toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Torun, E.; Sahin, H.; Singh, S.K.; Peeters, F.M.
  Title Stable half-metallic monolayers of FeCl2 Type A1 Journal article
  Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 106 Issue 106 Pages 192404
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The structural, electronic, and magnetic properties of single layers of Iron Dichloride (FeCl2) were calculated using first principles calculations. We found that the 1T phase of the single layer FeCl2 is 0.17 eV/unit cell more favorable than its 1H phase. The structural stability is confirmed by phonon calculations. We found that 1T-FeCl2 possess three Raman-active (130, 179, and 237 cm(-1)) and one infrared-active (279 cm(-1)) phonon branches. The electronic band dispersion of the 1T-FeCl2 is calculated using both gradient approximation of Perdew-Burke-Ernzerhof and DFT-HSE06 functionals. Both functionals reveal that the 1T-FeCl2 has a half-metallic ground state with a Curie temperature of 17 K. (C) 2015 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000355008100020 Publication Date 2015-05-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 84 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.411; 2015 IF: 3.302
  Call Number c:irua:126411 Serial 3143
Permanent link to this record
 

 
Author van der Snickt, G.; Martins, A.; Delaney, J.; Janssens, K.; Zeibel, J.; Duffy, M.; McGlinchey, C.; Van Driel, B.; Dik, J.
  Title Exploring a hidden painting below the surface of Rene Magritte's Le Portrait Type A1 Journal article
  Year 2016 Publication Applied spectroscopy Abbreviated Journal Appl Spectrosc
  Volume 70 Issue 1 Pages 57-67
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Two state-of-the-art methods for non-invasive visualization of subsurface (or overpainted) pictorial layers present in painted works of art are employed to study Le portrait, painted by Belgian artist Rene Magritte in 1935. X-ray radiography, a commonly used method for the nondestructive inspection of paintings, had revealed the presence of an underlying figurative composition, part of an earlier Magritte painting entitled La pose enchantee (1927) which originally depicted two full length nude female figures with exaggerated facial features. On the one hand, macroscopic X-ray fluorescence analysis (MA-XRF), a method capable of providing information on the distribution of the key chemical elements present in many artists' pigments, was employed. The ability of the X-rays to penetrate the upper layer of paint enabled the imaging of the facial features of the female figure and provided information on Magritte's palette for both surface and hidden composition. On the other hand, visible and near infrared hyperspectral imaging spectroscopies in transmission mode were also used, especially in the area of the table cloth in order to look through the upper representation and reveal the pictorial layer(s) below. MA-XRF provided elemental information on the pigment distributions in both the final painting and the prior whereas the transmission mode provided information related to preparatory sketches as well as revealing differences between the paints used in both compositions. These results illustrate very well the manner in which the two imaging methods complement each other, both in the sense of providing different types of information on the nature and presence of paint components/pigments and in the sense of being optimally suited to easily penetrate through different types of overpaint.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000368604500007 Publication Date 2016-01-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0003-7028 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.529 Times cited 13 Open Access
  Notes ; GvdS and KJ acknowledge the support of the Fund Inbev-Baillet Latour. JKD acknowledges support from the Andrew Mellon Foundation and the National Science Foundation. BvD and JD acknowledge support from The Netherlands Organisation for Scientific Research (NWO). ; Approved Most recent IF: 1.529
  Call Number UA @ admin @ c:irua:131544 Serial 5620
Permanent link to this record
 

 
Author LaBrecque, J.J.; Beusen, J.M.; Van Grieken, R.E.
  Title Analysis of lateritic material from Cerro impacto by instrumental neutron activation employing a low-energy photon semiconductor and a high-energy Ge(Li) detector Type A1 Journal article
  Year 1986 Publication Applied spectroscopy Abbreviated Journal
  Volume 40 Issue 2 Pages 140-144
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Nineteen elements were determined in four different grain size fractions of a bulk geological material from Cerro Impacto for a study of the physical (mechanical) concentration process of different elements based upon the hardness of the different minerals. The analysis was performed by excitation of the sample with a high, slow neutron flux followed by gamma-ray spectroscopy with both a conventional Ge(Li) high-energy detector and a low-energy photon detector (LEPD). The accuracy of this method was studied with the use of two standard reference materials, SY-2 and SY-3, which are similar to the real samples. The values determined were also compared with a secondary target x-ray fluorescence method for all the elements that were suitable to both methods. Actually, the x-ray fluorescence method was found to be more complementary than competitive.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos A1986A085900003 Publication Date 2005-07-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0003-7028 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:116768 Serial 7448
Permanent link to this record
 

 
Author Salvant, J.; Williams, J.; Ganio, M.; Casadio, F.; Daher, C.; Sutherland, K.; Monico, L.; Vanmeert, F.; De Meyer, S.; Janssens, K.; Cartwright, C.; Walton, M.
  Title A Roman Egyptian Painting Workshop : technical investigation of the portraits from Tebtunis, Egypt Type A1 Journal article
  Year 2018 Publication Archaeometry Abbreviated Journal Archaeometry
  Volume 60 Issue 4 Pages 815-833
  Keywords A1 Journal article; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Roman-period mummy portraits are considered to be ancient antecedents of modern portraiture. However, the techniques and materials used in their manufacture are not thoroughly understood. Analytical study of the pigments as well as the binding materials helps to address questions on what aspects of the painting practices originate from Pharaonic and/or Graeco-Roman traditions, and can aid in determining the provenance of the raw materials from potential locations across the ancient Mediterranean and European worlds. Here, one of the largest assemblages of mummy portraits to remain intact since their excavation from the site of Tebtunis in Egypt was examined using multiple analytical techniques to address how they were made. The archaeological evidence suggests that these portraits were products of a single workshop and, correspondingly, they are found to be made using similar techniques and materials: wax-based and lead white-rich paint combined with a variety of iron-based pigments (including hematite, goethite and jarosite), as well as Egyptian blue, minium, indigo and madder lake to create subtle variations and tones.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000438195100011 Publication Date 2017-11-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0003-813x; 1475-4754 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.47 Times cited 6 Open Access
  Notes ; This collaborative initiative is part of NU-ACCESS's broad portfolio of activities, made possible by generous support of the Andrew W. Mellon Foundation as well as supplemental support provided by the Materials Research Center, the Office of the Vice President for Research, the McCormick School of Engineering and Applied Science and the Department of Materials Science and Engineering at Northwestern University. This work made use of the Keck-II facility of the NUANCE Center at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. Part of this research was carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF), and at ESRF (experiment no. HG-79). We are grateful to Marine Cotte and Wout De Nolf for their support during the experiment at beamline ID21. We would like to thank Gerald Falkenberg and Jan Garrevoet for their assistance in using beamline P06. ; Approved Most recent IF: 1.47
  Call Number UA @ admin @ c:irua:152396 Serial 5455
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A.
  Title Transport of cystine across xC-antiporter Type A1 Journal article
  Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys
  Volume 664 Issue Pages 117-126
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Extracellular cystine (CYC) uptake by xC antiporter is important for the cell viability. Especially in cancer cells, the upregulation of xC activity is observed, which protects these cells from intracellular oxidative stress. Hence, inhibition of the CYC uptake may eventually lead to cancer cell death. Up to now, the molecular level mechanism of the CYC uptake by xC antiporter has not been studied in detail. In this study, we applied several different simulation techniques to investigate the transport of CYC through xCT, the light subunit of the xC antiporter, which is responsible for the CYC and glutamate translocation. Specifically, we studied the permeation of CYC across three model systems, i.e., outward facing (OF), occluded (OCC) and inward facing (IF) configurations of xCT. We also investigated the effect of mutation of Cys327 to Ala within xCT, which was also studied experimentally in literature. This allowed us to qualitatively compare our computation results with experimental observations, and thus, to validate our simulations. In summary, our simulations provide a molecular level mechanism of the transport of CYC across the xC antiporter, more specifically, which amino acid residues in the xC antiporter play a key role in the uptake, transport and release of CYC.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000461411200014 Publication Date 2019-02-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.165 Times cited 3 Open Access OpenAccess
  Notes Research Foundation − FlandersResearch Foundation − Flanders (FWO), 1200216N 1200219N ; Hercules FoundationHercules Foundation; Flemish GovernmentFlemish Government (department EWI); UAUA; M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant numbers 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158571 Serial 5183
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A.
  Title Effect of oxidative stress on cystine transportation by xC‾ antiporter Type A1 Journal article
  Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys
  Volume 674 Issue Pages 108114
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We performed computer simulations to investigate the effect of oxidation on the extracellular cystine (CYC) uptake by the xC− antiporter. The latter is important for killing of cancer cells. Specifically, applying molecular dynamics (MD) simulations we studied the transport of CYC across xCT, i.e., the light subunit of the xC− antiporter, in charge of bidirectional transport of CYC and glutamate. We considered the outward facing (OF) configuration of xCT, and to study the effect of oxidation, we modified the Cys327 residue, located in the vicinity of the extracellular milieu, to cysteic acid (CYO327). Our computational results showed that oxidation of Cys327 results in a free energy barrier for CYC translocation, thereby blocking the access of CYC to the substrate binding site of the OF system. The formation of the energy barrier was found to be due to the conformational changes in the channel. Analysis of the MD trajectories revealed that the reorganization of the side chains of the Tyr244 and CYO327 residues play a critical role in the OF channel blocking. Indeed, the calculated distance between Tyr244 and either Cys327 or CYO327 showed a narrowing of the channel after oxidation. The obtained free energy barrier for CYC translocation was found to be 33.9kJmol−1, indicating that oxidation of Cys327, by e.g., cold atmospheric plasma, is more effective in inhibiting the xC− antiporter than in the mutation of this amino acid to Ala (yielding a barrier of 32.4kJmol−1). The inhibition of the xC− antiporter may lead to Cys starvation in some cancer cells, eventually resulting in cancer cell death.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000525439700011 Publication Date 2019-09-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.165 Times cited Open Access
  Notes Ministry of Science, Research and Technology of Iran; University of Antwerp; Research Foundation − Flanders, 1200219N ; Universiteit Antwerpen; Hercules Foundation; Flemish Government; UA; M. G. acknowledges funding from the Ministry of Science, Research and Technology of Iran and from the University of Antwerp in Belgium. M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant number 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165
  Call Number PLASMANT @ plasmant @c:irua:163474 Serial 5372
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M.
  Title How do nitrated lipids affect the properties of phospholipid membranes? Type A1 Journal article
  Year 2020 Publication Archives Of Biochemistry And Biophysics Abbreviated Journal Arch Biochem Biophys
  Volume 695 Issue Pages 108548
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Biological membranes are under constant attack of free radicals, which may lead to lipid nitro-oxidation, pro­ ducing a complex mixture of nitro-oxidized lipids that are responsible for structural and dynamic changes on the membrane. Despite the latter, nitro-oxidized lipids are also associated with several inflammatory and neuro­ degenerative diseases, the underlying mechanisms of which remain elusive. We perform atomistic molecular dynamics simulations using several isomers of nitro-oxidized lipids to study their effect on the structure and permeability of the membrane, as well as the interaction between the mixture of these products in the phos­pholipid membrane environment. Our results show that the stereo- and positional isomers have a stronger effect on the properties of the membrane composed of oxidized lipids compared to that containing nitrated lipids. Nevertheless, nitrated lipids lead to three-fold increase in water permeability compared to oxidized lipids. In addition, we show that in a membrane consisting of combined nitro-oxidized lipid products, the presence of oxidized lipids protects the membrane from transient pores. Is well stablished that plasma application and photodynamic therapy produces a number of oxidative species used to kill cancer cells, through membrane damage induced by nitro-oxidative stress. This study is important to elucidate the mechanisms and the molecular level properties involving the reactive species produced during that cancer therapies.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000594173400010 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.9 Times cited Open Access
  Notes CAPES; Flanders Research Foundation, 1200219N ; We thank Universidade Federal do ABC for providing the computa­tional resources needed for completion of this work and CAPES for scholarship granted. M.Y. acknowledges the Flanders Research Foun­dation (grant 1200219N) for financial support. Approved Most recent IF: 3.9; 2020 IF: 3.165
  Call Number PLASMANT @ plasmant @c:irua:173861 Serial 6440
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M.
  Title Distribution of lipid aldehydes in phase-separated membranes: A molecular dynamics study Type A1 Journal article
  Year 2022 Publication Archives Of Biochemistry And Biophysics Abbreviated Journal Arch Biochem Biophys
  Volume 717 Issue Pages 109136
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract It is well established that lipid aldehydes (LAs) are able to increase the permeability of cell membranes and induce their rupture. However, it is not yet clear how LAs are distributed in phase-separated membranes (PSMs), which are responsible for the transport of selected molecules and intracellular signaling. Thus, we investigate here the distribution of LAs in a PSM by coarse-grained molecular dynamics simulations. Our results reveal that LAs derived from mono-unsaturated lipids tend to accumulate at the interface between the liquid-ordered/liquiddisordered domains, whereas those derived from poly-unsaturated lipids remain in the liquid-disordered domain. These results are important for understanding the effects caused by oxidized lipids in membrane structure, properties and organization.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000767632000001 Publication Date 2022-01-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0003-9861 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.9 Times cited Open Access OpenAccess
  Notes We thank the University of Antwerp and the Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.9
  Call Number PLASMANT @ plasmant @c:irua:185874 Serial 6905
Permanent link to this record
 

 
Author Oliveira, M.C.; Cordeiro, R.M.; Bogaerts, A.
  Title Effect of lipid oxidation on the channel properties of Cx26 hemichannels : a molecular dynamics study Type A1 Journal article
  Year 2023 Publication Archives of biochemistry and biophysics Abbreviated Journal
  Volume 746 Issue Pages 109741-12
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Intercellular communication plays a crucial role in cancer, as well as other diseases, such as inflammation, tissue degeneration, and neurological disorders. One of the proteins responsible for this, are connexins (Cxs), which come together to form a hemichannel. When two hemichannels of opposite cells interact with each other, they form a gap junction (GJ) channel, connecting the intracellular space of these cells. They allow the passage of ions, reactive oxygen and nitrogen species (RONS), and signaling molecules from the interior of one cell to another cell, thus playing an essential role in cell growth, differentiation, and homeostasis. The importance of GJs for disease induction and therapy development is becoming more appreciated, especially in the context of oncology. Studies have shown that one of the mechanisms to control the formation and disruption of GJs is mediated by lipid oxidation pathways, but the underlying mechanisms are not well understood. In this study, we performed atomistic molecular dynamics simulations to evaluate how lipid oxidation influences the channel properties of Cx26 hemichannels, such as channel gating and permeability. Our results demonstrate that the Cx26 hemichannel is more compact in the presence of oxidized lipids, decreasing its pore diameter at the extracellular side and increasing it at the amino terminus domains, respectively. The permeability of the Cx26 hemichannel for water and RONS molecules is higher in the presence of oxidized lipids. The latter may facilitate the intracellular accumulation of RONS, possibly increasing oxidative stress in cells. A better understanding of this process will help to enhance the efficacy of oxidative stress-based cancer treatments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001079100300001 Publication Date 2023-09-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0003-9861; 1096-0384 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.9 Times cited Open Access
  Notes Approved Most recent IF: 3.9; 2023 IF: 3.165
  Call Number UA @ admin @ c:irua:200282 Serial 9028
Permanent link to this record
 

 
Author Rezaei, M.; Ghasemitarei, M.; Razzokov, J.; Yusupov, M.; Ghorbanalilu, M.; Ejtehadi, M.R.
  Title In silico study of the impact of oxidation on pyruvate transmission across the hVDAC1 protein channel Type A1 Journal article
  Year 2024 Publication Archives of biochemistry and biophysics Abbreviated Journal
  Volume 751 Issue Pages 109835-109837
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The overexpression of voltage dependent anion channels (VDACs), particularly VDAC1, in cancer cells compared to normal cells, plays a crucial role in cancer cell metabolism, apoptosis regulation, and energy homeostasis. In this study, we used molecular dynamics (MD) simulations to investigate the effect of a low level of VDAC1 oxidation (induced e.g., by cold atmospheric plasma (CAP)) on the pyruvate (Pyr) uptake by VDAC1. Inhibiting Pyr uptake through VDAC1 can suppress cancer cell proliferation. Our primary target was to study the translocation of Pyr across the native and oxidized forms of hVDAC1, the human VDAC1. Specifically, we employed MD simulations to analyze the hVDAC1 structure by modifying certain cysteine residues to cysteic acids and methionine residues to methionine sulfoxides, which allowed us to investigate the effect of oxidation. Our results showed that the free energy barrier for Pyr translocation through the native and oxidized channel was approximately 4.3 +/- 0.7 kJ mol-1 and 10.8 +/- 1.8 kJ mol-1, respectively. An increase in barrier results in a decrease in rate of Pyr permeation through the oxidized channel. Thus, our results indicate that low levels of CAP oxidation reduce Pyr translocation, resulting in decreased cancer cell proliferation. Therefore, low levels of oxidation are likely sufficient to treat cancer cells given the inhibition of Pyr uptake.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001127850500001 Publication Date 2023-11-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0003-9861; 1096-0384 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.9 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 3.9; 2024 IF: 3.165
  Call Number UA @ admin @ c:irua:202185 Serial 9046
Permanent link to this record
 

 
Author Rojas, C.M.; Van Grieken, R.E.; Laane, R.W.
  Title Comparison of 3 dry deposition models applied to field-measurements in the Southern Bight of the North-Sea Type A1 Journal article
  Year 1993 Publication Atmospheric environment Abbreviated Journal
  Volume 27 Issue 3 Pages 363-370
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Dry deposition velocities have been calculated using three different approaches. Turbulent wind profile theory has been used to predict the drag coefficient, wind speed and friction velocity at 10 m height when the wind speed is measured at a higher altitude. The resulting parameters were introduced in a two-layer deposition model. The second approach was the well-known model of Slinn and Slinn (1980, Atmospheric Environment 14, 1013-1016), whereas the third corresponded to the model published by Williams (1982, Atmospheric Environment 16, 1933 1938). Results point to clear differences. However, in a field experiment carried out at the Southern Bight of the North Sea, all three approaches show relatively comparable results. The role played by the size distribution of atmospheric particulate matter is essential. In our case any of the three models could have given satisfactory outcomes taking into account the wide spread of the experimental results cited in the literature for the same airshed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos A1993KQ75200008 Publication Date 2003-08-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0004-6981 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:100018 Serial 7690
Permanent link to this record
 

 
Author Li, T.; Piltz, B.; Podola, B.; Dron, A.; de Beer, D.; Melkonian, M.
  Title Microscale profiling of photosynthesis-related variables in a highly productive biofilm photobioreactor Type A1 Journal article
  Year 2016 Publication Biotechnology and bioengineering Abbreviated Journal
  Volume 113 Issue 5 Pages 1046-1055
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract In the present study depth profiles of light, oxygen, pH and photosynthetic performance in an artificial biofilm of the green alga Halochlorella rubescens in a porous substrate photobioreactor (PSBR) were recorded with microsensors. Biofilms were exposed to different light intensities (50-1,000mol photons m(-2) s(-1)) and CO2 levels (0.04-5% v/v in air). The distribution of photosynthetically active radiation showed almost identical trends for different surface irradiances, namely: a relatively fast drop to a depth of about 250 mu m, (to 5% of the incident), followed by a slower decrease. Light penetrated into the biofilm deeper than the Lambert-Beer Law predicted, which may be attributed to forward scattering of light, thus improving the overall light availability. Oxygen concentration profiles showed maxima at a depth between 50 and 150m, depending on the incident light intensity. A very fast gas exchange was observed at the biofilm surface. The highest oxygen concentration of 3.2mM was measured with 1,000mol photons m(-2) s(-1) and 5% supplementary CO2. Photosynthetic productivity increased with light intensity and/or CO2 concentration and was always highest at the biofilm surface; the stimulating effect of elevated CO2 concentration in the gas phase on photosynthesis was enhanced by higher light intensities. The dissolved inorganic carbon concentration profiles suggest that the availability of the dissolved free CO2 has the strongest impact on photosynthetic productivity. The results suggest that dark respiration could explain previously observed decrease in growth rate over cultivation time in this type of PSBR. Our results represent a basis for understanding the complex dynamics of environmental variables and metabolic processes in artificial phototrophic biofilms exposed to a gas phase and can be used to improve the design and operational parameters of PSBRs. Biotechnol. Bioeng. 2016;113: 1046-1055. (c) 2015 Wiley Periodicals, Inc.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000373476700013 Publication Date 2015-10-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0006-3592 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:133255 Serial 8248
Permanent link to this record
 

 
Author Semkina, A.S.; Abakumov, M.A.; Abakumov, A.M.; Nukolova, N.V.; Chekhonin, V.P.
  Title Relationship between the Size of Magnetic Nanoparticles and Efficiency of MRT Imaging of Cerebral Glioma in Rats Type A1 Journal article
  Year 2016 Publication Bulletin of experimental biology and medicine Abbreviated Journal B Exp Biol Med+
  Volume 161 Issue 2 Pages 292-295
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract BSA-coated Fe3O4 nanoparticles with different hydrodynamic diameters (36 +/- 4 and 85 +/- 10 nm) were synthesized, zeta potential and T2 relaxivity were determined, and their morphology was studied by transmission electron microscopy. Studies on rats with experimental glioma C6 showed that smaller nanoparticles more effectively accumulated in the tumor and circulated longer in brain vessels. Optimization of the hydrodynamic diameter improves the efficiency of MRT contrast agent.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York Editor
  Language Wos 000380118500022 Publication Date 2016-07-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0007-4888 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 0.456 Times cited 5 Open Access
  Notes Approved Most recent IF: 0.456
  Call Number UA @ lucian @ c:irua:144707 Serial 4684
Permanent link to this record
 

 
Author Bull, D.; Krekeler, A.; Alfeld, M.; Dik, J.; Janssens, K.
  Title An intrusive portrait by Goya Type A1 Journal article
  Year 2011 Publication The Burlington magazine Abbreviated Journal
  Volume 153 Issue 1303 Pages 668-673
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0007-6287; 2044-9925 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes ; ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:93602 Serial 5672
Permanent link to this record
 

 
Author Koldeweij, J.; Hoogstede, L.; Ilsink, M.; Janssens, K.; De Keyser, N.; Gotink, R.K.; Legrand, S.; Nauhaus, J.M.; van der Snickt, G.; Spronk, R.
  Title The patron of Hieronymus Bosch's 'Last Judgment' triptych in Vienna Type A1 Journal article
  Year 2018 Publication The Burlington magazine Abbreviated Journal
  Volume 160 Issue 1379 Pages 106-111
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract A technical examination of the Last Judgment triptych by Hieronymus Bosch in the Paintings Gallery of the Academy of Fine Arts, Vienna, has revealed a painted escutcheon with the coat of arms of the Burgundian court official Hippolyte de Berthoz underneath the current surface of the right outer wing. This allows him to be firmly identified as the painting's patron.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000458246800007 Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0007-6287; 2044-9925 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:181267 Serial 8656
Permanent link to this record
 

 
Author Sánchez-Muñoz, L.; García-Guinea, J.; Zagorsky, V.Y.; Juwono, T.; Modreski, P.J.; Cremades, A.; Van Tendeloo, G.; de Moura, O.J.M.
  Title The evolution of twin patterns in perthitic K-feldspar from garnitic pegmatites Type A1 Journal article
  Year 2012 Publication Canadian mineralogist Abbreviated Journal Can Mineral
  Volume 50 Issue 4 Pages 989-1024
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Grains of K-feldspar are commonly seen as heterogeneous mixtures of mineral species and varieties with random microstructures. Most consider that observable features arise from incomplete re-equilibrations owing to slow kinetic and localized effects of aqueous fluids (catalyst), with geological environment and chemical impurities playing only a secondary role. Here, an alternative approach is explored by studying well-preserved regularities in the twin patterns of K-feldspars formed in the subsolidus stage from a historical perspective. Selected samples from granitic pegmatites were studied by polarized light optical microscopy (PLOM), electron-probe micro-analysis (EPMA), scanning (SEM) and transmission electron microscopy (TEM), cathodoluminescence imaging (CL), micro-Raman spectroscopy (MRS) and 31P nuclear magnetic resonance (NMR). We have found that the essential feature of this crystalline medium is the astounding capability to recrystallize in self-organized twin patterns. The mechanism involves coupling between short-range atomic motion, and long-range displacive correlations propagated as ideal and non-ideal Albite and Pericline orientations. We suggest a general evolutionary process to explain the development of macroscopic twin patterns in microcline, based on three twin generations as microtwins, macrotwins and cryptotwins. Evolutionary variants also were identified; they depend on both internal crystallochemical features and an external geological stimulus. We suggest a continuous monoclinictriclinic transformation for impure K-feldspar, whereas a discontinuous inversion occurs where the starting composition is close to the ideal chemical formula. Twin patterns can evolve by twin coarsening to single-orientation microcline if the system releases energy, or by twin fragmentation to finely twinned microcline if the system stores energy. Hence, K-feldspar is seen here as a very sensitive medium in which precious geological information is recorded in the form of twin patterns, and thus useful for general geological challenges.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Toronto Editor
  Language Wos 000314174400015 Publication Date 2012-10-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-4476;1499-1276; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 0.817 Times cited 11 Open Access
  Notes Approved Most recent IF: 0.817; 2012 IF: 1.180
  Call Number UA @ lucian @ c:irua:101781 Serial 1103
Permanent link to this record
 

 
Author Li, L.; Kong, X.; Leenaerts, O.; Chen, X.; Sanyal, B.; Peeters, F.M.
  Title Carbon-rich carbon nitride monolayers with Dirac cones : Dumbbell C4N Type A1 Journal article
  Year 2017 Publication Carbon Abbreviated Journal Carbon
  Volume 118 Issue 118 Pages 285-290
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Two-dimensional (2D) carbon nitride materials play an important role in energy-harvesting, energy-storage and environmental applications. Recently, a new carbon nitride, 2D polyaniline (C3N) was proposed [PNAS 113 (2016) 7414-7419]. Based on the structure model of this C3N monolayer, we propose two new carbon nitride monolayers, named dumbbell (DB) C4N-I and C4N-II. Using first-principles calculations, we systematically study the structure, stability, and band structure of these two materials. In contrast to other carbon nitride monolayers, the orbital hybridization of the C/N atoms in the DB C4N monolayers is sp(3). Remarkably, the band structures of the two DB C4N monolayers have a Dirac cone at the K point and their Fermi velocities (2.6/2.4 x 10(5) m/s) are comparable to that of graphene. This makes them promising materials for applications in high-speed electronic devices. Using a tight-binding model, we explain the origin of the Dirac cone. (C) 2017 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000401120800033 Publication Date 2017-03-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited 36 Open Access
  Notes Approved Most recent IF: 6.337
  Call Number UA @ lucian @ c:irua:143726 Serial 4588
Permanent link to this record
 

 
Author Aussems, D.U.B.; Bal, K.M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C.
  Title Mechanisms of elementary hydrogen ion-surface interactions during multilayer graphene etching at high surface temperature as a function of flux Type A1 Journal article
  Year 2018 Publication Carbon Abbreviated Journal Carbon
  Volume 137 Issue Pages 527-532
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In order to optimize the plasma-synthesis and modification process of carbon nanomaterials for applications such as nanoelectronics and energy storage, a deeper understanding of fundamental hydrogengraphite/graphene interactions is required. Atomistic simulations by Molecular Dynamics have proven to be indispensable to illuminate these phenomena. However, severe time-scale limitations restrict them to very fast processes such as reflection, while slow thermal processes such as surface diffusion and molecular desorption are commonly inaccessible. In this work, we could however reach these thermal processes for the first time at time-scales and surface temperatures (1000 K) similar to high-flux plasma exposure experiments during the simulation of multilayer graphene etching by 5 eV H ions. This was achieved by applying the Collective Variable-Driven Hyperdynamics biasing technique, which extended the inter-impact time over a range of six orders of magnitude, down to a more realistic ion-flux of 1023m2s1. The results show that this not only causes a strong shift from predominant ion-to thermally induced interactions, but also significantly affects the hydrogen uptake and surface evolution. This study thus elucidates H ion-graphite/graphene interaction mechanisms and stresses the importance of including long time-scales in atomistic simulations at high surface temperatures to understand the dynamics of the ion-surface system.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000440661700056 Publication Date 2018-05-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited 4 Open Access Not_Open_Access: Available from 25.05.2020
  Notes DIFFER is part of the Netherlands Organisation for Scientific Research (NWO). K.M.B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientific Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government e department EWI. Approved Most recent IF: 6.337
  Call Number PLASMANT @ plasmant @c:irua:152172 Serial 4993
Permanent link to this record
 

 
Author Li, L.; Kong, X.; Peeters, F.M.
  Title New nanoporous graphyne monolayer as nodal line semimetal : double Dirac points with an ultrahigh Fermi velocity Type A1 Journal article
  Year 2019 Publication Carbon Abbreviated Journal Carbon
  Volume 141 Issue 141 Pages 712-718
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Two-dimensional (2D) carbon materials play an important role in nanomaterials. We propose a new carbon monolayer, named hexagonal-4,4,4-graphyne (H-4,H-4,H-4-graphyne), which is a nanoporous structure composed of rectangular carbon rings and triple bonds of carbon. Using first-principles calculations, we systematically studied the structure, stability, and band structure of this new material. We found that its total energy is lower than that of experimentally synthesized beta-graphdiyne and it is stable at least up to 1500 K. In contrast to the single Dirac point band structure of other 2D carbon monolayers, the band structure of H-4,H-4,H-4-graphyne exhibits double Dirac points along the high-symmetry points and the corresponding Fermi velocities (1.04-1.27 x 10(6) m/s) are asymmetric and higher than that of graphene. The origin of these double Dirac points is traced back to the nodal line states, which can be well explained by a tight-binding model. The H-4,H-4,H-4-graphyne forms a moire superstructure when placed on top of a hexagonal boron nitride substrate. These properties make H-4,H-4,H-4-graphyne a promising semimetal material for applications in high-speed electronic devices. (C) 2018 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000450312600072 Publication Date 2018-10-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited 43 Open Access
  Notes ; This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), and the FLAG-ERA project TRANS2DTMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government -department EWI. ; Approved Most recent IF: 6.337
  Call Number UA @ admin @ c:irua:155364 Serial 5222
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Ghergherehchi, M.; Shayesteh, S.F.
  Title A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2N nanosheet Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon
  Volume 157 Issue 157 Pages 371-384
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using the first-principles calculations, we explore the structural and novel electronic/optical properties of the C2N nanosheet. To this goal, we systematically investigate the affect of layer thickness, electrical field and strain on the electronic properties of the C2N nanosheet. By increasing the thickness of C2N, we observed that the band gap decreases. Moreover, by applying an electrical field to bilayer C2N, the band gap decreases and a semiconductor-to-metal transition can occur. Our results also confirm that uniaxial and biaxial strain can effectively alter the band gap of C2N monolayer. Furthermore, we show that the electronic and magnetic properties of C2N can be modified by the adsorption and substitution of various atoms. Depending on the species of embedded atoms, they may induce semiconductor (O, C, Si and Be), metal (S, N, P, Na, K, Mg and Ca), dilute-magnetic semiconductor (H, F, B), or ferro-magnetic-metal (Cl, Li) character in C2N monolayer. It was also found that the inclusion of hydrogen or oxygen impurities and nitrogen vacancies, can induce magnetism in the C2N monolayer. These extensive calculations can be useful to guide future studies to modify the electronic/optical properties of two-dimensional materials. (C) 2019 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000502548500044 Publication Date 2019-10-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.9 Times cited 49 Open Access
  Notes ; This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). We are thankful for comments by Meysam Baghery Tagani from department of physics in University of Guilan and Bohayra Mortazavi from Gottfried Wilhelm Leibniz Universitat Hannover, Hannover, Germany. ; Approved Most recent IF: 10.9; 2020 IF: 6.337
  Call Number UA @ admin @ c:irua:165024 Serial 6283
Permanent link to this record
 

 
Author Fukuhara, S.; Bal, K.M.; Neyts, E.C.; Shibuta, Y.
  Title Entropic and enthalpic factors determining the thermodynamics and kinetics of carbon segregation from transition metal nanoparticles Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon
  Volume 171 Issue Pages 806-813
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The free energy surface (FES) for carbon segregation from nickel nanoparticles is obtained from advanced molecular dynamics simulations. A suitable reaction coordinate is developed that can distinguish dissolved carbon atoms from segregated dimers, chains and junctions on the nanoparticle surface. Because of the typically long segregation time scale (up to ms), metadynamics simulations along the developed reaction coordinate are used to construct FES over a wide range of temperatures and carbon concentrations. The FES revealed the relative stability of different stages in the segregation process, and free energy barriers and rates of the individual steps could then be calculated and decomposed into enthalpic and entropic contributions. As the carbon concentration in the nickel nanoparticle increases, segregated carbon becomes more stable in terms of both enthalpy and entropy. The activation free energy of the reaction also decreases with the increase of carbon concentration, which can be mainly attributed to entropic effects. These insights and the methodology developed to obtain them improve our understanding of carbon segregation process across materials science in general, and the nucleation and growth of carbon nanotube in particular.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000598371500084 Publication Date 2020-09-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited Open Access OpenAccess
  Notes Scientific Research, 19H02415 ; JSPS, 18J22727 ; Japan Society for the Promotion of Science; JSPS; JSPS; FWO; Research Foundation; Flanders, 12ZI420N ; This work was supported by Grant-in-Aid for Scientific Research (B) (No.19H02415) and Grant-in-Aid for JSPS Research Fellow (No.18J22727) from Japan Society for the Promotion of Science (JSPS), Japan. S.F. was supported by JSPS through the Program for 812 Approved Most recent IF: 6.337
  Call Number PLASMANT @ plasmant @c:irua:172452 Serial 6421
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M.
  Title Electro-optical properties of monolayer and bilayer boron-doped C₃N: Tunable electronic structure via strain engineering and electric field Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon
  Volume 168 Issue Pages 220-229
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract In this work, the structural, electronic and optical properties of monolayer and bilayer of boron doped C3N are investigated by means of density functional theory-based first-principles calculations. Our results show that with increasing the B dopant concentration from 3.1% to 12.5% in the hexagonal pattern, an indirect-to-direct band gap (0.8 eV) transition occurs. Furthermore, we study the effect of electric field and strain on the B doped C3N bilayer (B-C3N@2L). It is shown that by increasing E-field strength from 0.1 to 0.6V/angstrom, the band gap displays almost a linear decreasing trend, while for the > 0.6V/angstrom, we find dual narrow band gap with of 50 meV (in parallel E-field) and 0.4 eV (in antiparallel E-field). Our results reveal that in-plane and out-of-plane strains can modulate the band gap and band edge positions of the B-C3N@2L. Overall, we predict that B-C3N@2L is a new platform for the study of novel physical properties in layered two-dimensional materials (2DM) which may provide new opportunities to realize high-speed low-dissipation devices. (C) 2020 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000565900900008 Publication Date 2020-07-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.9 Times cited 21 Open Access
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2B2011989). M. Yagmurcukardes acknowledges Flemish Science Foundation (FWO-VI) by a postdoctoral fellowship. ; Approved Most recent IF: 10.9; 2020 IF: 6.337
  Call Number UA @ admin @ c:irua:171914 Serial 6500
Permanent link to this record
 

 
Author Chen, X.; Bouhon, A.; Li, L.; Peeters, F.M.; Sanyal, B.
  Title PAI-graphene : a new topological semimetallic two-dimensional carbon allotrope with highly tunable anisotropic Dirac cones Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon
  Volume 170 Issue Pages 477-486
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using evolutionary algorithm for crystal structure prediction, we present a new stable two-dimensional (2D) carbon allotrope composed of polymerized as-indacenes (PAI) in a zigzag pattern, namely PAI-graphene whose energy is lower than most of the reported 2D allotropes of graphene. Crucially, the crystal structure realizes a nonsymmorphic layer group that enforces a nontrivial global topology of the band structure with two Dirac cones lying perfectly at the Fermi level. The absence of electron/hole pockets makes PAI-graphene a pristine crystalline topological semimetal having anisotropic Fermi velocities with a high value of 7.0 x 10(5) m/s. We show that while the semimetallic property of the allotrope is robust against the application of strain, the positions of the Dirac cone and the Fermi velocities can be modified significantly with strain. Moreover, by combining strain along both the x- and y-directions, two band inversions take place at G leading to the annihilation of the Dirac nodes demonstrating the possibility of strain-controlled conversion of a topological semimetal into a semiconductor. Finally we formulate the bulk-boundary correspondence of the topological nodal phase in the form of a generalized Zak-phase argument finding a perfect agreement with the topological edge states computed for different edge-terminations. (C) 2020 The Author(s). Published by Elsevier Ltd.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000579779800047 Publication Date 2020-08-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.9 Times cited 43 Open Access
  Notes ; We thank S. Nahas, for helpful discussions. This work is supported by the project grant (2016e05366) and Swedish Research Links program grant (2017e05447) from the Swedish Research Council, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), the FLAG-ERA project TRANS 2D TMD. Linyang Li acknowledges financial support from the Natural Science Foundation of Hebei Province (Grant No. A2020202031). X.C. thanks China scholarship council for financial support (No. 201606220031). X.C. and B.S. acknowledge SNIC-UPPMAX, SNIC-HPC2N, and SNIC-NSC centers under the Swedish National Infrastructure for Computing (SNIC) resources for the allocation of time in high-performance supercomputers. Moreover, supercomputing resources from PRACE DECI-15 project DYNAMAT are gratefully acknowledged. ; Approved Most recent IF: 10.9; 2020 IF: 6.337
  Call Number UA @ admin @ c:irua:173513 Serial 6577
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Peeters, F.M.
  Title Tuning flexoelectricty and electronic properties of zig-zag graphene nanoribbons by functionalization Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon
  Volume 171 Issue Pages 551-559
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract The flexoelectric and electronic properties of zig-zag graphene nanoribbons are explored under mechanical bending using state of the art first principles calculations. A linear dependence of the bending induced out of plane polarization on the applied strain gradient is found. The inferior flexoelectric properties of graphene nanoribbons can be improved by more than two orders of magnitude by hydrogen and fluorine functionalization (CH and CF nanoribbons). A large out of plane flexoelectric effect is predicted for CF nanoribbons. The origin of this enhancement lies in the electro-negativity difference between carbon and fluorine atoms, which breaks the out of plane charge symmetry even for a small strain gradient. The flexoelectric effect can be further improved by co-functionalization with hydrogen and fluorine (CHF Janus-type nanoribbon), where a spontaneous out of plane dipole moment is formed even for flat nanoribbons. We also find that bending can control the charge localization of valence band maxima and therefore enables the tuning of the hole effective masses and band gaps. These results present an important advance towards the understanding of flexoelectric and electronic properties of hydrogen and fluorine functionalized graphene nanoribbons, which can have important implications for flexible electronic applications. (C) 2020 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000598371500058 Publication Date 2020-09-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited 15 Open Access OpenAccess
  Notes ; The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Flemish Science Foundation (FWO-VI). T. P. is supported by a postdoctoral research fellowship from BOF-UAntwerpen. ; Approved Most recent IF: 6.337
  Call Number UA @ admin @ c:irua:175014 Serial 6700
Permanent link to this record
 

 
Author Veronesi, S.; Pfusterschmied, G.; Fabbri, F.; Leitgeb, M.; Arif, O.; Esteban, D.A.; Bals, S.; Schmid, U.; Heun, S.
  Title 3D arrangement of epitaxial graphene conformally grown on porousified crystalline SiC Type A1 Journal article
  Year 2022 Publication Carbon Abbreviated Journal Carbon
  Volume 189 Issue Pages 210-218
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000760358800008 Publication Date 2021-12-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.9 Times cited 3 Open Access OpenAccess
  Notes Horizon 2020; European Commission; Horizon 2020 Framework Programme; European Research Council, 128 731 019 ; European Research Council, REALNANO 815 128 ; sygmaSB Approved Most recent IF: 10.9
  Call Number EMAT @ emat @c:irua:186583 Serial 6952
Permanent link to this record
 

 
Author Dehdast, M.; Valiollahi, Z.; Neek-Amal, M.; Van Duppen, B.; Peeters, F.M.; Pourfath, M.
  Title Tunable natural terahertz and mid-infrared hyperbolic plasmons in carbon phosphide Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon
  Volume 178 Issue Pages 625-631
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Hyperbolic polaritons in ultra thin materials such as few layers of van derWaals heterostructures provide a unique control over light-matter interaction at the nanoscale and with various applications in flat optics. Natural hyperbolic surface plasmons have been observed on thin films of WTe2 in the light wavelength range of 16-23 mu m (similar or equal to 13-18 THz) [Nat. Commun. 11, 1158 (2020)]. Using time-dependent density functional theory, it is found that carbon doped monolayer phosphorene (beta-allotrope of carbon phosphide monolayer) exhibits natural hyperbolic plasmons at frequencies above similar or equal to 5 THz which is not observed in its parent materials, i.e. monolayer of black phosphorous and graphene. Furthermore, we found that by electrostatic doping the plasmonic frequency range can be extended to the mid-infrared. (C) 2021 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000648729800057 Publication Date 2021-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited 11 Open Access Not_Open_Access
  Notes Approved Most recent IF: 6.337
  Call Number UA @ admin @ c:irua:179033 Serial 7039
Permanent link to this record
 

 
Author Mirzakhani, M.; Myoung, N.; Peeters, F.M.; Park, H.C.
  Title Electronic Mach-Zehnder interference in a bipolar hybrid monolayer-bilayer graphene junction Type A1 Journal article
  Year 2023 Publication Carbon Abbreviated Journal
  Volume 201 Issue Pages 734-744
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Graphene matter in a strong magnetic field, realizing one-dimensional quantum Hall channels, provides a unique platform for studying electron interference. Here, using the Landauer-Buttiker formalism along with the tightbinding model, we investigate the quantum Hall (QH) effects in unipolar and bipolar monolayer-bilayer graphene (MLG-BLG) junctions. We find that a Hall bar made of an armchair MLG-BLG junction in the bipolar regime results in valley-polarized edgechannel interferences and can operate a fully tunable Mach-Zehnder (MZ) interferometer device. Investigation of the bar-width and magnetic-field dependence of the conductance oscillations shows that the MZ interference in such structures can be drastically affected by the type of (zigzag) edge termination of the second layer in the BLG region [composed of vertical dimer or non-dimer atoms]. Our findings reveal that both interfaces exhibit a double set of Aharonov-Bohm interferences, with the one between two oppositely valley-polarized edge channels dominating and causing a large amplitude conductance oscillation ranging from 0 to 2e2/h. We explain and analyze our findings by analytically solving the Dirac-Weyl equation for a gated semi-infinite MLG-BLG junction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000868911500004 Publication Date 2022-09-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.9 Times cited 3 Open Access Not_Open_Access
  Notes Approved Most recent IF: 10.9; 2023 IF: 6.337
  Call Number UA @ admin @ c:irua:191516 Serial 7302
Permanent link to this record
 

 
Author Cao, M.; Xiong, D.-B.; Tan, Z.; Ji, G.; Amin-Ahmadi, B.; Guo, Q.; Fan, G.; Guo, C.; Li, Z.; Zhang, D.
  Title Aligning graphene in bulk copper : nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity Type A1 Journal article
  Year 2017 Publication Carbon Abbreviated Journal
  Volume 117 Issue Pages 65-74
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Methods used to strengthen metals generally also cause a pronounced decrease in ductility and electrical conductivity. In this work a bioinspired strategy is applied to surmount the dilemma. By assembling copper submicron flakes cladded with in-situ grown graphene, graphene/copper matrix composites with a nanolaminated architecture inspired by a natural nacre have been prepared. Owing to a combined effect-from the bioinspired nanolaminated architecture and improved interfacial bonding, a synergy has been achieved between mechanical strength and ductility as well as electrical conductivity in the graphene/copper matrix composites. With a low volume fraction of only 2.5% of graphene, the composite shows a yield strength and elastic modulus similar to 177% and similar to 25% higher than that of unreinforced copper matrix, respectively, while retains ductility and electrical conductivity comparable to that of pure copper. The bioinspired nanolaminated architecture enhances the efficiencies of two-dimensional (2D) graphene in mechanical strengthening and electrical conducting by aligning graphene to maximize performance for required loading and carrier transporting conditions, and toughens the composites by crack deflection. Meanwhile, in-situ growth of graphene is beneficial for improving interfacial bonding and structural quality of graphene. The strategy sheds light on the development of composites with good combined structural and functional properties. (C) 2017 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000400212100008 Publication Date 2017-02-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:152635 Serial 7435
Permanent link to this record
 

 
Author Marazzi, E.; Ghojavand, A.; Pirard, J.; Petretto, G.; Charlier, J.-C.; Rignanese, G.-M.
  Title Modeling symmetric and defect-free carbon schwarzites into various zeolite templates Type A1 Journal article
  Year 2023 Publication Carbon Abbreviated Journal
  Volume 215 Issue Pages 118385-118389
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Recently, a process has been proposed for generating negatively-curved carbon schwarzites via zeolite-templating (Braun et al., 2018). However, the proposed process leads to atomistic models which are not very symmetric and often rather defective. In the present work, an improved generation approach is developed, by imposing symmetry constraints, which systematically leads to defect-free, hence more stable, schwarzites. The stability of the newly predicted symmetric schwarzites is also compared to that of other carbon nanostructures (in particular carbon nanotubes – CNTs), which could also be accommodated within the same templates. Our results suggest that only a few of these (such as FAU, SBT and SBS) can fit schwarzites more stable than CNTs. Our predictions could help experimentalists in the crucial choice of the template for the challenging synthesis of schwarzites. Furthermore, being highly symmetric and stable phases, the models could also be synthesized by means of other experimental procedures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001078649800001 Publication Date 2023-09-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223 ISBN Additional Links UA library record; WoS full record
  Impact Factor 10.9 Times cited Open Access
  Notes Approved Most recent IF: 10.9; 2023 IF: 6.337
  Call Number UA @ admin @ c:irua:200314 Serial 9057
Permanent link to this record
 

 
Author da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M.
  Title Analytical study of the energy levels in bilayer graphene quantum dots Type A1 Journal article
  Year 2014 Publication Carbon Abbreviated Journal Carbon
  Volume 78 Issue Pages 392-400
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using the four-band continuum model we derive a general expression for the infinite-mass boundary condition in bilayer graphene. Applying this new boundary condition we analytically calculate the confined states and the corresponding wave functions in a bilayer graphene quantum dot in the absence and presence of a perpendicular magnetic field. Our results for the energy spectrum show an energy gap between the electron and hole states at small magnetic fields. Furthermore the electron (e) and hole (h) energy levels corresponding to the K and K' valleys exhibit the E-K(e(h)) (m) = E-K'(e(h)) (m) symmetry, where m is the angular momentum quantum number. (C) 2014 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000341463900042 Publication Date 2014-07-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited 35 Open Access
  Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program Euro-GRAPHENE (project CONGRAN), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). We thank M. Ramezani Masir and M. Grujic for helpful comments and discussions. ; Approved Most recent IF: 6.337; 2014 IF: 6.196
  Call Number UA @ lucian @ c:irua:119280 Serial 109
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: