|   | 
Details
   web
Records
Author Folkers, B.; Jansen, T.; Roskamp, T.J.; Reith, P.; Timmermans, A.; Jannis, D.; Gauquelin, N.; Verbeeck, J.; Hilgenkamp, H.; Rosario, C.M.M.
Title Imaging the suppression of ferromagnetism in LaMnO₃ by metallic overlayers Type A1 Journal article
Year (down) 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 5 Pages 054408-6
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract LaMnO 3 (LMO) thin films epitaxially grown on SrTiO 3 (STO) usually exhibit ferromagnetism above a critical layer thickness. We report the use of scanning SQUID microscopy (SSM) to study the suppression of the ferromagnetism in STO / LMO / metal structures. By partially covering the LMO surface with a metallic layer, both covered and uncovered LMO regions can be studied simultaneously. While Au does not significantly influence the ferromagnetic order of the underlying LMO film, a thin Ti layer induces a strong suppression of the ferromagnetism, over tens of nanometers, which increases with time on a timescale of days. Detailed electron energy loss spectroscopy analysis of the Ti-LaMnO 3 interface reveals the presence of Mn 2 + and an evolution of the Ti valence state from Ti 0 to Ti 4 + over approximately 5 nm. Furthermore, we demonstrate that by patterning Ti / Au overlayers, we can locally suppress the ferromagnetism and define ferromagnetic structures down to sub -micrometer scales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001239765800005 Publication Date 2024-05-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:206555 Serial 9297
Permanent link to this record
 

 
Author Tian, X.; Xie, X.; Li, J.; Kong, X.; Gong, W.-J.; Peeters, F.M.; Li, L.
Title Multiferroic ScLaX₂ (X = P, As, and Sb) monolayers : bidirectional negative Poisson's ratio effects and phase transformations driven by rare-earth (main-group) elements Type A1 Journal article
Year (down) 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 8 Pages 084407-84411
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The combination of auxetic property, ferroelasticity, and ferroelectricity in two-dimensional materials offers new avenues for next-generation multifunctional devices. However, two-dimensional materials that simultaneously exhibit those properties are rarely reported. Here, we present a class of two-dimensional Janus-like structures ScLaX2 X 2 (X X = P, As, and Sb) with a rectangular lattice based on first-principles calculations. We predict that those ScLaX2 X 2 monolayers are stable semiconductors with both intrinsic in-plane and out-of-plane auxetic properties, showing a bidirectional negative Poisson's ratio effect. The value of the out-of-plane negative Poisson's ratio effect can reach – 2.28 /- 3.06 /- 3.89. By applying uniaxial strain engineering, two transition paths can be found, including the VA main group element path and the rare-earth metal element path, corresponding to the ferroelastic and the multiferroic (ferroelastic and ferroelectric) phase transition, respectively. For the ScLaSb2 2 monolayer, the external force field can not only control the ferroelastic phase transition, but it can also lead to the reversal of the out-of-plane polarization, exhibiting potential multiferroicity. The coupling between the bidirectional negative Poisson's ratio effect and multiferroicity makes the ScLaX2 X 2 monolayers promising for future device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001293 Publication Date 2024-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:207592 Serial 9306
Permanent link to this record
 

 
Author Kandemir, Z.; D'Amico, P.; Sesti, G.; Cardoso, C.; Milošević, M.V.; Sevik, C.
Title Optical properties of metallic MXene multilayers through advanced first-principles calculations Type A1 Journal article
Year (down) 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 7 Pages 075201-75210
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Having a strong electromagnetic absorption, MXene multilayers are readily envisaged for applications in electromagnetic shields and related prospective technology. However, an ab initio characterization of the optical properties of MXenes is still lacking, due in part to major difficulties with the treatment of metallicity in the first-principles approaches. Here we addressed the latter challenge, after a careful treatment of intraband transitions, to present a thorough analysis of the electronic and optical properties of a selected set of metallic MXene layers based on density functional theory (DFT) and many-body perturbation theory calculations. Our results reveal that the GW corrections are particularly important in regions of the band structure where d and p states hybridize. For some systems, we show that GW corrections open a gap between occupied states, resulting in a band structure that closely resembles that of an intrinsic transparent conductor, thereby opening an additional line of prospective applications for the MXenes family. Nevertheless, GW and Bethe-Salpeter corrections have a minimal influence on the absorption spectra, in contrast to what is typically observed in semiconductor layers. Our present results suggest that calculations within the independent particle approximation (IPA) calculations are sufficiently accurate for assessing the optical characteristics of bulk-layered MXene materials. Finally, our calculated dielectric properties and absorption spectra, in agreement with existing experimental data, confirm the potential of MXenes as effective infrared emitters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001275 Publication Date 2024-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:207597 Serial 9309
Permanent link to this record
 

 
Author Yari, S.; Bird, L.; Rahimisheikh, S.; Reis, A.C.; Mohammad, M.; Hadermann, J.; Robinson, J.; Shearing, P.R.; Safari, M.
Title Probing charge transport and microstructural attributes in solvent- versus water-based electrodes with a spotlight on Li-S battery cathode Type A1 Journal article
Year (down) 2024 Publication Advanced energy materials Abbreviated Journal
Volume Issue Pages 2402163
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In the quest for environmentally benign battery technologies, this study examines the microstructural and transport properties of water-processed electrodes and compares them to conventionally formulated electrodes using the toxic solvent, N-Methyl-2-pyrrolidone (NMP). Special focus is placed on sulfur electrodes utilized in lithium-sulfur batteries for their sustainability and compatibility with diverse binder/solvent systems. The characterization of the electrodes by X-ray micro-computed tomography reveals that in polyvinylidene fluoride (PVDF) Lithium bis(trifluoromethanesulfonyl)imide/NMP, sulfur particles tend to remain in large clusters but break down into finer particles in carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR)/water and lithium polyacrylate (LiPAA)/water dispersions. The findings reveal that in the water-based electrodes, the binder properties dictate the spatial arrangement of carbon particles, resulting in either thick aggregates with short-range connectivity or thin films with long-range connectivity among sulfur particles. Additionally, cracking is found to be particularly prominent in thicker water-based electrodes, propagating especially in regions with larger particle agglomerates and often extending to cause local delamination of the electrodes. These microstructural details are shown to significantly impact the tortuosity and contact resistance of the sulfur electrodes and thereby affecting the cycling performance of the Li-S battery cells. The choice of solvent and binder is crucial in determining particle surface charge, which directly influences active material dispersion and carbon-binder arrangement within the battery porous electrodes. This, in turn, affects ionic and electronic transport properties, ultimately impacting electrochemical performance. Meticulous engineering of the slurry to control these factors is essential for efficient and sustainable water-based electrode processing. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001291 Publication Date 2024-08-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record
Impact Factor 27.8 Times cited Open Access
Notes Approved Most recent IF: 27.8; 2024 IF: 16.721
Call Number UA @ admin @ c:irua:207624 Serial 9311
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Bacaksiz, C.; Frauenheim, T.; Milošević, M.V.
Title Strong spin-lattice coupling and high-temperature magnetic ordering in monolayer chromium dichalcogenides Type A1 Journal article
Year (down) 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 6 Pages 064001-64009
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We detail the magnetic properties of monolayer CrX2 and its Janus counterparts CrXY (X, Y = S, Se, Te, with X not equal Y) using ab initio methods and Landau-Lifshitz-Gilbert magnetization dynamics, and uncover the pronouncedly strong interplay between their structure symmetry and the magnetic order. The relaxation of nonmagnetic chalcogen atoms, that carry large spin-orbit coupling, changes the energetically preferential magnetic order between in-plane antiferromagnetic and tilted ferromagnetic one. The considered Janus monolayers exhibit sizable Dzyaloshinskii-Moriya interaction, in some cases above 20% of the isotropic exchange, and critical temperature of the long-range magnetic order in the vicinity or even significantly above the room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001247462600001 Publication Date 2024-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:206660 Serial 9317
Permanent link to this record
 

 
Author Hoekx, S.; Daems, N.; Arenas Esteban, D.; Bals, S.; Breugelmans, T.
Title Toward the rational design of Cu electrocatalysts for improved performance of the NO3RR Type A1 Journal article
Year (down) 2024 Publication ACS applied energy materials Abbreviated Journal
Volume 7 Issue 9 Pages 3761-3775
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Cu is one of the most promising materials as an electrocatalyst for the nitrate reduction reaction (NO3RR) to ammonia, a reaction that can simultaneously remove nitrates from wastewater and produce ammonia, a high-value commodity chemical. However, a rational approach to catalyst design is lacking, limiting efficient catalyst optimization. In this work, we propose a way to synthesize monodisperse, polycrystalline Cu NPs with small variances in size by changing the carbon chain length of the phosphonic acid-based ligand. Cu NPs with 8.3, 10.0, and 11.9 nm diameters are successfully synthesized, and high-resolution electron microscopy and tomography are used to characterize these NPs in depth. By isolating Cu NP size as a parameter, we can unequivocally establish its effect on electrochemical performance for the NO3RR to ammonia under optimal operating conditions for the catalyst (0.1 M KOH electrolyte at -1.25 V vs RHE, as established in the first phase). The smallest Cu NPs (8.3 nm with a TDPA ligand) perform best, achieving Faradaic efficiencies (FEs) of 85.4% and absolute current densities of similar to 250 mA cm(-2), with increasing current densities and constant FEs as the particle size decreases. To allow for a rational approach to Cu-based catalyst design from a stability perspective, this work completed a first study of the main degradation pathway that the Cu NPs undergo during NO3RR. High-resolution electron microscopy and tomography are used to characterize the particles at various stages of the reaction. The NPs undergo agglomeration, pulverization, and particle detachment due to the reaction, starting at a particle size of 8.3 nm and progressively getting smaller, but leveling off, until a NP size of 2.6 nm is reached after 2 h of electrolysis. This decrease in NP size goes paired with a decrease in FE from 83% after the first 15 min to 74% after 2 h at -0.75 V vs RHE, despite the increase in active surface area. These insights into the most prominent degradation mechanisms allow for rational adjustments to future catalysts to combat these changes; for example, by embedding NPs in a tailored support, morphological degradation could be impeded. Therefore, these insights allow for a rational approach to the improvement of the stability of Cu-based catalysts for the NO3RR, a very important but often an overlooked aspect of catalyst design.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001228056800001 Publication Date 2024-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access
Notes Approved Most recent IF: 6.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:206469 Serial 9323
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V.
Title Tuning the quantum phase transition of an ultrathin magnetic topological insulator Type A1 Journal article
Year (down) 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 7 Pages 074201-74208
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We explore the effect of thickness, magnetization direction, strain, and gating on the topological quantum phase transition of a thin-film magnetic topological insulator. Reducing the film thickness to the ultrathin regime couples the edge states on the two surfaces, opening a gap known as the hybridization gap, and causing a phase transition from a topological insulator to a normal insulator (NI). An out-of-plane/in-plane magnetization of size proportional to the hybridization gap triggers a phase transition from a normal insulator state to a quantum anomalous Hall (QAH)/semimetal state. A magnetization tilt by angle 0 from the out-of-plane axis influences the topological phase transition in a way that for sufficiently large 0, no phase transition from NI to QAH can be observed regardless of the sample thickness or magnetization, and for 0 close to pi /2 the system transits to a semimetal phase. Furthermore, we demonstrate that compressive/tensile strain can be used to decrease/increase the magnetization threshold for the topological phase transition. Finally, we reveal the effect of a vertical potential acting on the film, be it due to the substrate or applied gating, which breaks inversion symmetry and raises the magnetization threshold for the transition from NI to QAH state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001281 Publication Date 2024-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:207598 Serial 9324
Permanent link to this record
 

 
Author Živanić, M.; Espona‐Noguera, A.; Verswyvel, H.; Smits, E.; Bogaerts, A.; Lin, A.; Canal, C.
Title Injectable Plasma‐Treated Alginate Hydrogel for Oxidative Stress Delivery to Induce Immunogenic Cell Death in Osteosarcoma Type A1 Journal article
Year (down) 2023 Publication Advanced functional materials Abbreviated Journal Adv Funct Materials
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Cold atmospheric plasma (CAP) is a source of cell‐damaging oxidant molecules that may be used as low‐cost cancer treatment with minimal side effects. Liquids treated with cold plasma and enriched with oxidants are a modality for non‐invasive treatment of internal tumors with cold plasma via injection. However, liquids are easily diluted with body fluids which impedes high and localized delivery of oxidants to the target. As an alternative, plasma‐treated hydrogels (PTH) emerge as vehicles for the precise delivery of oxidants. This study reports an optimal protocol for the preparation of injectable alginate PTH that ensures the preservation of plasma‐generated oxidants. The generation, storage, and release of oxidants from the PTH are assessed. The efficacy of the alginate PTH in cancer treatment is demonstrated in the context of cancer cell cytotoxicity and immunogenicity–release of danger signals and phagocytosis by immature dendritic cells, up to now unexplored for PTH. These are shown in osteosarcoma, a hard‐to‐treat cancer. The study aims to consolidate PTH as a novel cold plasma treatment modality for non‐invasive or postoperative tumor treatment. The results offer a rationale for further exploration of alginate‐based PTHs as a versatile platform in biomedical engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001129424500001 Publication Date 2023-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record
Impact Factor 19 Times cited Open Access
Notes Fonds Wetenschappelijk Onderzoek, 1S67621N ; European Cooperation in Science and Technology, COST Action CA20114 ; Agència de Gestió d'Ajuts Universitaris i de Recerca, SGR2022‐1368 ; Agencia Estatal de Investigación, PID2019‐ 103892RB‐I00/AEI/10.13039/501100011033 ; Instituto de Salud Carlos III, IHRC22/00003 ; Approved Most recent IF: 19; 2023 IF: 12.124
Call Number PLASMANT @ plasmant @c:irua:202030 Serial 8979
Permanent link to this record
 

 
Author Han, I.; Song, I.S.; Choi, S.A.; Lee, T.; Yusupov, M.; Shaw, P.; Bogaerts, A.; Choi, E.H.; Ryu, J.J.
Title Bioactive Nonthermal Biocompatible Plasma Enhances Migration on Human Gingival Fibroblasts Type A1 Journal article
Year (down) 2023 Publication Advanced healthcare materials Abbreviated Journal
Volume 12 Issue 4 Pages 2200527
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This study hypothesizes that the application of low-dose nonthermal biocompatible dielectric barrier discharge plasma (DBD-NBP) to human gingival fibroblasts (HGFs) will inhibit colony formation but not cell death and induce matrix metalloproteinase (MMP) expression, extracellular matrix (ECM) degradation, and subsequent cell migration, which can result in enhanced wound healing. HGFs treated with plasma for 3 min migrate to each other across the gap faster than those in the control and 5-min treatment groups on days 1 and 3. The plasma-treated HGFs show significantly high expression levels of the cell cycle arrest-related p21 gene and enhanced MMP activity. Focal adhesion kinase (FAK) mediated attenuation of wound healing or actin cytoskeleton rearrangement, and plasma-mediated reversal of this attenuation support the migratory effect of DBD-NBP. Further, this work performs computer simulations to investigate the effect of oxidation on the stability and conformation of the catalytic kinase domain (KD) of FAK. It is found that the oxidation of highly reactive amino acids (AAs) Cys427, Met442, Cys559, Met571, Met617, and Met643 changes the conformation and increases the structural flexibility of the FAK protein and thus modulates its function and activity. Low-dose DBD-NBP-induces host cell cycle arrest, ECM breakdown, and subsequent migration, thus contributing to the enhanced wound healing process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000897762100001 Publication Date 2022-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2192-2640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10 Times cited Open Access OpenAccess
Notes National Research Foundation of Korea; Kementerian Pendidikan, 2020R1I1A1A01073071 2021R1A6A1A03038785 ; Approved Most recent IF: 10; 2023 IF: 5.11
Call Number PLASMANT @ plasmant @c:irua:192804 Serial 7242
Permanent link to this record
 

 
Author van der Sluijs, M.M.; Salzmann, B.B.V.; Arenas Esteban, D.; Li, C.; Jannis, D.; Brafine, L.C.; Laning, T.D.; Reinders, J.W.C.; Hijmans, N.S.A.; Moes, J.R.; Verbeeck, J.; Bals, S.; Vanmaekelbergh, D.
Title Study of the Mechanism and Increasing Crystallinity in the Self-Templated Growth of Ultrathin PbS Nanosheets Type A1 Journal article
Year (down) 2023 Publication Chemistry of materials Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Colloidal 2D semiconductor nanocrystals, the analogue of solid-state quantum wells, have attracted strong interest in material science and physics. Molar quantities of suspended quantum objects with spectrally pure absorption and emission can be synthesized. For the visible region, CdSe nanoplatelets with atomically precise thickness and tailorable emission have been (almost) perfected. For the near-infrared region, PbS nanosheets (NSs) hold strong promise, but the photoluminescence quantum yield is low and many questions on the crystallinity, atomic structure, intriguing rectangular shape, and formation mechanism remain to be answered. Here, we report on a detailed investigation of the PbS NSs prepared with a lead thiocyanate single source precursor. Atomically resolved HAADF-STEM imaging reveals the presence of defects and small cubic domains in the deformed orthorhombic PbS crystal lattice. Moreover, variations in thickness are observed in the NSs, but only in steps of 2 PbS monolayers. To study the reaction mechanism, a synthesis at a lower temperature allowed for the study of reaction intermediates. Specifically, we studied the evolution of pseudo-crystalline templates towards mature, crystalline PbS NSs. We propose a self-induced templating mechanism based on an oleylamine-lead-thiocyanate (OLAM-Pb-SCN) complex with two Pb-SCN units as a building block; the interactions between the long-chain ligands regulate the crystal structure and possibly the lateral dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000959572100001 Publication Date 2023-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited 2 Open Access OpenAccess
Notes H2020 Research Infrastructures, 731019 ; H2020 European Research Council, 692691 815128 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 715.016.002 ; Approved Most recent IF: 8.6; 2023 IF: 9.466
Call Number EMAT @ emat @c:irua:195894 Serial 7255
Permanent link to this record
 

 
Author de la Encarnación, C.; Jungwirth, F.; Vila-Liarte, D.; Renero-Lecuna, C.; Kavak, S.; Orue, I.; Wilhelm, C.; Bals, S.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Liz-Marzán, L.M.
Title Hybrid core–shell nanoparticles for cell-specific magnetic separation and photothermal heating Type A1 Journal article
Year (down) 2023 Publication Journal of materials chemistry B : materials for biology and medicine Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hyperthermia, as the process of heating a malignant site above 42 °C to trigger cell death, has emerged as an effective and selective cancer therapy strategy. Various modalities of hyperthermia have been proposed, among which magnetic and photothermal hyperthermia are known to benefit from the use of nanomaterials. In this context, we introduce herein a hybrid colloidal nanostructure comprising plasmonic gold nanorods (AuNRs) covered by a silica shell, onto which iron oxide nanoparticles (IONPs) are subsequently grown. The resulting hybrid nanostructures are responsive to both external magnetic fields and near-infrared irradiation. As a result, they can be applied for the targeted magnetic separation of selected cell populations – upon targeting by antibody functionalization – as well as for photothermal heating. Through this combined functionality, the therapeutic effect of photothermal heating can be enhanced. We demonstrate both the fabrication of the hybrid system and its application for targeted photothermal hyperthermia of human glioblastoma cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000968908400001 Publication Date 2023-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-750X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7 Times cited 1 Open Access OpenAccess
Notes Ministerio de Ciencia e Innovación, PID2019-108854RA-I00 ; H2020 European Research Council, ERC AdG 787510, 4DBIOSERS ERC CoG 815128, REALNANO ; Fonds Wetenschappelijk Onderzoek, PhD research grant 1181122N ; Approved Most recent IF: 7; 2023 IF: 4.543
Call Number EMAT @ emat @c:irua:195879 Serial 7261
Permanent link to this record
 

 
Author Peeters, H.; Lenaerts, S.; Verbruggen, S.W.
Title Benchmarking the photocatalytic self-cleaning activity of industrial and experimental materials with ISO 27448:2009 Type A1 Journal article
Year (down) 2023 Publication Materials Abbreviated Journal Materials
Volume 16 Issue 3 Pages 1119-13
Keywords A1 Journal article; Engineering sciences. Technology
Abstract Various industrial surface materials are tested for their photocatalytic self-cleaning activity by performing the ISO 27448:2009 method. The samples are pre-activated by UV irradiation, fouled with oleic acid and irradiated by UV light. The degradation of oleic acid over time is monitored by taking water contact angle measurements using a contact angle goniometer. The foulant, oleic acid, is an organic acid that makes the surface more hydrophobic. The water contact angle will thus decrease over time as the photocatalytic material degrades the oleic acid. In this study, we argue that the use of this method is strongly limited to specific types of surface materials, i.e., only those that are hydrophilic and smooth in nature. For more hydrophobic materials, the difference in the water contact angles of a clean surface and a fouled surface is not measurable. Therefore, the photocatalytic self-cleaning activity cannot be established experimentally. Another type of material that cannot be tested by this standard are rough surfaces. For rough surfaces, the water contact angle cannot be measured accurately using a contact angle goniometer as prescribed by the standard. Because of these limitations, many potentially interesting industrial substrates cannot be evaluated. Smooth samples that were treated with an in-house developed hydrophilic titania thin film (PCT/EP2018/079983) showed a great photocatalytic self-cleaning performance according to the ISO standard. Apart from discussing the pros and cons of the current ISO standard, we also stress how to carefully interpret the results and suggest alternative testing solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000930734100001 Publication Date 2023-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.4; 2023 IF: 2.654
Call Number UA @ admin @ c:irua:193337 Serial 7284
Permanent link to this record
 

 
Author Morsdorf, L.; Kashiwar, A.; Kübel, C.; Tasan, C.C.
Title Carbon segregation and cementite precipitation at grain boundaries in quenched and tempered lath martensite Type A1 Journal article
Year (down) 2023 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal
Volume 862 Issue Pages 144369-21
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Tempering is widely applied to make carbon atoms beneficially rearrange in high strength steel microstructures after quenching; though the nano-scale interaction of carbon atoms with crystallographic defects is hard to experimentally observe. To improve, we investigate the redistribution of carbon atoms along martensite grain boundaries in a quenched and tempered low carbon steel. We observe the tempering-induced microstructural evolution by in-situ heating in a transmission electron microscope (TEM) and by compositional analysis through atom probe tomography (APT). Probe volumes for APT originate from a single martensite packet but in different tempering conditions, which is achieved via a sequential lift-out with in-between tempering treatments. The complementary use of TEM and APT provides crystallographic as well as chemical information on carbon segregation and subsequent carbide precipitation at martensite grain boundaries. The results show that the amount of carbon segregation to martensite grain boundaries is influenced by the boundary type, e.g. low-angle lath or high-angle block boundaries. Also, the growth behavior of cementite precipitates from grain boundary nucleation sites into neighboring martensite grains differs at low- and high-angle grain boundaries. This is due to the crystallographic constraints arising from the semi-coherent orientation relationship between cementite and adjacent martensite. We also show that slower quenching stabilizes thin retained austenite films between martensite grains because of enhanced carbon segregation during cooling. Finally, we demonstrate the effect of carbon redistribution along martensite grain boundaries on the mechanical properties. Here, we compare micro-scale Vickers hardness results from boundary-containing probe volumes to nanoindentation results from pure bulk martensite (boundary-free) probe volumes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000905165700001 Publication Date 2022-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.4; 2023 IF: 3.094
Call Number UA @ admin @ c:irua:192279 Serial 7285
Permanent link to this record
 

 
Author Krishnamurthy, S.C.; Arseenko, M.; Kashiwar, A.; Dufour, P.; Marchal, Y.; Delahaye, J.; Idrissi, H.; Pardoen, T.; Mertens, A.; Simar, A.
Title Controlled precipitation in a new Al-Mg-Sc alloy for enhanced corrosion behavior while maintaining the mechanical performance Type A1 Journal article
Year (down) 2023 Publication Materials characterization Abbreviated Journal
Volume 200 Issue Pages 112886-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The hot working of 5xxx series alloys with Mg ≥3.5 wt% is a concern due to the precipitation of β (Al3Mg2) phase at grain boundaries favoring Inter Granular Corrosion (IGC). The mechanical and corrosion properties of a new 5028-H116 Al-Mg-Sc alloy under various β precipitates distribution is analyzed by imposing different cooling rates from the hot forming temperature (i.e. 325 °C). The mechanical properties are maintained regardless of the heat treatment. However, the different nucleation sites and volume fractions of β precipitates for different cooling rates critically affect IGC. Controlled furnace cooling after the 325 °C heat treatment is ideal in 5028-H116 alloy to reduce susceptibility to IGC after sensitization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000977059100001 Publication Date 2023-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.7; 2023 IF: 2.714
Call Number UA @ admin @ c:irua:195598 Serial 7291
Permanent link to this record
 

 
Author Bhatia, H.; Martin, C.; Keshavarz, M.; Dovgaliuk, I.; Schrenker, N.J.; Ottesen, M.; Qiu, W.; Fron, E.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Roeffaers, M.B.J.; Hofkens, J.; Debroye, E.
Title Deciphering the role of water in promoting the optoelectronic performance of surface-engineered lead halide perovskite nanocrystals Type A1 Journal article
Year (down) 2023 Publication ACS applied materials and interfaces Abbreviated Journal
Volume 15 Issue 5 Pages 7294-7307
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Lead halide perovskites are promising candidates for applicability is limited by their structural instability toward moisture. Although a deliberate addition of water to the precursor solution has recently been shown to improve the crystallinity and optical properties of perovskites, the corresponding thin films still do not exhibit a near-unity quantum yield. Herein, we report that the direct addition of a minute amount of water to post-treated substantially enhances the stability while achieving a 95% photoluminescence quantum yield in a NC thin film. We unveil the mechanism of how moisture assists in the formation of an additional NH4Br component. Alongside, we demonstrate the crucial role of moisture in assisting localized etching of the perovskite crystal, facilitating the partial incorporation of NH4+, which is key for improved performance under ambient conditions. Finally, as a proof-of-concept, the application of post-treated and watertreated perovskites is tested in LEDs, with the latter exhibiting a superior performance, offering opportunities toward commercial application in moisture-stable optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000931729400001 Publication Date 2023-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 3 Open Access Not_Open_Access
Notes H.B. would like to express her sincere gratitude to Dr. Peter Erk (formerly BASF SE, Germany) for very insightful discussions. The authors acknowledge financial support from the Research Foundation-Flanders (FWO grant numbers S002019N, 1514220N, G.0B39.15, G.0B49.15, G098319N, and ZW15_09-GOH6316) , the KU Leuven Research Fund (C14/19/079, iBOF-21-085 PERSIST, and STG/21/010) , the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) , the Hercules Founda-tion (HER/11/14) , and the ERC through the Marie Curie ITN iSwitch Ph.D. fellowship to H.B. (grant number 642196) . C.M. acknowledges the financial support from grants PID2021-128761OA-C22 funded by MCIN/AEI/10.13039/501100011033 by the ?European Union? and SBPLY/21/180501/000127 funded by JCCM and by the EU through Fondo Europeo de Desarollo Regional? (FEDER) . Martin Bremholm and Martin Ottesen acknowledge funding from the Danish Council for Independent Research, Natural Sciences, under the Sapere Aude program (grant no. 7027-00077B) and VILLUM FONDEN through the Centre of Excellence for Dirac Materials (grant no. 11744) . Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged.-N.J.S. acknowledges financial support from the research foundation Flanders (FWO) through a postdoctoral fellowship (FWO grant no. 1238622N) . S.B. acknowledges financial support from the European Commission by the ERC Consolidator grant REALNANO (no. 815128) . Approved Most recent IF: 9.5; 2023 IF: 7.504
Call Number UA @ admin @ c:irua:195375 Serial 7293
Permanent link to this record
 

 
Author Yedukondalu, N.; Pandey, T.; Roshan, S.C.R.
Title Effect of hydrostatic pressure on lone pair activity and phonon transport in Bi₂O₂S Type A1 Journal article
Year (down) 2023 Publication ACS applied energy materials Abbreviated Journal
Volume 6 Issue 4 Pages 2401-2411
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Dibismuth dioxychalcogenides, Bi2O2Ch (Ch = S, Se, Te), are a promising class of materials for next-generation electronics and thermoelectrics due to their ultrahigh carrier mobility and excellent air stability. An interesting member of this family is Bi2O2S, which has a stereochemically active 6s2 lone pair of Bi3+ cations, heterogeneous bonding, and a high mass contrast between its constituent elements. In the present study, we have used first-principles calculations in combination with Boltzmann transport theory to systematically investigate the effect of hydrostatic pressure on lattice dynamics and phonon transport properties of Bi2O2S. We found that the ambient Pnmn phase has a low average lattice thermal conductivity (kappa l) of 1.71 W/(m K) at 300 K. We also predicted that Bi2O2S undergoes a structural phase transition from a low-symmetry (Pnmn) to a high-symmetry (I4/mmm) structure at around 4 GPa due to centering of Bi3+ cations with pressure. Upon compression, the lone pair activity of Bi3+ cations is suppressed, which increases kappa l by almost 3 times to 4.92 W/ (m K) at 5 GPa for the I4/mmm phase. The computed phonon lifetimes and Gru''neisen parameters show that anharmonicity decreases with increasing pressure due to further suppression of the lone pair activity and strengthening of intra-and intermolecular interactions, leading to an average room-temperature kappa l of 12.82 W/(m K) at 20 GPa. Overall, this study provides a comprehensive understanding of the effect of hydrostatic pressure on the stereochemical activity of the lone pair of Bi3+ cations and its implications on the phonon transport properties of Bi2O2S.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000929103700001 Publication Date 2023-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.4; 2023 IF: NA
Call Number UA @ admin @ c:irua:195245 Serial 7300
Permanent link to this record
 

 
Author Soenen, M.; Bacaksiz, C.; Menezes, R.M.; Milošević, M.V.
Title Stacking-dependent topological magnons in bilayer CrI₃ Type A1 Journal article
Year (down) 2023 Publication Physical review materials Abbreviated Journal
Volume 7 Issue 2 Pages 024421-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by the potential of atomically thin magnets towards achieving tunable high-frequency magnonics, we detail the spin-wave dispersion of bilayer CrI3. We demonstrate that the magnonic behavior of the bilayer strongly depends on its stacking configuration and the interlayer magnetic ordering, where a topological band gap opens in the dispersion caused by the Dzyaloshinskii-Moriya and Kitaev interactions, classifying bilayer CrI3 as a topological magnon insulator. We further reveal that both the size and the topology of the band gap in a CrI3 bilayer with an antiferromagnetic interlayer ordering are tunable by an external magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000943169600001 Publication Date 2023-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.4; 2023 IF: NA
Call Number UA @ admin @ c:irua:195179 Serial 7338
Permanent link to this record
 

 
Author Mulder, J.T.; Meijer, M.S.; van Blaaderen, J.J.; du Fosse, I.; Jenkinson, K.; Bals, S.; Manna, L.; Houtepen, A.J.
Title Understanding and preventing photoluminescence quenching to achieve unity photoluminescence quantum yield in Yb:YLF nanocrystals Type A1 Journal article
Year (down) 2023 Publication ACS applied materials and interfaces Abbreviated Journal
Volume 15 Issue 2 Pages 3274-3286
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ytterbium-doped LiYF4 (Yb:YLF) is a commonly used material for laser applications, as a photon upconversion medium, and for optical refrigeration. As nanocrystals (NCs), the material is also of interest for biological and physical applications. Unfortunately, as with most phosphors, with the reduction in size comes a large reduction of the photoluminescence quantum yield (PLQY), which is typically associated with an increase in surface-related PL quenching. Here, we report the synthesis of bipyramidal Yb:YLF NCs with a short axis of similar to 60 nm. We systematically study and remove all sources of PL quenching in these NCs. By chemically removing all traces of water from the reaction mixture, we obtain NCs that exhibit a near-unity PLQY for an Yb3+ concentration below 20%. At higher Yb3+ concentrations, efficient concentration quenching occurs. The surface PL quenching is mitigated by growing an undoped YLF shell around the NC core, resulting in near-unity PLQY values even for fully Yb3+-based LiYbF4 cores. This unambiguously shows that the only remaining quenching sites in core-only Yb:YLF NCs reside on the surface and that concentration quenching is due to energy transfer to the surface. Monte Carlo simulations can reproduce the concentration dependence of the PLQY. Surprisingly, Fo''rster resonance energy transfer does not give satisfactory agreement with the experimental data, whereas nearest-neighbor energy transfer does. This work demonstrates that Yb3+-based nanophosphors can be synthesized with a quality close to that of bulk single crystals. The high Yb3+ concentration in the LiYbF4/LiYF4 core/shell nanocrystals increases the weak Yb3+ absorption, making these materials highly promising for fundamental studies and increasing their effectiveness in bioapplications and optical refrigeration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000912997300001 Publication Date 2023-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 3 Open Access OpenAccess
Notes This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 766900 (Testing the Large-Scale Limit of Quantum Mechanics). A.J.H. and I.d.F. further acknowledge the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand) for financial support. The authors thank Freddy Rabouw and Andries Meijerink (Utrecht University) for very fruitful discussions and extremely useful advice. The author s thank Jos Thieme for his help with the laser setups used . The authors furthermore thank Niranjan Saikumar for proofreading the manuscript. Approved Most recent IF: 9.5; 2023 IF: 7.504
Call Number UA @ admin @ c:irua:194317 Serial 7348
Permanent link to this record
 

 
Author Yang, C.-Q.; Zhi, R.; Rothmann, M.U.; Xu, Y.-Y.; Li, L.-Q.; Hu, Z.-Y.; Pang, S.; Cheng, Y.-B.; Van Tendeloo, G.; Li, W.
Title Unveiling the intrinsic structure and intragrain defects of organic-inorganic hybrid perovskites by ultralow dose transmission electron microscopy Type A1 Journal article
Year (down) 2023 Publication Advanced materials Abbreviated Journal
Volume Issue Pages 1-9
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy (TEM) is a powerful tool for unveiling the structural, compositional, and electronic properties of organic-inorganic hybrid perovskites (OIHPs) at the atomic to micrometer length scales. However, the structural and compositional instability of OIHPs under electron beam radiation results in misunderstandings of the microscopic structure-property-performance relationship in OIHP devices. Here, ultralow dose TEM is utilized to identify the mechanism of the electron-beam-induced changes in OHIPs and clarify the cumulative electron dose thresholds (critical dose) of different commercially interesting state-of-the-art OIHPs, including methylammonium lead iodide (MAPbI(3)), formamidinium lead iodide (FAPbI(3)), FA(0.83)Cs(0.17)PbI(3), FA(0.15)Cs(0.85)PbI(3), and MAPb(0.5)Sn(0.5)I(3). The critical dose is related to the composition of the OIHPs, with FA(0.15)Cs(0.85)PbI(3) having the highest critical dose of approximate to 84 e angstrom(-2) and FA(0.83)Cs(0.17)PbI(3) having the lowest critical dose of approximate to 4.2 e angstrom(-2). The electron beam irradiation results in the formation of a superstructure with ordered I and FA vacancies along (c), as identified from the three major crystal axes in cubic FAPbI(3), (c), (c), and (c). The intragrain planar defects in FAPbI(3) are stable, while an obvious modification is observed in FA(0.83)Cs(0.17)PbI(3) under continuous electron beam exposure. This information can serve as a guide for ensuring a reliable understanding of the microstructure of OIHP optoelectronic devices by TEM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000950461600001 Publication Date 2023-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 29.4; 2023 IF: 19.791
Call Number UA @ admin @ c:irua:195116 Serial 7349
Permanent link to this record
 

 
Author Verdierre, G.; Gauquelin, N.; Jannis, D.; Birkhölzer, Y.A.; Mallik, S.; Verbeeck, J.; Bibes, M.; Koster, G.
Title Epitaxial growth of the candidate ferroelectric Rashba material SrBiO3by pulsed laser deposition Type A1 Journal article
Year (down) 2023 Publication APL materials Abbreviated Journal
Volume 11 Issue 3 Pages 031109
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Among oxides, bismuthates have been gaining much interest due to their unique features. In addition to their superconducting properties, they show potential for applications as topological insulators and as possible spin-to-charge converters. After being first investigated in their bulk form in the 1980s, bismuthates have been successfully grown as thin films. However, most efforts have focused on BaBiO<sub>3</sub>, with SrBiO<sub>3</sub>receiving only little attention. Here, we report the growth of epitaxial films of SrBiO<sub>3</sub>on both TiO<sub>2</sub>-terminated SrTiO<sub>3</sub>and NdO-terminated NdScO<sub>3</sub>substrates by pulsed laser deposition. SrBiO<sub>3</sub>has a pseudocubic lattice constant of ∼4.25 Å and grows relaxed on NdScO<sub>3</sub>. Counter-intuitively, it grows with a slight tensile strain on SrTiO<sub>3</sub>despite a large lattice mismatch, which should induce compressive strain. High-resolution transmission electron microscopy reveals that this occurs as a consequence of structural domain matching, with blocks of 10 SrBiO<sub>3</sub>unit planes matching blocks of 11 SrTiO<sub>3</sub>unit planes. This work provides a framework for the synthesis of high quality perovskite bismuthates films and for the understanding of their interface interactions with homostructural substrates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000953363800004 Publication Date 2023-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record
Impact Factor 6.1 Times cited Open Access OpenAccess
Notes This work received support from the ERC Advanced grant (Grant No. 833973) “FRESCO” and funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 823717—ESTEEM3, Van Gogh travel grant, Nuffic, The Netherlands (CF No. 42582SB).; esteem3reported; esteem3TA Approved Most recent IF: 6.1; 2023 IF: 4.335
Call Number EMAT @ emat @c:irua:196135 Serial 7377
Permanent link to this record
 

 
Author Benedoue, S.; Benedet, M.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Seraglia, R.; Pagot, G.; Rizzi, G.A.; Balzano, V.; Gavioli, L.; Noto, V.D.; Barreca, D.; Maccato, C.
Title Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams Type A1 Journal article
Year (down) 2023 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 13 Issue 6 Pages 1035
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000960297000001 Publication Date 2023-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited 3 Open Access OpenAccess
Notes The present work was financially supported by CNR (Progetti di Ricerca @CNR—avviso 2020—ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO—NANOMAT, INSTM21PDBARMAC—ATENA) and the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717—ESTEEM3. The FWO-Hercules fund G0H4316N ‘Direct electron detector for soft matter TEM’ is also acknowledged. Many thanks are also due to Dr. Riccardo Lorenzin for his support to experimental activities.; esteem3reported; esteem3TA Approved Most recent IF: 5.3; 2023 IF: 3.553
Call Number EMAT @ emat @c:irua:196115 Serial 7378
Permanent link to this record
 

 
Author Yang, T.; Kong, Y.; Li, K.; Lu, Q.; Wang, Y.; Du, Y.; Schryvers, D.
Title Quasicrystalline clusters transformed from C14-MgZn₂ nanoprecipitates in Al alloys Type A1 Journal article
Year (down) 2023 Publication Materials characterization Abbreviated Journal
Volume 199 Issue Pages 112772-112777
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ultrafine faulty C14-MgZn2 Laves phase precipitates containing quasicrystalline clusters and demonstrating the formation of binary quasicrystalline precipitates with Penrose-like random-tiling were observed in the over-aged FCC matrix of a commercial 7N01 Al-Zn-Mg alloy, using high angle annular dark field scanning transmission electron microscopy. The evolution from C14-Laves phase to quasicrystalline clusters is illustrated, and five-fold symmetry can be found in both real and reciprocal spaces. Our findings reveal the possibility of quasicrystalline formation from Laves phase in a highly plastic metal matrix like Al and demonstrate the structural relationship between Laves phase and quasicrystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000954788800001 Publication Date 2023-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.7; 2023 IF: 2.714
Call Number UA @ admin @ c:irua:196106 Serial 8446
Permanent link to this record
 

 
Author Tchakoua, T.; Powell, A.D.; Gerrits, N.; Somers, M.F.; Doblhoff-Dier, K.; Busnengo, H.F.; Kroes, G.-J.
Title Simulating highly activated sticking of H₂ on Al(110) : quantum versus quasi-classical dynamics Type A1 Journal article
Year (down) 2023 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal
Volume 127 Issue 11 Pages 5395-5407
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We evaluate the importance of quantum effects on the sticking of H2 on Al(110) for conditions that are close to those of molecular beam experiments that have been done on this system. Calculations with the quasi-classical trajectory (QCT) method and with quantum dynamics (QD) are performed using a model in which only motion in the six molecular degrees of freedom is allowed. The potential energy surface used has a minimum barrier height close to the value recently obtained with the quantum Monte Carlo method. Monte Carlo averaging over the initial rovibrational states allowed the QD calculations to be done with an order of magnitude smaller computational expense. The sticking probability curve computed with QD is shifted to lower energies relative to the QCT curve by 0.21 to 0.05 kcal/mol, with the highest shift obtained for the lowest incidence energy. Quantum effects are therefore expected to play a small role in calculations that would evaluate the accuracy of electronic structure methods for determining the minimum barrier height to dissociative chemisorption for H2 + Al(110) on the basis of the standard procedure for comparing results of theory with molecular beam experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000971346700001 Publication Date 2023-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7; 2023 IF: 4.536
Call Number UA @ admin @ c:irua:196071 Serial 8525
Permanent link to this record
 

 
Author Samal, D.; Gauquelin, N.; Takamura, Y.; Lobato, I.; Arenholz, E.; Van Aert, S.; Huijben, M.; Zhong, Z.; Verbeeck, J.; Van Tendeloo, G.; Koster, G.
Title Unusual structural rearrangement and superconductivity in infinite layer cuprate superlattices Type A1 Journal article
Year (down) 2023 Publication Physical review materials Abbreviated Journal
Volume 7 Issue 5 Pages 054803
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001041792100007 Publication Date 2023-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes Air Force Office of Scientific Research; European Office of Aerospace Research and Development, FA8655-10-1-3077 ; Office of Science, DE-AC02-05CH11231 ; National Science Foundation, DMR-1745450 ; Seventh Framework Programme, 278510 ; Bijzonder Onderzoeksfonds UGent; Approved Most recent IF: 3.4; 2023 IF: NA
Call Number EMAT @ emat @c:irua:196973 Serial 8790
Permanent link to this record
 

 
Author Kavak, S.; Kadu, A.A.; Claes, N.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Batenburg, K.J.; Bals, S.
Title Quantitative 3D Investigation of Nanoparticle Assemblies by Volumetric Segmentation of Electron Tomography Data Sets Type A1 Journal article
Year (down) 2023 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal
Volume 127 Issue 20 Pages 9725-9734
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Morphological characterization of nanoparticle assemblies and hybrid nanomaterials is critical in determining their structure-property relationships as well as in the development of structures with desired properties. Electron tomography has become a widely utilized technique for the three-dimensional characterization of nanoparticle assemblies. However, the extraction of quantitative morphological parameters from the reconstructed volume can be a complex and labor-intensive task. In this study, we aim to overcome this challenge by automating the volumetric segmentation process applied to three-dimensional reconstructions of nanoparticle assemblies. The key to enabling automated characterization is to assess the performance of different volumetric segmentation methods in accurately extracting predefined quantitative descriptors for morphological characterization. In our methodology, we compare the quantitative descriptors obtained through manual segmentation with those obtained through automated segmentation methods, to evaluate their accuracy and effectiveness. To show generality, our study focuses on the characterization of assemblies of CdSe/CdS quantum dots, gold nanospheres and CdSe/CdS encapsulated in polymeric micelles, and silica-coated gold nanorods decorated with both CdSe/CdS or PbS quantum dots. We use two unsupervised segmentation algorithms: the watershed transform and the spherical Hough transform. Our results demonstrate that the choice of automated segmentation method is crucial for accurately extracting the predefined quantitative descriptors. Specifically, the spherical Hough transform exhibits superior performance in accurately extracting quantitative descriptors, such as particle size and interparticle distance, thereby allowing for an objective, efficient, and reliable volumetric segmentation of complex nanoparticle assemblies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000991752700001 Publication Date 2023-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 2 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 1181122N ; Horizon 2020 Framework Programme, 861950 ; H2020 European Research Council, 815128 ; Approved Most recent IF: 3.7; 2023 IF: 4.536
Call Number EMAT @ emat @c:irua:196971 Serial 8793
Permanent link to this record
 

 
Author Tampieri, F.; Espona-Noguera, A.; Labay, C.; Ginebra, M.-P.; Yusupov, M.; Bogaerts, A.; Canal, C.
Title Does non-thermal plasma modify biopolymers in solution? A chemical and mechanistic study for alginate Type A1 Journal Article
Year (down) 2023 Publication Biomaterials Science Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract In the last decades, non-thermal plasma has been extensively investigated as a relevant tool for various biomedical applications, ranging from tissue decontamination to regeneration and from skin treatment to tumor therapies. This high versatility is due to the different kinds and amount of reactive oxygen and nitrogen species that can be generated during a plasma treatment and put in contact with the biological target. Some recent studies report that solutions of biopolymers with the ability to generate hydrogels, when treated with plasma, can enhance the generation of reactive species and influence their stability, resulting thus in the ideal media for indirect treatments of biological targets. The direct effects of the plasma treatment on the structure of biopolymers in water solution, as well as the chemical mechanisms responsible for the enhanced generation of RONS, are not yet fully understood. In this study, we aim at filling this gap by investigating, on the one hand, the nature and extent of the modifications induced by plasma treatment in alginate solutions, and, on the other hand, at using this information to explain the mechanisms responsible for the enhanced generation of reactive species as a consequence of the treatment. The approach we use is twofold: (i) investigating the effects of plasma treatment on alginate solutions, by size exclusion chromatography, rheology and scanning electron microscopy and (ii) study of a molecular model (glucuronate) sharing its chemical structure, by chromatography coupled with mass spectrometry and by molecular dynamics simulations. Our results point out the active role of the biopolymer chemistry during direct plasma treatment. Short-lived reactive species, such as OH radicals and O atoms, can modify the polymer structure, affecting its functional groups and causing partial fragmentation. Some of these chemical modifications, like the generation of organic peroxide, are likely responsible for the secondary generation of long-lived reactive species such as hydrogen peroxide and nitrite ions. This is relevant in view of using biocompatible hydrogels as vehicles for storage and delivery reactive species for targeted therapies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000973699000001 Publication Date 2023-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2047-4830 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.6 Times cited Open Access Not_Open_Access
Notes Agència de Gestió d’Ajuts Universitaris i de Recerca, SGR2022-1368 ; H2020 European Research Council, 714793 ; European Cooperation in Science and Technology, CA19110 CA20114 ; Secretaría de Estado de Investigación, Desarrollo e Innovación, PID2019-103892RB-I00/AEI/10.13039/501100011033 ; We thank Gonzalo Rodríguez Cañada and Xavier Solé-Martí (Universitat Politècnica de Catalunya) for help in collecting some of the experimental data and for the useful discussions. This work has been primarily funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 714793). The authors acknowledge MINECO for PID2019103892RB-I00/AEI/10.13039/501100011033 project (CC). The authors belong to SGR2022-1368 (FT, AEN, CL, MPG, CC) and acknowledge Generalitat de Catalunya for the ICREA Academia Award for Excellence in Research of CC. We thank also COST Actions CA20114 (Therapeutical Applications of Cold Plasmas) and CA19110 (Plasma Applications for Smart and Sustainable Agriculture) for the stimulating environment provided. Approved Most recent IF: 6.6; 2023 IF: 4.21
Call Number PLASMANT @ plasmant @c:irua:196773 Serial 8794
Permanent link to this record
 

 
Author Vlasov, E.; Skorikov, A.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Verbeeck, J.; Bals, S.
Title Secondary electron induced current in scanning transmission electron microscopy: an alternative way to visualize the morphology of nanoparticles Type A1 Journal article
Year (down) 2023 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.
Volume Issue Pages 1916-1921
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron tomography (ET) is a powerful tool to determine the three-dimensional (3D) structure of nanomaterials in a transmission electron microscope. However, the acquisition of a conventional tilt series for ET is a time-consuming process and can therefore not provide 3D structural information in a time-efficient manner. Here, we propose surface-sensitive secondary electron (SE) imaging as an alternative to ET for the investigation of the morphology of nanomaterials. We use the SE electron beam induced current (SEEBIC) technique that maps the electrical current arising from holes generated by the emission of SEs from the sample. SEEBIC imaging can provide valuable information on the sample morphology with high spatial resolution and significantly shorter throughput times compared with ET. In addition, we discuss the contrast formation mechanisms that aid in the interpretation of SEEBIC data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001006191600001 Publication Date 2023-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access OpenAccess
Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO). J.V. acknowledges the eBEAM project, which is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101017720 (FET-Proactive EBEAM). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (grant # PID2020-117779RB-I00). Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:197004 Serial 8795
Permanent link to this record
 

 
Author Saniz, R.; Baldinozzi, G.; Arts, I.; Lamoen, D.; Leinders, G.; Verwerft, M.
Title Charge order, frustration relief, and spin-orbit coupling in U3O8 Type A1 Journal article
Year (down) 2023 Publication Physical review materials Abbreviated Journal
Volume 7 Issue 5 Pages 054410
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Research efforts on the description of the low-temperature magnetic order and electronic properties of U3O8 have been inconclusive so far. Reinterpreting neutron scattering results, we use group representation theory to show that the ground state presents collinear out-of-plane magnetic moments, with antiferromagnetic coupling both in-layer and between layers. Charge order relieves the initial geometric frustration, generating a slightly distorted honeycomb sublattice with Néel-type order. The precise knowledge of the characteristics of this magnetic ground state is then used to explain the fine features of the band gap. In this system, spin-orbit coupling (SOC) is of critical importance, as it strongly affects the electronic structure, narrowing the gap by ∼38%, compared to calculations neglecting SOC. The predicted electronic structure actually explains the salient features of recent optical absorption measurements, further demonstrating the excellent agreement between the calculated ground state properties and experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001041429800007 Publication Date 2023-05-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes Financial support for this research was partly provided by the Energy Transition Fund of the Belgian FPS Economy (Project SF-CORMOD Spent Fuel CORrosion MODeling).Fonds Wetenschappelijk Onderzoek; Vlaams Supercomputer Centrum; Universiteit Antwerpen; Vlaamse regering; Approved Most recent IF: 3.4; 2023 IF: NA
Call Number EMAT @ emat @c:irua:197043 Serial 8796
Permanent link to this record
 

 
Author Carrasco, S.; Orcajo, G.; Martínez, F.; Imaz, I.; Kavak, S.; Arenas-Esteban, D.; Maspoch, D.; Bals, S.; Calleja, G.; Horcajada, P.
Title Hf/porphyrin-based metal-organic framework PCN-224 for CO2 cycloaddition with epoxides Type A1 Journal article
Year (down) 2023 Publication Materials Today Advances Abbreviated Journal
Volume 19 Issue Pages 100390
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Herein, we describe for the first time the synthesis of the highly porous Hf-tetracarboxylate porphyrin-based metal-organic framework (MOF) (Hf)PCN-224(M) (M = H2, Co2+). (Hf)PCN-224(H2) was easily and efficiently prepared following a simple microwave-assisted procedure with good yields (56–67%; space-time yields: 1100–1270 kg m−3·day−1), high crystallinity and phase purity by using trifluoromethanesulfonic acid and benzoic acid as modulators in less than 30 min. By simply introducing a preliminary step (10 min), 5,10,15,20-(tetra-4-carboxyphenyl)porphyrin linker (TCPP) was quantitatively metalated with Co2+ without additional purification and/or time consuming protection/deprotection steps to further obtain (Hf)PCN-224(Co). (Hf)PCN-224(Co) was then tested as catalyst in CO2 cycloaddition reaction with different epoxides to yield cyclic carbonates, showing the best catalytic performance described to date compared to other PCNs, under mild conditions (1 bar CO2, room temperature, 18–24 h). Twelve epoxides were tested, obtaining from moderate to excellent conversions (35–96%). Moreover, this reaction was gram scaled-up (x50) without significant loss of yield to cyclic carbonates. (Hf)PCN-224(Co) maintained its integrity and crystallinity even after 8 consecutive runs, and poisoning was efficiently reverted by a simple thermal treatment (175 °C, 6 h), fully recovering the initial catalytic activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001025764000001 Publication Date 2023-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2590-0498 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10 Times cited 1 Open Access OpenAccess
Notes S.C. acknowledges the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie (MSCA-COFUND) grant agreement No 754382 (GOT Energy Talent). S.C. and P.H. acknowledge “Comunidad de Madrid” and European Regional Development Fund-FEDER 2014-2020-OE REACT-UE 1 for their financial support to VIRMOF-CM project associated to R&D projects in response to COVID-19. The authors acknowledge H2020-MSCA-ITN-2019 HeatNMof (ref. 860942), the M-ERA-NET C-MOF-cell (grant PCI2020-111998 funded by MCIN/AEI /10.13039/501100011033 and European Union NextGenerationEU/PRTR) project, and Retos Investigación MOFSEIDON (grant PID2019-104228RB-I00 funded by MCIN/AEI/10.13039/501100011033) project. This work has been also supported by the Regional Government of Madrid (Project ACES2030-CM, S2018/EMT-4319) and the Universidad Rey Juan Carlos IMPULSO Project (grant MATER M − 3000). S.K acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (1181122 N). Approved Most recent IF: 10; 2023 IF: NA
Call Number EMAT @ emat @c:irua:197198 Serial 8800
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Mayda, S.; Batuk, M.; Reekmans, G.; von Holst, M.; Elen, K.; Abakumov, A.M.; Adriaensens, P.; Lamoen, D.; Partoens, B.; Hadermann, J.; Van Bael, M.K.; Hardy, A.
Title Understanding the Activation of Anionic Redox Chemistry in Ti4+-Substituted Li2MnO3as a Cathode Material for Li-Ion Batteries Type A1 Journal article
Year (down) 2023 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.
Volume 6 Issue 13 Pages 6956-6971
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Layered Li-rich oxides, demonstrating both cationic and anionic redox chemistry being used as positive electrodes for Li-ion batteries,have raised interest due to their high specific discharge capacities exceeding 250 mAh/g. However, irreversible structural transformations triggered by anionic redox chemistry result in pronounced voltagefade (i.e., lowering the specific energy by a gradual decay of discharge potential) upon extended galvanostatic cycling. Activating or suppressing oxygen anionic redox through structural stabilization induced by redox-inactivecation substitution is a well-known strategy. However, less emphasishas been put on the correlation between substitution degree and theactivation/suppression of the anionic redox. In this work, Ti4+-substituted Li2MnO3 was synthesizedvia a facile solution-gel method. Ti4+ is selected as adopant as it contains no partially filled d-orbitals. Our study revealedthat the layered “honeycomb-ordered” C2/m structure is preserved when increasing the Ticontent to x = 0.2 in the Li2Mn1-x Ti (x) O-3 solidsolution, as shown by electron diffraction and aberration-correctedscanning transmission electron microscopy. Galvanostatic cycling hintsat a delayed oxygen release, due to an improved reversibility of theanionic redox, during the first 10 charge-discharge cyclesfor the x = 0.2 composition compared to the parentmaterial (x = 0), followed by pronounced oxygen redoxactivity afterward. The latter originates from a low activation energybarrier toward O-O dimer formation and Mn migration in Li2Mn0.8Ti0.2O3, as deducedfrom first-principles molecular dynamics (MD) simulations for the“charged” state. Upon lowering the Ti substitution to x = 0.05, the structural stability was drastically improvedbased on our MD analysis, stressing the importance of carefully optimizingthe substitution degree to achieve the best electrochemical performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001018266700001 Publication Date 2023-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access: Available from 24.12.2023
Notes Universiteit Hasselt, AUHL/15/2 – GOH3816N ; Russian Science Foundation, 20-43-01012 ; Fonds Wetenschappelijk Onderzoek, AUHL/15/2 – GOH3816N G040116N ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 6.4; 2023 IF: NA
Call Number EMAT @ emat @c:irua:198160 Serial 8809
Permanent link to this record