toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Neyts, E.C.; Shibuta, Y.; van Duin, A.C.T.; Bogaerts, A. doi  openurl
  Title Catalyzed growth of carbon nanotube with definable chirality by hybrid molecular dynamics-force biased Monte Carlo simulations Type A1 Journal article
  Year (down) 2010 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 4 Issue 11 Pages 6665-6672  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Metal-catalyzed growth mechanisms of carbon nanotubes (CNTs) were studied by hybrid molecular dynamics−Monte Carlo simulations using a recently developed ReaxFF reactive force field. Using this novel approach, including relaxation effects, a CNT with definable chirality is obtained, and a step-by-step atomistic description of the nucleation process is presented. Both root and tip growth mechanisms are observed. The importance of the relaxation of the network is highlighted by the observed healing of defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000284438000043 Publication Date 2010-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 129 Open Access  
  Notes Approved Most recent IF: 13.942; 2010 IF: 9.865  
  Call Number UA @ lucian @ c:irua:84759 Serial 294  
Permanent link to this record
 

 
Author Wendelen, W.; Dzhurakhalov, A.A.; Peeters, F.M.; Bogaerts, A. pdf  doi
openurl 
  Title Combined molecular dynamics: continuum study of phase transitions in bulk metals under ultrashort pulsed laser irradiation Type A1 Journal article
  Year (down) 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 114 Issue 12 Pages 5652-5660  
  Keywords A1 Journal article; Integrated Molecular Plant Physiology Research (IMPRES); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The phase transition processes induced by ultrashort, 100 fs pulsed laser irradiation of Au, Cu, and Ni are studied by means of a combined atomistic-continuum approach. A moderately low absorbed laser fluence range, from 200 to 600 J/m2 is considered to study phase transitions by means of a local and a nonlocal order parameter. At low laser fluences, the occurrence of layer-by-layer evaporation has been observed, which suggests a direct solid to vapor transition. The calculated amount of molten material remains very limited under the conditions studied, especially for Ni. Therefore, our results show that a kinetic equation that describes a direct solid to vapor transition might be the best approach to model laser-induced phase transitions by continuum models. Furthermore, the results provide more insight into the applicability of analytical superheating theories that were implemented in continuum models and help the understanding of nonequilibrium phase transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000275855600044 Publication Date 2010-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 2 Open Access  
  Notes ; A.D. gratefully acknowledges Professor M. Hot (ULB, Brussels) for the basic MD-code that was modified further for the laser-induced melting processes. W.W, and A.D. are thankful to Professor L.V. Zhigilei for useful discussions and advices. The calculations were performed on the CALCUA computing facility of the University of Antwerp. This work was supported by the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524  
  Call Number UA @ lucian @ c:irua:81391 Serial 402  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Zhao, S.-X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas Type A1 Journal article
  Year (down) 2010 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 17 Issue 11 Pages 113512-113512,11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is developed to investigate an argon capacitively coupled plasma, focusing on the electromagnetic effects on the discharge characteristics at various discharge conditions. The results indicate that there exist distinct differences in plasma characteristics calculated with the so-called electrostatic model (i.e., without taking into account the electromagnetic effects) and the electromagnetic model (which includes the electromagnetic effects), especially at very high frequencies. Indeed, when the excitation source is in the high frequency regime and the electromagnetic effects are taken into account, the plasma density increases significantly and meanwhile the ionization rate evolves to a very different distribution when the electromagnetic effects are dominant. Furthermore, the dependence of the plasma characteristics on the voltage and pressure is also investigated, at constant frequency. It is observed that when the voltage is low, the difference between these two models becomes more obvious than at higher voltages. As the pressure increases, the plasma density profiles obtained from the electromagnetic model smoothly shift from edge-peaked over uniform to a broad maximum in the center. In addition, the edge effect becomes less pronounced with increasing frequency and pressure, and the skin effect rather than the standing-wave effect becomes dominant when the voltage is high.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000285486500105 Publication Date 2010-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 30 Open Access  
  Notes Approved Most recent IF: 2.115; 2010 IF: 2.320  
  Call Number UA @ lucian @ c:irua:84763 Serial 429  
Permanent link to this record
 

 
Author Saraiva, M.; Georgieva, V.; Mahieu, S.; van Aeken, K.; Bogaerts, A.; Depla, D. doi  openurl
  Title Compositional effects on the growth of Mg(M)O films Type A1 Journal article
  Year (down) 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 107 Issue 3 Pages 034902,1-034902,10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The influence of the composition on the crystallographic properties of deposited Mg(M)O (with M=Al, Cr, Ti, Y, and Zr) films is studied. For a flexible control of the composition, dual reactive magnetron sputtering was used as deposition technique. Two different approaches to predict the composition are discussed. The first is an experimental way based on the simple relationship between the deposition rate and the target-substrate distance. The second is a route using a Monte Carlo based particle trajectory code. Both methods require a minimal experimental input and enable the user to quickly predict the composition of complex thin films. Good control and flexibility allow us to study the compositional effects on the growth of Mg(M)O films. Pure MgO thin films were grown with a (111) preferential out-of-plane orientation. When adding M to MgO, two trends were noticed. The first trend is a change in the MgO lattice parameters compared to pure MgO. The second tendency is a decrease in the crystallinity of the MgO phase. The experimentally determined crystallographic properties are shown to be in correspondence with the predicted properties from molecular dynamics simulations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000274517300116 Publication Date 2010-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access  
  Notes Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number UA @ lucian @ c:irua:80346 Serial 447  
Permanent link to this record
 

 
Author Paulussen, S.; Verheyde, B.; Tu, X.; De Bie, C.; Martens, T.; Petrovic, D.; Bogaerts, A.; Sels, B. pdf  doi
openurl 
  Title Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges Type A1 Journal article
  Year (down) 2010 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 19 Issue 3 Pages 034015,1-034015,6  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The aim of this work consists of the evaluation of atmospheric pressure dielectric barrier discharges for the conversion of greenhouse gases into useful compounds. Therefore, pure CO2 feed flows are administered to the discharge zone at varying discharge frequency, power input, gas temperature and feed flow rates, aiming at the formation of CO and O2. The discharge obtained in CO2 is characterized as a filamentary mode with a microdischarge zone in each half cycle of the applied voltage. It is shown that the most important parameter affecting the CO2-conversion levels is the gas flow rate. At low flow rates, both the conversion and the CO-yield are significantly higher. In addition, also an increase in the gas temperature and the power input give rise to higher conversion levels, although the effect on the CO-yield is limited. The optimum discharge frequency depends on the power input level and it cannot be unambiguously stated that higher frequencies give rise to increased conversion levels. A maximum CO2 conversion of 30% is achieved at a flow rate of 0.05 L min−1, a power density of 14.75 W cm−3 and a frequency of 60 kHz. The most energy efficient conversions are achieved at a flow rate of 0.2 L min−1, a power density of 11 W cm−3 and a discharge frequency of 30 kHz.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000277982800016 Publication Date 2010-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 116 Open Access  
  Notes Approved Most recent IF: 3.302; 2010 IF: 2.218  
  Call Number UA @ lucian @ c:irua:82408 Serial 512  
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A. doi  openurl
  Title Differences between ultrananocrystalline and nanocrystalline diamond growth: theoretical investigation of CxHy species at diamond step edges Type A1 Journal article
  Year (down) 2010 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 10 Issue 9 Pages 4123-4134  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The behavior of hydrocarbon species at step edges of diamond terraces is investigated by means of combined molecular dynamics−Metropolis Monte Carlo simulations. The results show that the formation of ballas-like diamond films (like UNCD) and well-faceted diamond films (like NCD) can be related to the gas phase concentrations of CxHy in a new manner: Species that have high concentrations above the growing UNCD films suppress the extension of step edges through defect formation. The species that are present above the growing NCD film, however, enhance the extension of diamond terraces, which is believed to result in well-faceted diamond films. Furthermore, it is shown that, during UNCD growth, CxHy species with x ≥ 2 play an important role, in contrast to the currently adopted CVD diamond growth mechanism. Finally, the probabilities for the extension of the diamond (100) terrace are much higher than those for the diamond (111) terrace, which is in full agreement with the experimental observation that diamond (100) facets are more favored than diamond (111) facets during CVD diamond growth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281353900042 Publication Date 2010-08-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 11 Open Access  
  Notes Approved Most recent IF: 4.055; 2010 IF: 4.390  
  Call Number UA @ lucian @ c:irua:83696 Serial 694  
Permanent link to this record
 

 
Author Martens, T.; Bogaerts, A.; Brok, W.J.M.; van Dijk, J. doi  openurl
  Title The influence of impurities on the performance of the dielectric barrier discharge Type A1 Journal article
  Year (down) 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 9 Pages 091501,1-091501,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this letter, we investigate the effect of various levels of nitrogen impurity on the electrical performance of an atmospheric pressure dielectric barrier discharge in helium. We illustrate the different current profiles that are obtained, which exhibit one or more discharge pulses per half cycle and evaluate their performance in ionizing the discharge and dissipating the power. It is shown that flat and broad current profiles perform the best in ionizing the discharge and use the least amount of power per generated charged particle.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000275246200008 Publication Date 2010-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 28 Open Access  
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:80944 Serial 1624  
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A. doi  openurl
  Title Insights into the growth of (ultra)nanocrystalline diamond by combined molecular dynamics and Monte Carlo simulations Type A1 Journal article
  Year (down) 2010 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 10 Issue 7 Pages 3005-3021  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, we present the results of combined molecular dynamics−Metropolis Monte Carlo (MD-MMC) simulations of hydrocarbon species at flat diamond (100)2 × 1 and (111)1 × 1 surfaces. The investigated species are considered to be the most important growth species for (ultra)nanocrystalline diamond ((U)NCD) growth. When applying the MMC algorithm to stuck species at monoradical sites, bonding changes are only seen for CH2. The sequence of the bond breaking and formation as put forward by the MMC simulations mimics the insertion of CH2 into a surface dimer as proposed in the standard growth model of diamond. For hydrocarbon species attached to two adjacent radical (biradical) sites, the MMC simulations give rise to significant changes in the bonding structure. For UNCD, the combinations of C3 and C3H2, and C3 and C4H2 (at diamond (100)2 × 1) and C and C2H2 (at diamond (111)1 × 1) are the most successful in nucleating new crystal layers. For NCD, the following combinations pursue the diamond structure the best: C2H2 and C3H2 (at diamond (100)2 × 1) and CH2 and C2H2 (at diamond (111)1 × 1). The different behaviors of the hydrocarbon species at the two diamond surfaces are related to the different sterical hindrances at the diamond surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000279422700032 Publication Date 2010-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 13 Open Access  
  Notes Approved Most recent IF: 4.055; 2010 IF: 4.390  
  Call Number UA @ lucian @ c:irua:83065 Serial 1675  
Permanent link to this record
 

 
Author Mao, M.; Bogaerts, A. doi  openurl
  Title Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma enhanced CVD system : the effect of different gas mixtures Type A1 Journal article
  Year (down) 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 43 Issue 20 Pages 205201,1-205201,20  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A hybrid model, called the hybrid plasma equipment model (HPEM), was used to study an inductively coupled plasma in gas mixtures of H2 or NH3 with CH4 or C2H2 used for the synthesis of carbon nanotubes or carbon nanofibres (CNTs/CNFs). The plasma properties are discussed for different gas mixtures at low and moderate pressures, and the growth precursors for CNTs/CNFs are analysed. It is found that C2H2, C2H4 and C2H6 are the predominant molecules in CH4 containing plasmas besides the feedstock gas, and serve as carbon sources for CNT/CNF formation. On the other hand, long-chain hydrocarbons are observed in C2H2-containing plasmas. Furthermore, the background gases CH4 and C2H2 show a different decomposition rate with H2 or NH3 addition at moderate pressures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000277373400009 Publication Date 2010-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 52 Open Access  
  Notes Approved Most recent IF: 2.588; 2010 IF: 2.109  
  Call Number UA @ lucian @ c:irua:82067 Serial 1723  
Permanent link to this record
 

 
Author Mao, M.; Bogaerts, A. doi  openurl
  Title Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma-enhanced CVD system : the effect of processing parameters Type A1 Journal article
  Year (down) 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 43 Issue 31 Pages 315203-315203,15  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A parameter study is carried out for an inductively coupled plasma used for the synthesis of carbon nanotubes or carbon nanofibres (CNTs/CNFs), by means of the Hybrid Plasma Equipment Model. The influence of processing parameters including gas ratio for four different gas mixtures typically used for CNT/CNF growth (i.e. CH4/H2, CH4/NH3, C2H2/H2 and C2H2/NH3), inductively coupled plasma (ICP) power (501000 W), operating pressure (10 mTorr1 Torr), bias power (01000 W) and temperature of the substrate (01000 °C) on the plasma chemistry is investigated and the optimized conditions for CNT/CNF growth are analysed. Summarized, our calculations suggest that a lower fraction of hydrocarbon gases (CH4 or C2H2, i.e. below 20%) and hence a higher fraction of etchant gases (H2 or NH3) in the gas mixture result in more 'clean' conditions for controlled CNT/CNF growth. The same applies to a higher ICP power, a moderate ICP gas pressure above 100 mTorr (at least for single-walled carbon nanotubes), a high bias power (for aligned CNTs) and an intermediate substrate temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000280275200007 Publication Date 2010-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 17 Open Access  
  Notes Approved Most recent IF: 2.588; 2010 IF: 2.109  
  Call Number UA @ lucian @ c:irua:88365 Serial 1724  
Permanent link to this record
 

 
Author Bogaerts, A.; De Bie, C.; Eckert, M.; Georgieva, V.; Martens, T.; Neyts, E.; Tinck, S. pdf  doi
openurl 
  Title Modeling of the plasma chemistry and plasmasurface interactions in reactive plasmas Type A1 Journal article
  Year (down) 2010 Publication Pure and applied chemistry Abbreviated Journal Pure Appl Chem  
  Volume 82 Issue 6 Pages 1283-1299  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, an overview is given of modeling activities going on in our research group, for describing the plasma chemistry and plasmasurface interactions in reactive plasmas. The plasma chemistry is calculated by a fluid approach or by hybrid Monte Carlo (MC)fluid modeling. An example of both is illustrated in the first part of the paper. The example of fluid modeling is given for a dielectric barrier discharge (DBD) in CH4/O2, to describe the partial oxidation of CH4 into value-added chemicals. The example of hybrid MCfluid modeling concerns an inductively coupled plasma (ICP) etch reactor in Ar/Cl2/O2, including also the description of the etch process. The second part of the paper deals with the treatment of plasmasurface interactions on the atomic level, with molecular dynamics (MD) simulations or a combination of MD and MC simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000279063900010 Publication Date 2010-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1365-3075;0033-4545; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.626 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.626; 2010 IF: 2.134  
  Call Number UA @ lucian @ c:irua:82108 Serial 2134  
Permanent link to this record
 

 
Author Georgieva, V.; Todorov, I.T.; Bogaerts, A. doi  openurl
  Title Molecular dynamics simulation of oxide thin film growth: importance of the inter-atomic interaction potential Type A1 Journal article
  Year (down) 2010 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 485 Issue 4/6 Pages 315-319  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A molecular dynamics (MD) study of MgxAlyOz thin films grown by magnetron sputtering is presented using an ionic model and comparing two potential sets with formal and partial charges. The applicability of the model and the reliability of the potential sets for the simulation of thin film growth are discussed. The formal charge potential set was found to reproduce the thin film structure in close agreement with the structure of the experimentally grown thin films. Graphical abstract A molecular dynamics study of growth of MgxAlyOz thin films is presented using an ionic model and comparing two potential sets with formal and partial charges. The simulation results with the formal charge potential set showed a transition in the film from a crystalline to an amorphous structure, when the Mg metal content decreases below 50% in very close agreement with the structure of the experimentally deposited films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000273782600010 Publication Date 2010-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.815 Times cited 16 Open Access  
  Notes Approved Most recent IF: 1.815; 2010 IF: 2.282  
  Call Number UA @ lucian @ c:irua:80023 Serial 2170  
Permanent link to this record
 

 
Author Jian-Ping, N.; Xiao-Dan, L.; Cheng-Li, Z.; You-Min, Q.; Ping-Ni, H.; Bogaerts, A.; Fu-Jun, G. openurl 
  Title Molecular dynamics simulation of temperature effects on CF(3)(+) etching of Si surface Type A1 Journal article
  Year (down) 2010 Publication Wuli xuebao Abbreviated Journal Acta Phys Sin-Ch Ed  
  Volume 59 Issue 10 Pages 7225-7231  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics method was employed to investigate the effects of the reaction layer formed near the surface region on CF(3)(+) etching of Si at different temperatures. The simulation results show that the coverages of F and C are sensitive to the surface temperature. With increasing temperature, the physical etching is enhanced, while the chemical etching is weakened. It is found that with increasing surface temperature, the etching rate of Si increases. As to the etching products, the yields of SiF and SiF(2) increase with temperature, whereas the yield of SiF(3) is not sensitive to the surface temperature. And the increase of the etching yield is mainly due to the increased desorption of SiF and SiF(2). The comparison shows that the reactive layer plays an important part in the subsequeat impacting, which enhances the etching rate of Si and weakens the chemical etching intensity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1000-3290 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.624 Times cited Open Access  
  Notes Approved Most recent IF: 0.624; 2010 IF: 1.259  
  Call Number UA @ lucian @ c:irua:95564 Serial 2171  
Permanent link to this record
 

 
Author Gou, F.; Neyts, E.; Eckert, M.; Tinck, S.; Bogaerts, A. doi  openurl
  Title Molecular dynamics simulations of Cl+ etching on a Si(100) surface Type A1 Journal article
  Year (down) 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 107 Issue 11 Pages 113305,1-113305,6  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations using improved TersoffBrenner potential parameters were performed to investigate Cl+ etching of a {2×1} reconstructed Si(100) surface. Steady-state Si etching accompanying the Cl coverage of the surface is observed. Furthermore, a steady-state chlorinated reaction layer is formed. The thickness of this reaction layer is found to increase with increasing energy. The stoichiometry of SiClx species in the reaction layer is found to be SiCl:SiCl2:SiCl3 = 1.0:0.14:0.008 at 50 eV. These results are in excellent agreement with available experimental data. While elemental Si products are created by physical sputtering, most SiClx (0<x<4) etch products are produced by chemical-enhanced physical sputtering.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000278907100018 Publication Date 2010-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 15 Open Access  
  Notes Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number UA @ lucian @ c:irua:82663 Serial 2175  
Permanent link to this record
 

 
Author Lindner, H.; Autrique, D.; Pisonero, J.; Günther, D.; Bogaerts, A. doi  openurl
  Title Numerical simulation analysis of flow patterns and particle transport in the HEAD laser ablation cell with respect to inductively coupled plasma spectrometry Type A1 Journal article
  Year (down) 2010 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 25 Issue 3 Pages 295-304  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The present study analyses a specific laser ablation cell, the High Efficiency Aerosol Dispersion (HEAD) cell (see J. Pisonero et al., J. Anal. At. Spectrom., 2006, 21, 922931), by means of computational fluid dynamics (CFD) simulations. However, this cell consists of different modular parts, therefore, the results are probably of interest for the further development of other ablation cells. In the HEAD cell, the ablation spot is positioned below an orifice in the ceiling of the sample chamber. The particle transport through this orifice has been analysed for a ceiling height of 0.8 mm. The critical velocity for the onset of particle losses was found to be independent on the ejection angle at the crater spot. The deceleration of the particles can be described as the stopping in an effectively steady gas. Particle losses were negligible in this modular part of the cell at the evaluated laser ablation conditions. The transport efficiency through the Venturi chamber was investigated for different sample gas flow rates. In this case, it was found that small particles were predominantly lost at low flow rates, the large particles at higher flow rates. Making use of the simulation results, it was possible to design a modification of the HEAD cell that results in extremely short calculated washout times. The simulations yielded a signal of less than 10 ms, which was produced by more than 99% of the introduced mass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000274961600005 Publication Date 2010-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 16 Open Access  
  Notes Approved Most recent IF: 3.379; 2010 IF: 4.372  
  Call Number UA @ lucian @ c:irua:80871 Serial 2403  
Permanent link to this record
 

 
Author Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A. doi  openurl
  Title The origin of Bohm diffusion, investigated by a comparison of different modelling methods Type A1 Journal article
  Year (down) 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 43 Issue 29 Pages 292001,1-292001,5  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract 'Bohm diffusion' causes the electrons to diffuse perpendicularly to the magnetic field lines. However, its origin is not yet completely understood: low and high frequency electric field fluctuations are both named to cause Bohm diffusion. The importance of including this process in a Monte Carlo (MC) model is demonstrated by comparing calculated ionization rates with particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations. A good agreement is found with a Bohm diffusion parameter of 0.05, which corresponds well to experiments. Since the PIC/MCC method accounts for fast electric field fluctuations, we conclude that Bohm diffusion is caused by fast electric field phenomena.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000279638700001 Publication Date 2010-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 16 Open Access  
  Notes Approved Most recent IF: 2.588; 2010 IF: 2.109  
  Call Number UA @ lucian @ c:irua:83109 Serial 2521  
Permanent link to this record
 

 
Author Martens, T.; Bogaerts, A.; van Dijk, J. doi  openurl
  Title Pulse shape influence on the atmospheric barrier discharge Type A1 Journal article
  Year (down) 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 13 Pages 131503,1-131503,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this letter we compare the effect of a radio-frequency sine, a low frequency sine, a rectangular and a pulsed dc voltage profile on the calculated electron production and power consumption in the dielectric barrier discharge. We also demonstrate using calculated potential distribution profiles of high time and space resolution how the pulsed dc discharge generates a secondary discharge pulse by deactivating the power supply.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000276275300019 Publication Date 2010-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:81538 Serial 2738  
Permanent link to this record
 

 
Author Depla, D.; Li, X.Y.; Mahieu, S.; van Aeken, K.; Leroy, W.P.; Haemers, J.; de Gryse, R.; Bogaerts, A. doi  openurl
  Title Rotating cylindrical magnetron sputtering: simulation of the reactive process Type A1 Journal article
  Year (down) 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 107 Issue 11 Pages 113307,1-113307,9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A rotating cylindrical magnetron consists of a cylindrical tube, functioning as the cathode, which rotates around a stationary magnet assembly. In stationary mode, the cylindrical magnetron behaves similar to a planar magnetron with respect to the influence of reactive gas addition to the plasma. However, the transition from metallic mode to poisoned mode and vice versa depends on the rotation speed. An existing model has been modified to simulate the influence of target rotation on the well known hysteresis behavior during reactive magnetron sputtering. The model shows that the existing poisoning mechanisms, i.e., chemisorption, direct reactive ion implantation and knock on implantation, are insufficient to describe the poisoning behavior of the rotating target. A better description of the process is only possible by including the deposition of sputtered material on the target.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000278907100020 Publication Date 2010-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 15 Open Access  
  Notes Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number UA @ lucian @ c:irua:82631 Serial 2930  
Permanent link to this record
 

 
Author Wendelen, W.; Autrique, D.; Bogaerts, A. url  doi
openurl 
  Title Space charge limited electron emission from a Cu surface under ultrashort pulsed laser irradiation Type A1 Journal article
  Year (down) 2010 Publication AIP conference proceedings Abbreviated Journal  
  Volume 1278 Issue Pages 407-415  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this theoretical study, the electron emission from a copper surface under ultrashort pulsed laser irradiation is investigated using a one dimensional particle in cell model. Thermionic emission as well as multi-photon photoelectron emission were taken into account. The emitted electrons create a negative space charge above the target, consequently the generated electric field reduces the electron emission by several orders of magnitude. The simulations indicate that the space charge effect should be considered when investigating electron emission related phenomena in materials under ultrashort pulsed laser irradiation of metals.the word abstract, but do replace the rest of this text. ©2010 American Institute of Physics  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000287183900042 Publication Date 2010-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:88899 Serial 3058  
Permanent link to this record
 

 
Author Wendelen, W.; Autrique, D.; Bogaerts, A. pdf  doi
openurl 
  Title Space charge limited electron emission from a Cu surface under ultrashort pulsed laser irradiation Type A1 Journal article
  Year (down) 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 5 Pages 1-3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this theoretical study, the electron emission from a copper surface under ultrashort pulsed laser irradiation is investigated using a one-dimensional particle in cell model. Thermionic emission as well as multiphoton photoelectron emission were taken into account. The emitted electrons create a negative space charge above the target; consequently the generated electric field reduces the electron emission by several orders of magnitude. The simulations indicate that the space charge effect should be considered when investigating electron emission related phenomena in materials under ultrashort pulsed laser irradiation of metals.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000274319500021 Publication Date 2010-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:80995 Serial 3059  
Permanent link to this record
 

 
Author Mortet, V.; Zhang, L.; Echert, M.; Soltani, A.; d' Haen, J.; Douheret, O.; Moreau, M.; Osswald, S.; Neyts, E.; Troadec, D.; Wagner, P.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K. doi  openurl
  Title Characterization of nano-crystalline diamond films grown under continuous DC bias during plasma enhanced chemical vapor deposition Type A3 Journal article
  Year (down) 2009 Publication Materials Research Society symposium proceedings Abbreviated Journal  
  Volume Issue 1203 Pages  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nanocrystalline diamond films have generated much interested due to their diamond-like properties and low surface roughness. Several techniques have been used to obtain a high re-nucleation rate, such as hydrogen poor or high methane concentration plasmas. In this work, the properties of nano-diamond films grown on silicon substrates using a continuous DC bias voltage during the complete duration of growth are studied. Subsequently, the layers were characterised by several morphological, structural and optical techniques. Besides a thorough investigation of the surface structure, using SEM and AFM, special attention was paid to the bulk structure of the films. The application of FTIR, XRD, multi wavelength Raman spectroscopy, TEM and EELS yielded a detailed insight in important properties such as the amount of crystallinity, the hydrogen content and grain size. Although these films are smooth, they are under a considerable compressive stress. FTIR spectroscopy points to a high hydrogen content in the films, while Raman and EELS indicate a high concentration of sp2 carbon. TEM and EELS show that these films consist of diamond nano-grains mixed with an amorphous sp2 bonded carbon, these results are consistent with the XRD and UV Raman spectroscopy data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Wuhan Editor  
  Language Wos Publication Date 2010-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1946-4274; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:81646 Serial 327  
Permanent link to this record
 

 
Author van Dijk, J.; Kroesen, G.M.W.; Bogaerts, A. openurl 
  Title Cluster issue on plasma modelling Type ME3 Book as editor
  Year (down) 2009 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords ME3 Book as editor; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:82177 Serial 375  
Permanent link to this record
 

 
Author Bogaerts, A.; Bultinck, E.; Eckert, M.; Georgieva, V.; Mao, M.; Neyts, E.; Schwaederlé, L. doi  openurl
  Title Computer modeling of plasmas and plasma-surface interactions Type A1 Journal article
  Year (down) 2009 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 6 Issue 5 Pages 295-307  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, an overview is given of different modeling approaches used for describing gas discharge plasmas, as well as plasma-surface interactions. A fluid model is illustrated for describing the detailed plasma chemistry in capacitively coupled rf discharges. The strengths and limitations of Monte Carlo simulations and of a particle-in-cell-Monte Carlo collisions model are explained for a magnetron discharge, whereas the capabilities of a hybrid Monte Carlo-fluid approach are illustrated for a direct current glow discharge used for spectrochemical analysis of materials. Finally, some examples of molecular dynamics simulations, for the purpose of plasma-deposition, are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000266471800003 Publication Date 2009-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 18 Open Access  
  Notes Approved Most recent IF: 2.846; 2009 IF: 4.037  
  Call Number UA @ lucian @ c:irua:76833 Serial 461  
Permanent link to this record
 

 
Author Bogaerts, A.; Bultinck, E.; Kolev, I.; Schwaederlé, L.; van Aeken, K.; Buyle, G.; Depla, D. doi  openurl
  Title Computer modelling of magnetron discharges Type A1 Journal article
  Year (down) 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 42 Issue 19 Pages 194018,1-194018,12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, some modelling approaches to describe direct current (dc) magnetron discharges developed in our research groups will be presented, including an analytical model, Monte Carlo simulations for the electrons and for the sputtered atoms, a hybrid Monte Carlo-fluid model and particle-in-cell-Monte Carlo collision simulations. The strengths and limitations of the various modelling approaches will be explained, and some characteristic simulation results will be illustrated. Furthermore, some other simulation methods related to the magnetron device will be briefly explained, more specifically for calculating the magnetic field distribution inside the discharge, and for describing the (reactive) sputtering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000269993100020 Publication Date 2009-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 32 Open Access  
  Notes Approved Most recent IF: 2.588; 2009 IF: 2.083  
  Call Number UA @ lucian @ c:irua:78168 Serial 462  
Permanent link to this record
 

 
Author De Bie, C.; Martens, T.; van Dijk, J.; van der Mullen, J.J.A.M.; Bogaerts, A. openurl 
  Title Description of the plasma chemistry in an atmospheric pressure CH4 dielectric barrier discharge using a two dimensional fluid model Type P1 Proceeding
  Year (down) 2009 Publication Abbreviated Journal  
  Volume Issue Pages 13-16  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:85692 Serial 654  
Permanent link to this record
 

 
Author Bogaerts, A. doi  openurl
  Title Effects of oxygen addition to argon glow discharges: a hybrid Monte Carlo-fluid modeling investigation Type A1 Journal article
  Year (down) 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 64 Issue 11/12 Pages 1266-1279  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A hybrid model is developed for describing the effects of oxygen addition to argon glow discharges. The species taken into account in the model include Ar atoms in the ground state and the metastable level, O2 gas molecules in the ground state and two metastable levels, O atoms in the ground state and one metastable level, O3 molecules, Ar+, O+, O2+ and O− ions, as well as the electrons. The hybrid model consists of a Monte Carlo model for electrons and fluid models for the other plasma species. In total, 87 different reactions between the various plasma species are taken into account. Calculation results include the species densities and the importance of their production and loss processes, as well as the dissociation degree of oxygen. The effect of different O2 additions on these calculation results, as well as on the sputtering rates, is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000272910300016 Publication Date 2009-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 39 Open Access  
  Notes Approved Most recent IF: 3.241; 2009 IF: 2.719  
  Call Number UA @ lucian @ c:irua:79271 Serial 869  
Permanent link to this record
 

 
Author Petrović, D.; Martens, T.; van Dijk, J.; Brok, W.J.M.; Bogaerts, A. doi  openurl
  Title Fluid modelling of an atmospheric pressure dielectric barrier discharge in cylindrical geometry Type A1 Journal article
  Year (down) 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 42 Issue 20 Pages 205206,1-205206,12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A numerical parameter study has been performed for a cylindrical atmospheric pressure dielectric barrier discharge (DBD) in helium with nitrogen impurities using a two-dimensional time-dependent fluid model. The calculated electric currents and gap voltages as a function of time for a given applied potential are presented, as well as the number densities of the various plasma species. This study shows that for the geometry under consideration the applied voltage parameters have a large impact on the electric current profiles and that the discharge current is always determined by the electron and ion conduction currents while the displacement current is nearly negligible. A relative broadening of the current profiles (compared with the duration of the half cycle of the applied voltage) with an increase in the applied frequency is obtained. Nearly sinusoidal current wave forms, usually typical for radio frequency DBDs, are observed while still operating at the frequencies of tens of kilohertz. For the setup under investigation, the Townsend mode of the DBD is observed in the entire range of applied voltage amplitudes and frequencies. It is shown that the average power density dissipated in the discharge increases with rising applied voltage and frequency. An increase in applied voltage frequency leads to an increase in the electron density and a decrease in electron energy, while increasing the voltage amplitude has the opposite effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000270563200028 Publication Date 2009-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 29 Open Access  
  Notes Approved Most recent IF: 2.588; 2009 IF: 2.083  
  Call Number UA @ lucian @ c:irua:78202 Serial 1228  
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A. doi  openurl
  Title Formation of endohedral Ni@C60 and exohedral NiC60 metallofullerene complexes by simulated ion implantation Type A1 Journal article
  Year (down) 2009 Publication Carbon Abbreviated Journal Carbon  
  Volume 47 Issue 4 Pages 1028-1033  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The interaction of thermal and hyperthermal Ni ions with gas-phase C60 fullerene was investigated at two temperatures with classical molecular dynamics simulations using a recently developed interatomic many-body potential. The interaction between Ni and C60 is characterized in terms of the NiC60 binding sites, complex formation, and the collision and temperature induced deformation of the C60 cage structure. The simulations show how ion implantation theoretically allows the synthesis of both endohedral Ni@C60 and exohedral NiC60 metallofullerene complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000264252900012 Publication Date 2008-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 15 Open Access  
  Notes Approved Most recent IF: 6.337; 2009 IF: 4.504  
  Call Number UA @ lucian @ c:irua:76434 Serial 1260  
Permanent link to this record
 

 
Author Steiner, R.E.; Barshick, C.M.; Bogaerts, A. isbn  openurl
  Title Glow discharge optical spectroscopy and mass spectrometry Type H1 Book chapter
  Year (down) 2009 Publication Abbreviated Journal  
  Volume Issue Pages 1-28  
  Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Optical (atomic absorption spectroscopy, AAS; atomic emission spectroscopy, AES; atomic fluorescence spectroscopy, AFS; and optogalvanic spectroscopy) and mass spectrometric (magnetic sector, quadrupolemass analyzer, QMA; quadrupole ion trap, QIT; Fourier transform ion cyclotron resonance, FTICR; and time-of-flight, TOF) instrumentation are well suited for coupling to the glow discharge (GD). The GD is a relatively simple device. A potential gradient (5001500 V) is applied between an anode and a cathode. In most cases, the sample is also the cathode. A noble gas (e.g. Ar, Ne, and Xe) is introduced into the discharge region before power initiation. When a potential is applied, electrons are accelerated toward the anode. As these electrons accelerate, they collide with gas atoms. A fraction of these collisions are of sufficient energy to remove an electron from a support gas atom, forming an ion. These ions are, in turn, accelerated toward the cathode. These ions impinge on the surface of the cathode, sputtering sample atoms from the surface. Sputtered atoms that do not redeposit on the surface diffuse into the excitation/ionization regions of the plasma where they can undergo excitation and/or ionization via a number of collisional processes. GD sources offer a number of distinct advantages that make them well suited for specific types of analyses. These sources afford direct analysis of solid samples, thus minimizing the sample preparation required for analysis. The nature of the plasma also provides mutually exclusive atomization and excitation processes that help to minimize the matrix effects that plague so many other elemental techniques. Unfortunately, the GD source functions optimally in a dry environment, making analysis of solutions more difficult. These sources also suffer from difficulties associated with analyzing nonconductingsamples. In this article, first, the principles of operation of the GD plasma are reviewed, with an emphasis on how those principles relate to optical spectroscopy and mass spectrometry. Basic applications of the GD techniques are considered next. These include bulk analysis, surface analysis, and the analysis of solution samples. The requirements necessary to obtain optical information are addressed following the analytical applications. This section focuses on the instrumentation needed to make optical measurements using the GD as an atomization/excitation source. Finally, mass spectrometric instrumentation and interfaces are addressed as they pertain to the use of a GD plasma as an ion source. GDsources provide analytically useful gas-phase species from solid samples. These sources can be interfaced with avariety of spectroscopic and spectrometric instruments for both quantitative and qualitative analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Chichester Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0471976709 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:78169 Serial 1352  
Permanent link to this record
 

 
Author Bogaerts, A. doi  openurl
  Title Hybrid Monte Carlo: fluid model for studying the effects of nitrogen addition to argon glow discharges Type A1 Journal article
  Year (down) 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 64 Issue 2 Pages 126-140  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A computer model is developed for describing argon/nitrogen glow discharges. The species taken into account in the model include electrons, Ar atoms in the ground state and in the 4s metastable levels, N2 molecules in the ground state and in six different electronically excited levels, N atoms, Ar+ ions, N+, N2+, N3+ and N4+ ions. The fast electrons are simulated with a Monte Carlo model, whereas all other species are treated in a fluid model. 74 different chemical reactions are considered in the model. The calculation results include the densities of all the different plasma species, as well as information on their production and loss processes. The effect of different N2 additions, in the range between 0.1 and 10%, is investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000263621300002 Publication Date 2008-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 49 Open Access  
  Notes Approved Most recent IF: 3.241; 2009 IF: 2.719  
  Call Number UA @ lucian @ c:irua:72829 Serial 1525  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: