two orders of magnitude when the UV light is switched on, which clearly affects the transient behavior. The agreement of the experimental and modelled concentration profiles is excellent as evidenced by a coefficient of determination of at least 0.965. To demonstrate the reliability and accuracy of all parameters obtained from the modelling approach, an ultimate validation test was performed using other conditions than the ones used for estimating the kinetic parameters. The model was able to accurately simulate simultaneous adsorption, desorption and photocatalytic degradation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000384777200089 Publication Date 2016-07-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.216 Times cited 10 Open Access
  Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. ; Approved Most recent IF: 6.216
  Call Number UA @ admin @ c:irua:139620 Serial 5933
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; van Walsem, J.; Tytgat, T.; Lenaerts, S.; Denys, S.
  Title CFD modeling of transient adsorption/desorption behavior in a gas phase photocatalytic fiber reactor Type A1 Journal article
  Year (down) 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
  Volume 292 Issue Pages 42-50
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract We present the use of computational fluid dynamics (CFD) for accurately determining the adsorption parameters of acetaldehyde on photocatalytic fiber filter material, integrated in a continuous flow system. Unlike the traditional analytical analysis based on Langmuir adsorption, not only steady-state situations but also transient phenomena can be accounted for. Air displacement effects in the reactor and gas detection cell are investigated and inherently made part of the model. Incorporation of a surface aldol condensation reaction in the CFD analysis further improves the accuracy of the model which enables to extract precise, intrinsic adsorption parameters for situations in which analytical analysis would otherwise fail.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000373648000005 Publication Date 2016-02-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.216 Times cited 12 Open Access
  Notes ; S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. M.K. acknowledges the IWT for a Ph.D. fellowship. Konstantina Kalafata and Ioanna Fasaki are greatly thanked for providing the NanoPhos suspension. Bioscience Engineering bachelor students M. Gerritsma, J. Helsen and Y. Riahi Drif are thanked for their assistance in performing the adsorption experiments. ; Approved Most recent IF: 6.216
  Call Number UA @ admin @ c:irua:130876 Serial 5934
Permanent link to this record
 

 
Author Sóti, V.; Jacquet, N.; Apers, S.; Richel, A.; Lenaerts, S.; Cornet, I.
  Title Monitoring the laccase reaction of vanillin and poplar hydrolysate Type A1 Journal article
  Year (down) 2016 Publication Journal of chemical technology and biotechnology Abbreviated Journal J Chem Technol Biot
  Volume 91 Issue 6 Pages 1914-1922
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
  Abstract BACKGROUND Laccase is an intensively researched enzyme for industrial use. Except for decolorisation measurements, HPLC analysis is the conventional method for monitoring the phenolic removal during laccase enzyme reaction. This paper reports an investigation of the continuous UV absorbance follow-up of the laccase reaction with steam pretreated poplar hydrolysate. RESULTS Vanillin was used as a model substrate and lignocellulose xylose rich fraction (XRF) as a biologically complex substrate for laccase detoxification. The reaction was followed by HPLC-UV as well as by UV spectrometric measurements. Results suggest that the reaction can be successfully monitored by measuring the change of UV absorbance at 280 nm, without previous compound separation. In case of XRF experiments the spectrophotometric follow-up is especially useful, as HPLC analysis takes a long time and provides less information than in case of single substrates. The method seems to be suitable for optimization and process control. CONCLUSION The obtained results can help to construct a fast, easy and straightforward monitoring system for laccase-phenolic substrate reactions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000375768300040 Publication Date 2015-07-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.135 Times cited 3 Open Access
  Notes ; This research is financed by the University of Antwerp (project number 15 FA100 002). ; Approved Most recent IF: 3.135
  Call Number UA @ admin @ c:irua:127694 Serial 5972
Permanent link to this record
 

 
Author Spooren, J.; Kim, E.; Horckmans, L.; Broos, K.; Nielsen, P.; Quaghebeur, M.
  Title In-situ chromium and vanadium recovery of landfilled ferrochromium and stainless steel slags Type A1 Journal article
  Year (down) 2016 Publication Chemical engineering journal Abbreviated Journal
  Volume 303 Issue Pages 359-368
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract A novel heap leaching method was investigated for selective removal of chromium (Cr) and-vanadium (V) from ferrochromium (FeCr) and stainless steel (SS) slags. In particular, alkaline oxidative heap leaching was simulated on lab-scale by batch and column leaching tests. The results show a selective leaching of Cr (11-19%) and V (7.0-7.5%) after 64 days of column leaching, with a very low dissolution (<2.2% (FeCr slag) and <0.15% (SS slag)) of matrix elements (e.g. Al, Fe, Si, Mg, Ca), when NaOCl is applied as oxidation agent and NaOH as alkaline agent. Furthermore, the used leaching liquor is reactive for a longer period of time, indicating that circulation of leaching liquor could be possible. Finally, the experimental results were fed into a first-order model which predicts that Cr will continue to leach from the tested slags for 4-5 years at a chosen infiltration rate of 73,000 l/(y m(2)). (C) 2016 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000383522800036 Publication Date 2016-05-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:137104 Serial 8074
Permanent link to this record
 

 
Author Kim, E.; Spooren, J.; Broos, K.; Nielsen, P.; Horckmans, L.; Vrancken, K.C.; Quaghebeur, M.
  Title New method for selective Cr recovery from stainless steel slag by NaOCl assisted alkaline leaching and consecutive BaCrO4 precipitation Type A1 Journal article
  Year (down) 2016 Publication Chemical engineering journal Abbreviated Journal
  Volume 295 Issue Pages 542-551
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract A new hydrometallurgical method was investigated for selective leaching of chromium from stainless steel slag (SS slag) consisting of temperature controlled extraction with NaOH in the presence of NaOCl, followed by water leaching. After parameter optimization of the NaOCl-NaOH extraction step, a selective Cr leaching of 68% was reached, while dissolution of matrix materials was low (Al 0.3%, Ca 2.0%, Si 0.4%). The optimum conditions for the investigated system are: 105 degrees C, 6 h, SS slag particle size <63 mu m, mass ratio of NaOH to SS slag 0.13, and 3.3 mmol NaOCl to 1 g SS slag. The described oxidative alkaline leaching process by hypochlorite enables selective recovery of Cr at a significantly lower temperature and required amount of alkaline agent than molten salt or alkaline roasting processes. BaCrO4 was precipitated to purify and concentrate Cr from the leachate in which also minor amounts of Mn and V were present. This method allowed for a 99.9% Cr recovery rate. The obtained leaching residue shows no alterations of the SS slag's mineralogy with respect to untreated material. Therefore, a known carbonation treatment of the slag can be applied to prepare novel construction materials with a lowered Cr content. (C) 2016 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000375507300059 Publication Date 2016-03-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:133632 Serial 8302
Permanent link to this record
 

 
Author Tyablikov, O.A.; Batuk, D.; Tsirlin, A.A.; Batuk, M.; Verchenko, V.Y.; Filimonov, D.S.; Pokholok, K.V.; Sheptyakov, D.V.; Rozova, M.G.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M.;
  Title {110}-Layered B-cation ordering in the anion-deficient perovskite Pb2.4Ba2.6Fe2Sc2TiO13 with the crystallographic shear structure Type A1 Journal article
  Year (down) 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
  Volume 44 Issue 44 Pages 10753-10762
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A novel anion-deficient perovskite-based compound, Pb2.4Ba2.6Fe2Sc2TiO13, was synthesized via the citrate-based route. This compound is an n = 5 member of the A(n)B(n)O(3n-2) homologous series with unit-cell parameters related to the perovskite subcell a(p) approximate to 4.0 angstrom as a(p)root 2 x a(p) x 5a(p)root 2. The crystal structure of Pb2.4Ba2.6Fe2Sc2TiO13 consists of quasi-2D perovskite blocks with a thickness of three octahedral layers separated by the 1/2[110]((1) over bar 01)(p) crystallographic shear (CS) planes, which are parallel to the {110} plane of the perovskite subcell. The CS planes transform the corner-sharing octahedra into chains of edge-sharing distorted tetragonal pyramids. Using a combination of neutron powder diffraction, Fe-57 Mossbauer spectroscopy and atomic resolution electron energy-loss spectroscopy we demonstrate that the B-cations in Pb2.4Ba2.6Fe2Sc2TiO13 are ordered along the {110} perovskite layers with Fe3+ in distorted tetragonal pyramids along the CS planes, Ti4+ preferentially in the central octahedra of the perovskite blocks and Sc3+ in the outer octahedra of the perovskite blocks. Magnetic susceptibility and Mossbauer spectroscopy indicate a broadened magnetic transition around T-N similar to 45 K and the onset of local magnetic fields at low temperatures. The magnetic order is probably reminiscent of that in other A(n)B(n)O(3n-2) homologues, where G-type AFM order within the perovskite blocks has been observed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000355701000026 Publication Date 2015-01-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.029 Times cited 1 Open Access
  Notes Approved Most recent IF: 4.029; 2015 IF: 4.197
  Call Number c:irua:127001 Serial 22
Permanent link to this record
 

 
Author Huygh, S.; Neyts, E.C.
  Title Adsorption of C and CHx radicals on anatase (001) and the influence of oxygen vacancies Type A1 Journal article
  Year (down) 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue 119 Pages 4908-4921
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The adsorption of C and CHx radicals on anatase (001) was studied using DFT within the generalized gradient approximation using the Perde-Burke-Ernzerhof (PBE) functional. We have studied the influence of oxygen vacancies in and at the surface on the adsorption properties of the radicals. For the oxygen vacancies in anatase (001), the most stable vacancy is located at the surface. For this vacancy, the maximal adsorption strength of C and CH decreases compared to the adsorption on the stoichiometric surface, but it increases for CH2 and CH3. If an oxygen vacancy is present in the first subsurface layer, the maximal adsorption strength increases for C, CH, CH2, and CH3. When the vacancy is present in the next subsurface layer, we find that only the CH3 adsorption is enhanced, while the maximal adsorption energies for the other radical species decrease. Not only does the precise location of the oxygen vacancy determine the maximal adsorption interaction, it also influences the adsorption strengths of the radicals at different surface configurations. This determines the probability of finding a certain adsorption configuration at the surface, which in turn influences the possible surface reactions. We find that C preferentially adsorbs far away from the oxygen vacancy, while CH2 and CH3 adsorb preferentially at the oxygen vacancy site. A fraction of CH partially adsorbs at the oxygen vacancy, and another fraction adsorbs further away from the vacancy.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000350840700052 Publication Date 2015-02-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 13 Open Access
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:124909 Serial 63
Permanent link to this record
 

 
Author Quan Manh, P.; Pourtois, G.; Swerts, J.; Pierloot, K.; Delabie, A.
  Title Atomic layer deposition of Ruthenium on Ruthenium surfaces : a theoretical study Type A1 Journal article
  Year (down) 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue 119 Pages 6592-6603
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Atomic, layer deposition,(ALD of ruthenium using two ruthenium precursors, i.e., Ru(C5H5)(2) (RuCp2) and Ru(C5H5)(C4H4N) (RuCpPy), is studied using density functional theory. By investigating the reaction mechanisms On bare ruthenium surfaces, i.e., (001), (101), and (100), and H-terminated surfaces, an atomistic insight in the Ru ALD is provided. The calculated results show that on the Ru surfaces both RuCp2 and RuCpPy an undergo dehydrogenation and ligand dissociation reactions. RuCpPy is more reactive than RuCp2. By forming a, strong, bond between N of Py and Ru of the surface, RuCpPy can easily chemisorb on the surfaces. The reactions of RuCp2,On the Surfaces are less favorable the adsorption is not strong enough This could be a,factor contributing to the higher growth-per-cycle of Ru using RuCpPy, as observed experimentally. By Studying, the adsorption on H-terminated Ru surfaces, We showed that H Can prevent the adsorption of the precursors, thus inhibiting the growth of Ru. Our calculations indicate that the H content on the surface can have an impact on the growth-per-cycle. Finally, our simulations also demonstrate large impacts of the surface structure on the reaction mechanisms. Of the three surfaces, the (100) surface, which is the less stable and has a zigzag surface structure, is also the most reactive one.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000351970800015 Publication Date 2015-03-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 10 Open Access
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:125544 Serial 171
Permanent link to this record
 

 
Author Aerts, R.; Somers, W.; Bogaerts, A.
  Title Carbon dioxide splitting in a dielectric barrier discharge plasma : a combined experimental and computational study Type A1 Journal article
  Year (down) 2015 Publication Chemsuschem Abbreviated Journal Chemsuschem
  Volume 8 Issue 8 Pages 702-716
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2. We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000349954400019 Publication Date 2015-01-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.226 Times cited 131 Open Access
  Notes Approved Most recent IF: 7.226; 2015 IF: 7.657
  Call Number c:irua:123930 Serial 279
Permanent link to this record
 

 
Author Lin, F.; Meng; Kukueva, E.; Altantzis, T.; Mertens, M.; Bals, S.; Cool, P.; Van Doorslaer, S.
  Title Direct-synthesis method towards copper-containing periodic mesoporous organosilicas : detailed investigation of the copper distribution in the material Type A1 Journal article
  Year (down) 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
  Volume 44 Issue 44 Pages 9970-9979
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
  Abstract Three-dimensional cubic Fm (3) over barm mesoporous copper-containing ethane-bridged PMO materials have been prepared through a direct-synthesis method at room temperature in the presence of cetyltrimethylammonium bromide as surfactant. The obtained materials have been unambiguously characterized in detail by several sophisticated techniques, including XRD, UV-Vis-Dr, TEM, elemental mapping, continuous- wave and pulsed EPR spectroscopy. The results show that at lower copper loading, the Cu2+ species are well dispersed in the Cu-PMO materials, and mainly exist as mononuclear Cu2+ species. At higher copper loading amount, Cu2+ clusters are observed in the materials, but the distribution of the Cu2+ species is still much better in the Cu-PMO materials prepared through the direct-synthesis method than in a Cu-containing PMO material prepared through an impregnation method. Moreover, the evolution of the copper incorporation during the PMO synthesis has been followed by EPR. The results show that the immobilization of the Cu2+ ion/complex and the formation of the PMO materials are taking place simultaneously. The copper ions are found to be situated on the inner surface of the mesopores of the materials and are accessible, which will be beneficial for the catalytic applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000355000700028 Publication Date 2015-04-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.029 Times cited 11 Open Access OpenAccess
  Notes Goa-Bof; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 4.029; 2015 IF: 4.197
  Call Number c:irua:126422 Serial 725
Permanent link to this record
 

 
Author Kerkhofs, S.; Willhammar, T.; Van Den Noortgate, H.; Kirschhock, C.E.A.; Breynaert, E.; Van Tendeloo, G.; Bals, S.; Martens, J.A.
  Title Self-Assembly of Pluronic F127—Silica Spherical Core–Shell Nanoparticles in Cubic Close-Packed Structures Type A1 Journal article
  Year (down) 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 27 Issue 27 Pages 5161-5169
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A new ordered mesoporous silica material (COK-19) with cubic symmetry is synthesized by silicate polycondensation in a citric acid/citrate buffered micellar solution of Pluronic F127 triblock copolymer near neutral pH. SAXS, nitrogen adsorption, TEM, and electron tomography reveal the final material has a cubic close packed symmetry (Fm3̅m) with isolated spherical mesopores interconnected through micropores. Heating of the synthesis medium from room temperature to 70 °C results in a mesopore size increase from 7.0 to 11.2 nm. Stepwise addition of the silicate source allows isolation of a sequence of intermediates that upon characterization with small-angle X-ray scattering uncovers the formation process via formation and aggregation of individual silica-covered Pluronic micelles.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000359499100003 Publication Date 2015-07-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 39 Open Access OpenAccess
  Notes J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem, METH/08/04). The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI, P7/05 FS2). G.V.T., S.B. and T.W. acknowledge financial support from European Research Council (ERC Starting Grant no. 335078-COLOURATOMS). E.B. acknowledges financial support the Flemish FWO for a postdoctoral fellowship (1265013N). The authors gratefully thank Kristof Houthoofd for performing the NMR experiments.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354
  Call Number c:irua:127758 Serial 3977
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: