toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author De Paepe, J.; Clauwaert, P.; Gritti, M.C.; Ganigue, R.; Sas, B.; Vlaeminck, S.E.; Rabaey, K.
  Title Electrochemical in situ pH control enables chemical-free full urine nitrification with concomitant nitrate extraction Type A1 Journal article
  Year (up) 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol
  Volume 55 Issue 12 Pages 8287-8298
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Urine is a valuable resource for nutrient recovery. Stabilization is, however, recommended to prevent urea hydrolysis and the associated risk for ammonia volatilization, uncontrolled precipitation, and malodor. This can be achieved by alkalinization and subsequent biological conversion of urea and ammonia into nitrate (nitrification) and organics into CO2. Yet, without pH control, the extent of nitrification is limited as a result of insufficient alkalinity. This study explored the feasibility of an integrated electrochemical cell to obtain on-demand hydroxide production through water reduction at the cathode, compensating for the acidification caused by nitritation, thereby enabling full nitrification. To deal with the inherent variability of the urine influent composition and bioprocess, the electrochemical cell was steered via a controller, modulating the current based on the pH in the bioreactor. This provided a reliable and innovative alternative to base addition, enabling full nitrification while avoiding the use of chemicals, the logistics associated with base storage and dosing, and the associated increase in salinity. Moreover, the electrochemical cell could be used as an in situ extraction and concentration technology, yielding an acidic concentrated nitrate-rich stream. The make-up of the end product could be tailored by tweaking the process configuration, offering versatility for applications on Earth and in space.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000663939900052 Publication Date 2021-06-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.198 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 6.198
  Call Number UA @ admin @ c:irua:179779 Serial 7862
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van den Berg, J.; van Nuijs, A.L.N.; De Wael, K.
  Title Electrochemical profiling and liquid chromatography–mass spectrometry characterization of synthetic cathinones : from methodology to detection in forensic samples Type A1 Journal article
  Year (up) 2021 Publication Drug Testing And Analysis Abbreviated Journal Drug Test Anal
  Volume 13 Issue 7 Pages 1282-1294
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre
  Abstract The emergence of new psychoactive drugs in the market demands rapid and accurate tools for the on‐site classification of illegal and legal compounds with similar structures. Herein, a novel method for the classification of synthetic cathinones (SC) is presented based on their electrochemical profile. First, the electrochemical profile of five common SC (i.e., mephedrone, ethcathinone, methylone, butylone and 4‐chloro‐alpha‐pyrrolidinovalerophenone) is collected to build calibration curves using square wave voltammetry on graphite screen‐printed electrodes (SPE). Second, the elucidation of the oxidation pathways, obtained by liquid chromatography‐high resolution mass spectrometry, allows the pairing of the oxidation products to the SC electrochemical profile, providing a selective and robust classification. Additionally, the effect of common adulterants and illicit drugs on the electrochemical profile of the SC is explored. Interestingly, a cathodic pretreatment of the SPE allows the selective detection of each SC in presence of electroactive adulterants. Finally, the electrochemical approach is validated with gas‐chromatography‐mass spectrometry by analyzing 26 confiscated samples from seizures and illegal webshops. Overall, the electrochemical method exhibits a successful classification of SC including structural derivatives, a crucial attribute in an ever‐diversifying drug market.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000624902500001 Publication Date 2021-02-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.469 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 3.469
  Call Number UA @ admin @ c:irua:175583 Serial 7863
Permanent link to this record
 

 
Author Sleegers, N.; van Nuijs, A.L.N.; van den Berg, M.; De Wael, K.
  Title Electrochemistry of intact versus degraded cephalosporin antibiotics facilitated by LC–MS analysis Type A1 Journal article
  Year (up) 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem
  Volume 93 Issue 4 Pages 2394-2402
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre
  Abstract The electrochemical detection of cephalosporins is a promising approach for the monitoring of cephalosporin levels in process waters. However, this class of antibiotics, like penicillins, is composed of chemically active molecules and susceptible to hydrolysis and aminolysis of the four membered β-lactam ring present. In order to develop a smart monitoring strategy for cephalosporins, the influence of degradation (hydrolysis and aminolysis) on the electrochemical fingerprint has to be taken into account. Therefore, an investigation was carried out to understand the changes of the voltammetric fingerprints upon acidic and alkaline degradation. Changes in fingerprints were correlated to the degradation pathways through the combination of square wave voltammetry and liquid chromatography quadrupole time-of-flight analysis. The characteristic electrochemical signals of the β-lactam ring disappeared upon hydrolysis. Additional oxidation signals that appeared after degradation were elucidated and linked to different degradation products, and therefore, enrich the voltammetric fingerprints with information of the state of the cephalosporins. The applicability of the electrochemical monitoring system was explored by the analysis of the intact and degraded industrial process waters containing the key intermediate 7-aminodeacetoxycephalosporanic acid (7-ADCA). Clearly, the intact process samples exhibited the expected core signals of 7-ADCA and could be quantified, while the degraded samples only showed the newly formed degradation products.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000618089100063 Publication Date 2021-01-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.32 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 6.32
  Call Number UA @ admin @ c:irua:176206 Serial 7864
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K.
  Title Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
  Year (up) 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem
  Volume 348 Issue Pages 130659
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000701915600005 Publication Date 2021-08-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.401 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 5.401
  Call Number UA @ admin @ c:irua:181307 Serial 7912
Permanent link to this record
 

 
Author Chernozem, R., V; Romanyuk, K.N.; Grubova, I.; Chernozem, P., V.; Surmeneva, M.A.; Mukhortova, Y.R.; Wilhelm, M.; Ludwig, T.; Mathur, S.; Kholkin, A.L.; Neyts, E.; Parakhonskiy, B.; Skirtach, A.G.; Surmenev, R.A.
  Title Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering Type A1 Journal article
  Year (up) 2021 Publication Nano Energy Abbreviated Journal Nano Energy
  Volume 89 Issue B Pages 106473
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Piezoelectricity is considered to be one of the key functionalities in biomaterials to boost bone tissue regeneration, however, integrating biocompatibility, biodegradability and 3D structure with pronounced piezoresponse remains a material challenge. Herein, novel hybrid biocompatible 3D scaffolds based on biodegradable poly(3-hydroxybutyrate) (PHB) and reduced graphene oxide (rGO) flakes have been developed. Nanoscale insights revealed a more homogenous distribution and superior surface potential values of PHB fibers (33 +/- 29 mV) with increasing rGO content up to 1.0 wt% (314 +/- 31 mV). The maximum effective piezoresponse was detected at 0.7 wt% rGO content, demonstrating 2.5 and 1.7 times higher out-of-plane and in-plane values, respectively, than that for pure PHB fibers. The rGO addition led to enhanced zigzag chain formation between paired lamellae in PHB fibers. In contrast, a further increase in rGO content reduced the alpha-crystal size and prevented zigzag chain conformation. A corresponding model explaining structural and molecular changes caused by rGO addition in electrospun PHB fibers is proposed. In addition, finite element analysis revealed a negligible vertical piezoresponse compared to lateral piezoresponse in uniaxially oriented PHB fibers based on alpha-phase (P2(1)2(1)2(1) space group). Thus, the present study demonstrates promising results for the development of biodegradable hybrid 3D scaffolds with an enhanced piezoresponse for various tissue engineering applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000703592700002 Publication Date 2021-08-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.343 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 12.343
  Call Number UA @ admin @ c:irua:182579 Serial 7914
Permanent link to this record
 

 
Author Kerckhof, F.-M.; Sakarika, M.; Van Giel, M.; Muys, M.; Vermeir, P.; De Vrieze, J.; Vlaeminck, S.E.; Rabaey, K.; Boon, N.
  Title From biogas and hydrogen to microbial protein through co-cultivation of methane and hydrogen oxidizing bacteria Type A1 Journal article
  Year (up) 2021 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal
  Volume 9 Issue Pages 733753
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Increasing efforts are directed towards the development of sustainable alternative protein sources among which microbial protein (MP) is one of the most promising. Especially when waste streams are used as substrates, the case for MP could become environmentally favorable. The risks of using organic waste streams for MP production–the presence of pathogens or toxicants–can be mitigated by their anaerobic digestion and subsequent aerobic assimilation of the (filter-sterilized) biogas. Even though methane and hydrogen oxidizing bacteria (MOB and HOB) have been intensively studied for MP production, the potential benefits of their co-cultivation remain elusive. Here, we isolated a diverse group of novel HOB (that were capable of autotrophic metabolism), and co-cultured them with a defined set of MOB, which could be grown on a mixture of biogas and H2/O2. The combination of MOB and HOB, apart from the CH4 and CO2 contained in biogas, can also enable the valorization of the CO2 that results from the oxidation of methane by the MOB. Different MOB and HOB combinations were grown in serum vials to identify the best-performing ones. We observed synergistic effects on growth for several combinations, and in all combinations a co-culture consisting out of both HOB and MOB could be maintained during five days of cultivation. Relative to the axenic growth, five out of the ten co-cultures exhibited 1.1–3.8 times higher protein concentration and two combinations presented 2.4–6.1 times higher essential amino acid content. The MP produced in this study generally contained lower amounts of the essential amino acids histidine, lysine and threonine, compared to tofu and fishmeal. The most promising combination in terms of protein concentration and essential amino acid profile was Methyloparacoccus murrelli LMG 27482 with Cupriavidus necator LMG 1201. Microbial protein from M. murrelli and C. necator requires 27–67% less quantity than chicken, whole egg and tofu, while it only requires 15% more quantity than the amino acid-dense soybean to cover the needs of an average adult. In conclusion, while limitations still exist, the co-cultivation of MOB and HOB creates an alternative route for MP production leveraging safe and sustainably-produced gaseous substrates.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000697897900001 Publication Date 2021-09-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:180591 Serial 7985
Permanent link to this record
 

 
Author Van Hal, M.; Campos, R.; Lenaerts, S.; De Wael, K.; Verbruggen, S.W.
  Title Gas phase photofuel cell consisting of WO₃- and TiO₂-photoanodes and an air-exposed cathode for simultaneous air purification and electricity generation Type A1 Journal article
  Year (up) 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
  Volume 292 Issue Pages 120204
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Research has shown the potential of photofuel cells (PFCs) for waste water treatment, enabling the (partial) recovery of the energy released from the degraded compounds as electricity. Literature on PFCs targeting air pollution on the other hand is extremely scarce. In this work an autonomously operating air purification device targeting sustainable electricity generation is presented. Knowledge on gas phase operation of PFCs was gathered by combining photocatalytic and photoelectrochemical measurements, both for TiO2 and WO3-based photocatalysts. While TiO2-based photocatalysts performed better in direct photocatalytic experiments, they were outperformed by WO3-based photoanodes in all-gas-phase PFC operation. Not only do WO3-based photocatalysts generate the highest steady state photocurrent, they also achieved the highest fuel-to-electricity conversion (>65 %). The discrepancies between gas phase photocatalytic and photoelectrochemical processes highlight the difference in driving material properties. This study serves as a proof-of-concept towards development of an autonomous, low-cost and widely applicable waste gas-to-electricity PFC device.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000663216500001 Publication Date 2021-04-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.446 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 9.446
  Call Number UA @ admin @ c:irua:177075 Serial 7989
Permanent link to this record
 

 
Author Voordeckers, D.; Lauriks, T.; Denys, S.; Billen, P.; Tytgat, T.; Van Acker, M.
  Title Guidelines for passive control of traffic-related air pollution in street canyons : an overview for urban planning Type A1 Journal article
  Year (up) 2021 Publication Landscape And Urban Planning Abbreviated Journal Landscape Urban Plan
  Volume 207 Issue Pages 103980-20
  Keywords A1 Journal article; Economics; Law; Engineering sciences. Technology; Art; Energy and Materials in Infrastructure and Buildings (EMIB); Research Group for Urban Development; Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
  Abstract Recent studies indicate the necessity of addressing traffic-related air pollution in urban environments, as street canyons are known for their lack of natural ventilation and increased pollution levels. To address this issue, numerous studies have been conducted on different aspects (e.g. aspect ratio, orientation and height variation) and their impact on ventilation and pollution dispersion/dilution performance in street canyons. Despite the numerous studies, the information remains fragmented and the results and applications are fairly unknown in urban planning. Broad review studies on numerous street canyon aspects are also quite scarce. In this study, over 200 studies were collected and reviewed across various parameters and on different configuration levels (street canyon configuration / building configuration / in-canyon configuration). Hereby, the study aims to give a comprehensive overview and to formulate spatial guidelines to improve the application of the reviewed studies for the purpose of urban planning. In total, 19 general guidelines were formulated, and an implementation strategy for the purpose of urban planning was developed. Despite the usability of these guidelines for urban planning, a high number of limitations and variabilities were detected. The broad literature review also revealed knowledge gaps, indicating the potentials for further research.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000604739400006 Publication Date 2020-11-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-2046 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.563 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.563
  Call Number UA @ admin @ c:irua:173811 Serial 8014
Permanent link to this record
 

 
Author Gupta, A.; Baron, G.V.; Perreault, P.; Lenaerts, S.; Ciocarlan, R.-G.; Cool, P.; Mileo, P.G.M.; Rogge, S.; Van Speybroeck, V.; Watson, G.; Van Der Voort, P.; Houlleberghs, M.; Breynaert, E.; Martens, J.; Denayer, J.F.M.
  Title Hydrogen clathrates : next generation hydrogen storage materials Type A1 Journal article
  Year (up) 2021 Publication Energy Storage Materials Abbreviated Journal
  Volume 41 Issue Pages 69-107
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Extensive research has been carried on the molecular adsorption in high surface area materials such as carbonaceous materials and MOFs as well as atomic bonded hydrogen in metals and alloys. Clathrates stand among the ones to be recently suggested for hydrogen storage. Although, the simulations predict lower capacity than the expected by the DOE norms, the additional benefits of clathrates such as low production and operational cost, fully reversible reaction, environmentally benign nature, low risk of flammability make them one of the most promising materials to be explored in the next decade. The inherent ability to tailor the properties of clathrates using techniques such as addition of promoter molecules, use of porous supports and formation of novel reverse micelles morphology provide immense scope customisation and growth. As rapidly evolving materials, clathrates promise to get as close as possible in the search of “holy grail” of hydrogen storage. This review aims to provide the audience with the background of the current developments in the solid-state hydrogen storage materials, with a special focus on the hydrogen clathrates. The in-depth analysis of the hydrogen clathrates will be provided beginning from their discovery, various additives utilised to enhance their thermodynamic and kinetic properties, challenges in the characterisation of hydrogen in clathrates, theoretical developments to justify the experimental findings and the upscaling opportunities presented by this system. The review will present state of the art in the field and also provide a global picture for the path forward.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000685118300009 Publication Date 2021-06-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2405-8297 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:178744 Serial 8045
Permanent link to this record
 

 
Author Voordeckers, D.; Meysman, F.J.R.; Billen, P.; Tytgat, T.; Van Acker, M.
  Title The impact of street canyon morphology and traffic volume on NO₂ values in the street canyons of Antwerp Type A1 Journal article
  Year (up) 2021 Publication Building And Environment Abbreviated Journal Build Environ
  Volume 197 Issue Pages 107825-10
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
  Abstract Air pollution remains a major environmental and health concern in urban environments, especially in street canyons that show increased pollution levels due to a lack of natural ventilation. Previous studies have investigated the relationship between street canyon morphology and in-canyon pollution levels. However, these studies are typically limited to the scale of a single street canyon and city-wide assessments on this matter are scarce. In 2018, NO2 concentrations were measured in 321 street canyons in the city of Antwerp (Belgium) as part of the large-scale citizen-science project “CurieuzeNeuzen”. In our research, this data was used to study the correlation between morphological indices (e.g. aspect ratio (AR), lateral aspect ratio (LAR), presence of trees) and the traffic volumes on a city-wide scale. The maximum hourly traffic volume (TVmax) and AR correlated significantly with the measured NO2 values, making them useful indicators for air quality in street canyons. For street canyons with AR > 0.65, a TVmax of 300 vehicles/hour was found as a threshold value to guarantee acceptable air quality. No significant correlations were found for the other parameters. Finally, a number of typical street canyon types were defined, which can be of fundamental interest for further research and spatial policy making.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000663167900003 Publication Date 2021-03-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.053 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.053
  Call Number UA @ admin @ c:irua:176925 Serial 8064
Permanent link to this record
 

 
Author Gonzalez-Quiroga, A.; Shtern, V.; Perreault, P.; Vandewalle, L.; Marin, G.B.; Van Geem, K.M.
  Title Intensifying mass and heat transfer using a high-g stator-rotor vortex chamber Type A1 Journal article
  Year (up) 2021 Publication Chemical Engineering And Processing Abbreviated Journal Chem Eng Process
  Volume 169 Issue Pages 108638-11
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Vortex reactors take advantage of the synergy between enhanced heat and mass transfer rates and multifunctional phenomena at different temporal and spatial scales. Proof-of-concept experiments with our novel and innovative STAtor-Rotor VOrtex Chamber (STARVOC) confirm its advantageous features for the sustainable production of chemicals and fuels. STARVOC is a high-g contactor that uses carrier flow (gas or liquid) tangential injection to drive a rotor attached to low-friction bearings. The vortex chamber inside the rotor contains a secondary phase or phases, such as a solids bed, a liquid layer, or a suspension. Carrier fluid passes through the perforated rotor wall and contacts a densely and uniformly distributed secondary phase with enhanced slip velocities. Experiments focused on pressure profiles, rotor angular velocity, and solids azimuthal velocity. With air as the carrier fluid and different solid particle beds as the secondary phase, STARVOC reached bed azimuthal velocities up to four-fold compared to those reached in Gas-Solid Vortex Units with fully static geometry. These results show its potential to improve interfacial heat and mass transfer rates and take advantage of flow energy and angular momentum. Due to its process intensification capabilities, STARVOC is a promising alternative for the state-of-the-art chemical industry.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000704946900008 Publication Date 2021-09-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0255-2701 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.234 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 2.234
  Call Number UA @ admin @ c:irua:181062 Serial 8111
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Wilcop, M.; Anderson, R.; Wendt, D.; Barden, R.; Kavich, G.M.
  Title Investigation of volatile organic compounds in museum storage areas Type A1 Journal article
  Year (up) 2021 Publication Air Quality Atmosphere And Health Abbreviated Journal Air Qual Atmos Hlth
  Volume 14 Issue 11 Pages 1797-1809
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)
  Abstract This study investigates the complex mixture of volatile organic compounds (VOCs) released by and accumulated within a collection of historic medicinal, pharmaceutical, and cosmetic artifacts housed at the National Museum of American History (Smithsonian Institution). In recent years, staff have become concerned, both for the safety of the objects and for personnel working in the collection, about strong unremediated odors accumulating within several storage cabinets. Museum staff also wondered if non-odorous off-gassing might need remediation. Solid-phase microextraction combined with gas chromatography–mass spectrometry analysis (SPME–GC–MS) was used to identify VOCs present in the storage room housing the collection. Over 160 compounds were detected and identified overall. Among these, 49 appeared to be directly related to ingredients used in the manufacture of many collection items. The results of the study suggest that SPME–GC–MS can be a strong tool for the rapid screening of multicomponent museum collections exhibiting off-gassing problems, before the pursuit of other more tedious analytical approaches. Additionally, the study reveals valuable insight into the characteristic volatile emission of historic medicinal, pharmaceutical, and cosmetic artifacts, increasing understanding of, and decision-making for, similar collections of objects. Eventually, it is hoped that this information can be used to inform mitigation strategies for the capture and reduction of VOCs in collections storage areas.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000659058300001 Publication Date 2021-06-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1873-9318 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.184 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 3.184
  Call Number UA @ admin @ c:irua:181923 Serial 8129
Permanent link to this record
 

 
Author Baly, L.; Quesada, I.; Murray, A.S.; Martin, G.; van Espen, P.; Arteche, R.; Jain, M.
  Title Modeling the charge deposition in quartz grains during natural irradiation and its influence on the optically stimulated luminescence signal Type A1 Journal article
  Year (up) 2021 Publication Radiation Measurements Abbreviated Journal Radiat Meas
  Volume 142 Issue Pages 106564
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The rate of charge deposition in quartz grains irradiated in natural conditions is computed by radiation transport modeling. Quartz luminescence models are modified with the addition of the resulting charge deposition term, and the influence of this process on the optically stimulated luminescence (OSL) signal is analyzed. The results indicate that the charge deposition occurring in the quartz grain during the time of residence within rock could lead to the depletion of trapped holes in the recombination centres. For the two different quartz models investigated here, complete depletion is expected to occur for rock ages between 500 Ma and 1100 Ma. It is predicted that for sedimentary quartz derived from such rocks, the OSL signal is dominated by the slow component. It was also found that the shape and saturation level of the natural sensitivity-corrected dose response curve (DRC) of quartz is affected by the charge deposition; specifically, a linear reduction of the saturation level with the age of the rock is observed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000639160300003 Publication Date 2021-03-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1350-4487 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.442 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 1.442
  Call Number UA @ admin @ c:irua:178307 Serial 8265
Permanent link to this record
 

 
Author Trashin, S.; Morales-Yánez, F.; Thiruvottriyur Shanmugam, S.; Paredis, L.; Carrión, E.N.; Sariego, I.; Muyldermans, S.; Polman, K.; Gorun, S.M.; De Wael, K.
  Title Nanobody-based immunosensor detection enhanced by photocatalytic-electrochemical redox cycling Type A1 Journal article
  Year (up) 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem
  Volume 93 Issue 40 Pages 13606-13614
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract Detection of antigenic biomarkers present in trace amounts is of crucial importance for medical diagnosis. A parasitic disease, human toxocariasis, lacks an adequate diagnostic method despite its worldwide occurrence. The currently used serology tests may stay positive even years after a possibly unnoticed infection, whereas the direct detection of a re-infection or a still active infection remains a diagnostic challenge due to the low concentration of circulating parasitic antigens. We report a time-efficient sandwich immunosensor using small recombinant single-domain antibodies (nanobodies) derived from camelid heavy-chain antibodies specific to Toxocara canis antigens. An enhanced sensitivity to pg/mL levels is achieved by using a redox cycle consisting of a photocatalytic oxidation and electrochemical reduction steps. The photocatalytic oxidation is achieved by a photosensitizer generating singlet oxygen (1O2) that, in turn, readily reacts with p-nitrophenol enzymatically produced under alkaline conditions. The photooxidation produces benzoquinone that is electrochemically reduced to hydroquinone, generating an amperometric response. The light-driven process could be easily separated from the background, thus making amperometric detection more reliable. The proposed method for detection of the toxocariasis antigen marker shows superior performances compared to other detection schemes with the same nanobodies and outperforms by at least two orders of magnitude the assays based on regular antibodies, thus suggesting new opportunities for electrochemical immunoassays of challenging low levels of antigens.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000708550500025 Publication Date 2021-09-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.32 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 6.32
  Call Number UA @ admin @ c:irua:181795 Serial 8290
Permanent link to this record
 

 
Author Beltran, V.; Marchetti, A.; Nuyts, G.; Leeuwestein, M.; Sandt, C.; Borondics, F.; De Wael, K.
  Title Nanoscale analysis of historical paintings by means of O‐PTIR spectroscopy : the identification of the organic particles in L’Arlésienne (portrait of Madame Ginoux) by Van Gogh Type A1 Journal article
  Year (up) 2021 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
  Volume 60 Issue 42 Pages 22753-22760
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Optical-photothermal infrared (O-PTIR) spectroscopy is a recently developed technique that provides spectra comparable to traditional transmission FTIR spectroscopy with nanometric spatial resolution. Hence, O-PTIR is a promising candidate for the analysis of historical paintings, as well as other cultural heritage objects, but its potential has not yet been evaluated.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000694015700001 Publication Date 2021-06-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 11.994
  Call Number UA @ admin @ c:irua:179989 Serial 8291
Permanent link to this record
 

 
Author Daems, E.; Moro, G.; Berghmans, H.; Moretto, L.M.; Dewilde, S.; Angelini, A.; Sobott, F.; De Wael, K.
  Title Native mass spectrometry for the design and selection of protein bioreceptors for perfluorinated compounds Type A1 Journal article
  Year (up) 2021 Publication Analyst Abbreviated Journal Analyst
  Volume 146 Issue 6 Pages 2065-2073
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Biosensing platforms are answering the increasing demand for analytical tools for environmental monitoring of small molecules, such as per- and polyfluoroalkyl substances (PFAS). By transferring toxicological findings in bioreceptor design we can develop innovative pathways for biosensor design. Indeed, toxicological studies provide fundamental information about PFAS-biomolecule complexes that can help evaluate the applicability of the latter as bioreceptors. The toolbox of native mass spectrometry (MS) can support this evaluation, as shown by the two case studies reported in this work. The analysis of model proteins’ (i.e. albumin, haemoglobin, cytochrome c and neuroglobin) interactions with well-known PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), demonstrated the potential of this native MS screening approach. In the first case study, untreated albumin and delipidated albumin were compared in the presence and absence of PFOA confirming that the delipidation step increases albumin affinity for PFOA without affecting protein stability. In the second case study, the applicability of our methodology to identify potential bioreceptors for PFOS/PFOA was extended to other proteins. Structurally related haemoglobin and neuroglobin revealed a 1 : 1 complex, whereas no binding was observed for cytochrome c. These studies have value as a proof-of-concept for a general application of native MS to identify bioreceptors for toxic compounds.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000631575100031 Publication Date 2021-01-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2654; 1364-5528 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.885 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 3.885
  Call Number UA @ admin @ c:irua:177074 Serial 8294
Permanent link to this record
 

 
Author Wagaarachchige, J.; Idris, Z.; Kummamuru, N.B.; Sætre, K.A.; Halstensen, M.; Jens, K.-J.
  Title A new sulfolane based solvent for CO₂ capture Type P1 Proceeding
  Year (up) 2021 Publication SSRN electronic journal Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract This study presents novel sulfolane based non-aqueous CO2 capture solvents, as an alternative solution for capturing CO2 from industrial processes. In order to select the most promising amine system, five different amines were tested by monitoring CO2 absorption and desorption processes using the time-base Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. During absorption experiments, we observed the formation of Monomethyl Carbonate (MMC) in diisopropylamine (DIPA) and 2-amino-2-methyl-1-propanol (AMP) systems, while carbamate was observed as the main product for the other three amine systems tested. In regeneration experiments, the MMC could be desorbed relatively easily from the amine solution at a mild temperature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2021-04-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:180364 Serial 8305
Permanent link to this record
 

 
Author Bal, K.M.
  Title Nucleation rates from small scale atomistic simulations and transition state theory Type A1 Journal article
  Year (up) 2021 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
  Volume 155 Issue 14 Pages 144111
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The evaluation of nucleation rates from molecular dynamics trajectories is hampered by the slow nucleation time scale and impact of finite size effects. Here, we show that accurate nucleation rates can be obtained in a very general fashion relying only on the free energy barrier, transition state theory, and a simple dynamical correction for diffusive recrossing. In this setup, the time scale problem is overcome by using enhanced sampling methods, in casu metadynamics, whereas the impact of finite size effects can be naturally circumvented by reconstructing the free energy surface from an appropriate ensemble. Approximations from classical nucleation theory are avoided. We demonstrate the accuracy of the approach by calculating macroscopic rates of droplet nucleation from argon vapor, spanning 16 orders of magnitude and in excellent agreement with literature results, all from simulations of very small (512 atom) systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000755502100008 Publication Date 2021-09-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.965 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 2.965
  Call Number UA @ admin @ c:irua:184937 Serial 8320
Permanent link to this record
 

 
Author Alloul, A.; Cerruti, M.; Adamczyk, D.; Weissbrodt, D.G.; Vlaeminck, S.E.
  Title Operational strategies to selectively produce purple bacteria for microbial protein in raceway reactors Type A1 Journal article
  Year (up) 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol
  Volume 55 Issue 12 Pages 8278-8286
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Purple non-sulfur bacteria (PNSB) show potential for microbial protein production on wastewater as animal feed. They offer good selectivity (i.e., low microbial diversity and high abundance of one species) when grown anaerobically in the light. However, the cost of closed anaerobic photobioreactors is prohibitive for protein production. Although open raceway reactors are cheaper, their feasibility to selectively grow PNSB is thus far unexplored. This study developed operational strategies to boost PNSB abundance in the biomass of a raceway reactor fed with volatile fatty acids. For a flask reactor run at a 2 day sludge retention time (SRT), matching the chemical oxygen demand (COD) loading rate to the removal rate in the light period prevented substrate availability during the dark period and increased the PNSB abundance from 50-67 to 88-94%. A raceway reactor run at a 2 day SRT showed an increased PNSB abundance from 14 to 56% when oxygen supply was reduced (no stirring at night). The best performance was achieved at the highest surface-to-volume ratio (10 m(2) m(-3) increased light availability) showing productivities up to 0.2 g protein L-1 day(-1) and a PNSB abundance of 78%. This study pioneered in PNSB-based microbial protein production in raceway reactors, yielding high selectivity while avoiding the combined availability of oxygen, COD, and darkness.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000663939900051 Publication Date 2021-06-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.198 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 6.198
  Call Number UA @ admin @ c:irua:179768 Serial 8334
Permanent link to this record
 

 
Author Van Tendeloo, M.; Xie, Y.; Van Beeck, W.; Zhu, W.; Lebeer, S.; Vlaeminck, S.E.
  Title Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox Type A1 Journal article
  Year (up) 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol
  Volume 342 Issue Pages 125996
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Mainstream nitrogen removal by partial nitritation/anammox (PN/A) can realize energy and cost savings for sewage treatment. Selective suppression of nitrite oxidizing bacteria (NOB) remains a key bottleneck for PN/A implementation. A rotating biological contactor was studied with an overhead cover and controlled air/N2 inflow to regulate oxygen availability at 20 °C. Biofilm exposure to dissolved oxygen concentrations < 0.51 ± 0.04 mg O2 L-1 when submerged in the water and < 1.41 ± 0.31 mg O2 L-1 when emerged in the headspace (estimated), resulted in complete and long-term NOB suppression with a low relative nitrate production ratio of 10 ± 4%. Additionally, weekly biofilm stressor treatments with free ammonia (FA) (29 ± 1 mg NH3-N L-1 for 3 h) could improve the NOB suppression while free nitrous acid treatments had insufficient effect. This study demonstrated the potential of managing NOB suppression in biofilm-based systems by oxygen control and recurrent FA exposure, opening opportunities for resource efficient nitrogen removal.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000704455300005 Publication Date 2021-09-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.651 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 5.651
  Call Number UA @ admin @ c:irua:181301 Serial 8355
Permanent link to this record
 

 
Author Van Hal, M.
  Title Photo(electro)catalytic air purification and soot degradation with simultaneous energy recovery Type Doctoral thesis
  Year (up) 2021 Publication Abbreviated Journal
  Volume Issue Pages XXXII, 203 p.
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Today’s society is increasingly challenged by a range of urgent environmental problems. Air pollution is one of these pressing topics. This thesis will mainly focus on the degradation of volatile organic compounds (VOCs) and particulate matter (PM) – more specifically soot. A second globally urging topic is the quest for sustainable energy production. To simultaneously target both environmental problems, a photoelectrochemical (PEC) cell will be studied in this thesis, combining air purification and sustainable energy production in a single device. Photocatalysis is used at the anode of the PEC cell to drive the air purification process, while the energy contained in the degraded compounds is (partially) recovered at the cathode, either as H2 gas or electricity. The first two experimental chapters focus on the proof of concept of such an unbiased all-gas phase PEC cell targeting VOC degradation, using both TiO2- and WO3-based photocatalysts. In the two following experimental chapters the photocatalytic soot oxidation capacity of these TiO2- and WO3-based photocatalysts was studied. In the final experimental chapter the previously obtained results were combined, striving towards an efficient, sunlight-driven and soot-degrading waste gas-to-energy PEC cell.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:184521 Serial 8378
Permanent link to this record
 

 
Author Van Tendeloo, M.; Bundervoet, B.; Carlier, N.; Van Beeck, W.; Mollen, H.; Lebeer, S.; Colsen, J.; Vlaeminck, S.E.
  Title Piloting carbon-lean nitrogen removal for energy-autonomous sewage treatment Type A1 Journal article
  Year (up) 2021 Publication Environmental Science-Water Research & Technology Abbreviated Journal Environ Sci-Wat Res
  Volume 7 Issue 12 Pages 2268-2281
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Energy-autonomous sewage treatment can be achieved if nitrogen (N) removal does not rely on organic carbon (∼chemical oxygen demand, COD), so that a maximum of the COD can be redirected to energy recovery. Shortcut N removal technologies such as partial nitritation/anammox and nitritation/denitritation are therefore essential, enabling carbon- and energy-lean nitrogen removal. In this study, a novel three-reactor pilot design was tested and consisted of a denitrification, an intermittent aeration, and an anammox tank. A vibrating sieve was added for differential sludge retention time (SRT) control. The 13 m3 pilot was operated on pre-treated sewage (A-stage effluent) at 12–24 °C. Selective suppression of unwanted nitrite-oxidizing bacteria over aerobic ammonium-oxidizing bacteria was achieved with strict floccular SRT management combined with innovative aeration control, resulting in a minimal nitrate production ratio of 17 ± 10%. Additionally, anoxic ammonium-oxidizing bacteria (AnAOB) activity could be maintained in the reactor for at least 150 days because of long granular SRT management and the anammox tank. Consequently, the COD/N removal ratio of 2.3 ± 0.7 demonstrated shortcut N removal almost three times lower than the currently applied nitrification/denitrification technology. The effluent total N concentrations of 17 ± 3 mg TN per L (at 21 ± 1 °C) and 17 ± 6 mg TN per L (at 15 ± 1 °C) were however too high for application at the sewage treatment plant Nieuwveer (Breda, The Netherlands). Corresponding N removal efficiencies were 52 ± 12% and 37 ± 21%, respectively. Further development should focus on redirecting more nitrite to AnAOB in the B-stage, exploring effluent-polishing options, or cycling nitrate for increased A-stage denitrification.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000714159900001 Publication Date 2021-10-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2053-1400 ISBN Additional Links UA library record; WoS full record
  Impact Factor 2.817 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 2.817
  Call Number UA @ admin @ c:irua:183347 Serial 8383
Permanent link to this record
 

 
Author Alloul, A.; Wille, M.; Lucenti, P.; Bossier, P.; Van Stappen, G.; Vlaeminck, S.E.
  Title Purple bacteria as added-value protein ingredient in shrimp feed : Penaeus vannamei growth performance, and tolerance against Vibrio and ammonia stress Type A1 Journal article
  Year (up) 2021 Publication Aquaculture Abbreviated Journal Aquaculture
  Volume 530 Issue Pages 735788
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Aquafeeds contain protein ingredients such as fishmeal and soybean meal, yet their production puts pressure on the environment. Finding novel protein sources such as dried microbial biomass produced on recovered or renewable resources, so-called single-cell protein or microbial protein, can contribute to a more sustainable aquaculture industry. New microbial protein sources are emerging with photoheterotrophic grown purple non‑sulfur bacteria (PNSB) showing high potential, yet research of PNSB as added-value protein ingredient is limited. This research studied their use as a protein source for the white leg shrimp (Penaeus vannamei) and investigated the shrimp's tolerance against Vibrio and ammonia stress. A 28-day shrimp feeding trial was performed with a commercial formulation without PNSB as experimental control (diet i), two pure PNSB species, namely Rhodopseudomonas palustris (diets ii-iii), Rhodobacter capsulatus (diets iv-v) at two protein inclusion levels of 5 and 11 g PNSBprotein 100 g−1 feedprotein and a PNSB enriched culture at a protein inclusion level of 11 g PNSBprotein 100 g−1 feedprotein (diet vi). For the shrimp fed with Rb. capsulatus, 5–25% higher individual weights (p < .05) and better feed conversion ratios were observed relative to the commercial diet (1.3–1.4 vs. control 1.7 g feed g−1 biomass; p < .05). The diet containing Rps. palustris at 5 g PNSBprotein 100 g−1 feedprotein inclusion also showed higher individual weights (26%, p < .05) and a better feed conversion ratio compared to the commercial feed (1.3 vs. control 1.7 g feed g−1 biomass; p < .05). The challenge test subsequent to the feeding trial showed a higher tolerance against ammonia (3 mg N L−1) for shrimp fed with Rps. palustris (survival 63–75% vs. 8% commercial diet; p < .05). For a post-feeding challenge test with Vibrio parahaemolyticus TW01, mortality rates were equal among all treatments. Yet, in vitro tests in 96-Well plates and agar spot assays showed that the PNSB species (i) Rps. palustris, (ii) Rb. capsulatus, (iii) Rb. sphaeroides, (iv) Rhodospirillum rubrum and (v) Afifella marina suppressed the pathogens V. parahaemolyticus TW01 and V. campbellii LMG 21363. Overall, this study demonstrated the potential of PNSB as an added-value protein ingredient in shrimp nursery feed. This can contribute to a circular economy, as PNSB can be cultivated on recovered or renewable resources (e.g. wastewater).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000582169700073 Publication Date 2020-08-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0044-8486 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.57 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 2.57
  Call Number UA @ admin @ c:irua:170549 Serial 8429
Permanent link to this record
 

 
Author Parchomenko, A.; Nelen, D.; Gillabel, J.; Vrancken, K.C.M.; Rechberger, H.
  Title Resource effectiveness of the European automotive sector : a statistical entropy analysis over time Type A1 Journal article
  Year (up) 2021 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy
  Volume 169 Issue Pages 105558
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract The European automotive sector is faced with potentially disruptive challenges. In particular, the projected increase in the share of electric vehicles (EVs) and calls to prepare for the implementation of more circular economy (CE) strategies are increasingly demanding systemic adaptations. Given the goals of the CE, the adaptations should enable a maximal preservation of the function and value of products (e.g. extension of lifetime), components (e.g. reuse of parts) and materials (e.g., material recycling), thus saving on the energy, materials and effort that would be required to restore the lost functionalities. In this context, statistical entropy analysis (SEA) is proposed as a methodology to assess the effort needed for preserving and restoring functionality at different product, component and material life cycle stages. Effort is measured as changes in statistical entropy that are caused by concentration and dilution activities in the production – consumption – End-of-Life (EoL) system. SEA was applied to a generic model of the European automotive system, in combination with a stock-driven model and a material flow analysis (MFA), allowing statistical entropy changes to be projected over time. The paper demonstrates how SEA can facilitate decision making on the transition towards a more circular economy by quantifying the effects of particular CE strategies and their combinations. The results show that without any additional system adaptations, an increasing share of EVs towards the year 2050 will lead to substantially increased effort in production as well as end-of-life vehicle treatment.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000657320800074 Publication Date 2021-03-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.313 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 3.313
  Call Number UA @ admin @ c:irua:179770 Serial 8475
Permanent link to this record
 

 
Author Bal, K.M.
  Title Reweighted Jarzynski sampling : acceleration of rare events and free energy calculation with a bias potential learned from nonequilibrium work Type A1 Journal article
  Year (up) 2021 Publication Journal Of Chemical Theory And Computation Abbreviated Journal J Chem Theory Comput
  Volume 17 Issue 11 Pages 6766-6774
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We introduce a simple enhanced sampling approach for the calculation of free energy differences and barriers along a one-dimensional reaction coordinate. First, a small number of short nonequilibrium simulations are carried out along the reaction coordinate, and the Jarzynski equality is used to learn an approximate free energy surface from the nonequilibrium work distribution. This free energy estimate is represented in a compact form as an artificial neural network and used as an external bias potential to accelerate rare events in a subsequent molecular dynamics simulation. The final free energy estimate is then obtained by reweighting the equilibrium probability distribution of the reaction coordinate sampled under the influence of the external bias. We apply our reweighted Jarzynski sampling recipe to four processes of varying scales and complexities.spanning chemical reaction in the gas phase, pair association in solution, and droplet nucleation in supersaturated vapor. In all cases, we find reweighted Jarzynski sampling to be a very efficient strategy, resulting in rapid convergence of the free energy to high precision.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000718183600008 Publication Date 2021-10-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1549-9618 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.245 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 5.245
  Call Number UA @ admin @ c:irua:184676 Serial 8479
Permanent link to this record
 

 
Author Muys, M.; Phukan, R.; Brader, G.; Samad, A.; Moretti, M.; Haiden, B.; Pluchon, S.; Roest, K.; Vlaeminck, S.E.; Spiller, M.
  Title A systematic comparison of commercially produced struvite : quantities, qualities and soil-maize phosphorus availability Type A1 Journal article
  Year (up) 2021 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ
  Volume 756 Issue Pages 143726-12
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Engineering Management (ENM)
  Abstract Production of struvite (MgNH4PO4·6H2O) from waste streams is increasingly implemented to recover phosphorus (P), which is listed as a critical raw material in the European Union (EU). To facilitate EU-wide trade of P-containing secondary raw materials such as struvite, the EU issued a revised fertilizer regulation in 2019. A comprehensive overview of the supply of struvite and its quality is presently missing. This study aimed: i) to determine the current EU struvite production volumes, ii) to evaluate all legislated physicochemical characteristics and pathogen content of European struvite against newly set regulatory limits, and iii) to compare not-regulated struvite characteristics. It is estimated that in 2020, between 990 and 1250 ton P are recovered as struvite in the EU. Struvite from 24 European production plants, accounting for 30% of the 80 struvite installations worldwide was sampled. Three samples failed the physicochemical legal limits; one had a P content of <7% and three exceeded the organic carbon content of 3% dry weight (DW). Mineralogical analysis revealed that six samples had a struvite content of 80–90% DW, and 13 samples a content of >90% DW. All samples showed a heavy metal content below the legal limits. Microbiological analyses indicated that struvite may exceed certain legal limits. Differences in morphology and particle size distribution were observed for struvite sourced from digestate (rod shaped; transparent; 82 mass% < 1 mm), dewatering liquor (spherical; opaque; 65 mass% 1–2 mm) and effluent from upflow anaerobic sludge blanket reactor processing potato wastewater (spherical; opaque; 51 mass% < 1 mm and 34 mass% > 2 mm). A uniform soil-plant P-availability pattern of 3.5–6.5 mg P/L soil/d over a 28 days sampling period was observed. No differences for plant biomass yield were observed. In conclusion, the results highlight the suitability of most struvite to enter the EU fertilizer market.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000603487500029 Publication Date 2020-11-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.9 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.9
  Call Number UA @ admin @ c:irua:173944 Serial 8638
Permanent link to this record
 

 
Author Agrawal, S.; Weissbrodt, D.G.; Annavajhala, M.; Jensen, M.M.; Arroyo, J.M.C.; Wells, G.; Chandran, K.; Vlaeminck, S.E.; Terada, A.; Smets, B.F.; Lackner, S.
  Title Time to act–assessing variations in qPCR analyses in biological nitrogen removal with examples from partial nitritation/anammox systems Type A1 Journal article
  Year (up) 2021 Publication Water Research Abbreviated Journal Water Res
  Volume 190 Issue Pages 116604
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Quantitative PCR (qPCR) is broadly used as the gold standard to quantify microbial community fractions in environmental microbiology and biotechnology. Benchmarking efforts to ensure the comparability of qPCR data for environmental bioprocesses are still scarce. Also, for partial nitritation/anammox (PN/A) systems systematic investigations are still missing, rendering meta-analysis of reported trends and generic insights potentially precarious. We report a baseline investigation of the variability of qPCR-based analyses for microbial communities applied to PN/A systems. Round-robin testing was performed for three PN/A biomass samples in six laboratories, using the respective in-house DNA extraction and qPCR protocols. The concentration of extracted DNA was significantly different between labs, ranged between 2.7 and 328 ng mg−1 wet biomass. The variability among the qPCR abundance data of different labs was very high (1−7 log fold) but differed for different target microbial guilds. DNA extraction caused maximum variation (3–7 log fold), followed by the primers (1–3 log fold). These insights will guide environmental scientists and engineers as well as treatment plant operators in the interpretation of qPCR data.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000632807700001 Publication Date 2020-11-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.942 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 6.942
  Call Number UA @ admin @ c:irua:173838 Serial 8672
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Van Echelpoel, R.; Boeye, G.; Eliaerts, J.; Samanipour, M.; Ching, H.Y.V.; Florea, A.; Van Doorslaer, S.; Van Durme, F.; Samyn, N.; Parrilla, M.; De Wael, K.
  Title Towards developing a screening strategy for ecstasy : revealing the electrochemical profile Type A1 Journal article
  Year (up) 2021 Publication Chemelectrochem Abbreviated Journal Chemelectrochem
  Volume 8 Issue 24 Pages 4826-4834
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY); Applied Electrochemistry & Catalysis (ELCAT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract This article describes the development of an electrochemical screening strategy for 3,4-methylenedioxymethamphetamine (MDMA), the regular psychoactive compound in ecstasy (XTC) pills. We have investigated the specific electrochemical profile of MDMA and its electro-oxidation mechanisms at disposable graphite screen-printed electrodes. We have proved that the formation of a radical cation and subsequent reactions are indeed responsible for the electrode surface passivation, as evidenced by using electron paramagnetic resonance spectroscopy and electrochemistry. Thereafter, pure cutting agents and MDMA as well as simulated binary mixtures of compounds with MDMA were subjected to square wave voltammetry at pH 7 to understand the characteristic electrochemical profile. An additional measurement at pH 12 was able to resolve false positives and negatives occurring at pH 7. Finally, validation of the screening strategy was done by measuring a set of ecstasy street samples. Overall, our proposed electrochemical screening strategy has been demonstrated for the rapid, sensitive, and selective detection of MDMA, resolving most of the false positives and negatives given by the traditional Marquis color tests, thus exhibiting remarkable promises for the on-site screening of MDMA.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000735883700020 Publication Date 2021-12-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.136 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.136
  Call Number UA @ admin @ c:irua:184371 Serial 8680
Permanent link to this record
 

 
Author Van Echelpoel, R.; de Jong, M.; Daems, D.; van Espen, P.; De Wael, K.
  Title Unlocking the full potential of voltammetric data analysis : a novel peak recognition approach for (bio)analytical applications Type A1 Journal article
  Year (up) 2021 Publication Talanta Abbreviated Journal Talanta
  Volume 233 Issue Pages 122605
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Bridging the gap between complex signal data output and clear interpretation by non-expert end-users is a major challenge many scientists face when converting their scientific technology into a real-life application. Currently, pattern recognition algorithms are the most frequently encountered signal data interpretation algorithms to close this gap, not in the least because of their straight-forward implementation via convenient software packages. Paradoxically, just because their implementation is so straight-forward, it becomes cumbersome to integrate the expert's domain-specific knowledge. In this work, a novel signal data interpretation approach is presented that uses this domain-specific knowledge as its fundament, thereby fully exploiting the unique expertise of the scientist. The new approach applies data preprocessing in an innovative way that transcends its usual purpose and is easy to translate into a software application. Multiple case studies illustrate the straight-forward application of the novel approach. Ultimately, the approach is highly suited for integration in various (bio)analytical applications that require interpretation of signal data.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000668000500108 Publication Date 2021-06-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.162 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.162
  Call Number UA @ admin @ c:irua:179417 Serial 8712
Permanent link to this record
 

 
Author Maso, L.; Trande, M.; Liberi, S.; Moro, G.; Daems, E.; Linciano, S.; Sobott, F.; Covaceuszach, S.; Cassetta, A.; Fasolato, S.; Moretto, L.M.; De Wael, K.; Cendron, L.; Angelini, A.
  Title Unveiling the binding mode of perfluorooctanoic acid to human serum albumin Type A1 Journal article
  Year (up) 2021 Publication Protein Science Abbreviated Journal Protein Sci
  Volume 30 Issue 4 Pages 830-841
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Perfluorooctanoic acid (PFOA) is a toxic compound that is absorbed and distributed throughout the body by noncovalent binding to serum proteins such as human serum albumin (hSA). Though the interaction between PFOA and hSA has been already assessed using various analytical techniques, a high resolution and detailed analysis of the binding mode is still lacking. We report here the crystal structure of hSA in complex with PFOA and a medium-chain saturated fatty acid (FA). A total of eight distinct binding sites, four occupied by PFOAs and four by FAs, have been identified. In solution binding studies confirmed the 4:1 PFOA-hSA stoichiometry and revealed the presence of one high and three low affinity binding sites. Competition experiments with known hSA-binding drugs allowed locating the high affinity binding site in sub-domain IIIA. The elucidation of the molecular basis of the interaction between PFOA and hSA might provide not only a better assessment of the absorption and elimination mechanisms of these compounds in vivo but also have implications for the development of novel molecular receptors for diagnostic and biotechnological applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000625392600001 Publication Date 2021-02-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0961-8368 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.523 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 2.523
  Call Number UA @ admin @ c:irua:176725 Serial 8714
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: