toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author (down) Bals, S.; Van Tendeloo, G.; Rijnders, G.; Blank, D.H.A.; Leca, V.; Salluzzo, M.
  Title Optimisation of superconducting thin films by TEM Type A1 Journal article
  Year 2002 Publication Physica: C : superconductivity Abbreviated Journal Physica C
  Volume 372/376 Issue part 2 Pages 711-714
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract High-resolution electron microscopy is used to study the initial growth of different REBa2CU3O7-5 thin films. In DyBa2CU3O7-5 ultra-thin films, deposited on TiO2 terminated SrTiO3, two different types of interface arrangements occur: bulk-SrO-TiO2-BaO-CuO-BaO-CuO2-Dy-CuO2-BaO-bulk and bulk-SrO-TiO2-BaO-CuO2-Dy-CuO2-BaO-CuO-BaO-bulk. This variable growth sequence is the origin of the presence of antiphase boundaries. In Nd1+xBa2-xCu3O7-5 thin films, antiphase boundaries tend to annihilate by the insertion of extra Nd-layers. This annihilation is correlated with the flat morphology of the film and the absence of growth spirals at the surface of the Nd-rich films. (C) 2002 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000178018800033 Publication Date 2002-08-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.404 Times cited 6 Open Access
  Notes Approved Most recent IF: 1.404; 2002 IF: 0.912
  Call Number UA @ lucian @ c:irua:54796 Serial 2485
Permanent link to this record
 

 
Author (down) Bals, S.; Van Aert, S.; Romero, C.P.; Lauwaet, K.; Van Bael, M.J.; Schoeters, B.; Partoens, B.; Yuecelen, E.; Lievens, P.; Van Tendeloo, G.
  Title Atomic scale dynamics of ultrasmall germanium clusters Type A1 Journal article
  Year 2012 Publication Nature communications Abbreviated Journal Nat Commun
  Volume 3 Issue 897 Pages 897
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000306099900024 Publication Date 2012-06-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 90 Open Access
  Notes Fwo; Iap; Iwt Approved Most recent IF: 12.124; 2012 IF: 10.015
  Call Number UA @ lucian @ c:irua:100340 Serial 183
Permanent link to this record
 

 
Author (down) Bals, S.; Kisielowski, C.; Croitoru, M.; Van Tendeloo, G.
  Title Tomography using annular dark field imaging in TEM Type A3 Journal article
  Year 2005 Publication Microscopy and microanalysis Abbreviated Journal
  Volume 11 Issue S Pages 2118-2119
  Keywords A3 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:54880 Serial 3672
Permanent link to this record
 

 
Author (down) Bals, S.; Kabius, B.; Haider, M.; Radmilovic, V.; Kisielowski, C.
  Title Annular dark field imaging in a TEM Type A1 Journal article
  Year 2004 Publication Solid state communications Abbreviated Journal Solid State Commun
  Volume 130 Issue 10 Pages 675-680
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Annular objective apertures are fabricated for a CM300 transmission electron microscope using a focused ion beam system. A central beam stop in the back focal plane of the objective lens of the microscope blocks all electrons scattered up to a semi-angle of approximately 20 mrad. In this manner, contributions to the image from Bragg scattering are largely reduced and the image contrast is sensitive to the atomic number Z. Experimentally, we find that single atom scattering cross sections measured with this technique are close to Rutherford scattering values. A comparison between this new method and STEM-HAADF shows that both techniques result in qualitatively similar images although the resolution of ADF-TEM is limited by contrast delocalization caused by the spherical aberration of the objective lens. This problem can be overcome by using an aberration corrected microscope.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000221489300007 Publication Date 2004-04-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.554 Times cited 43 Open Access
  Notes Approved Most recent IF: 1.554; 2004 IF: 1.523
  Call Number UA @ lucian @ c:irua:87584 Serial 132
Permanent link to this record
 

 
Author (down) Bals, S.; Goris, B.; Liz-Marzan, L.M.; Van Tendeloo, G.
  Title Three-dimensional characterization of noble-metal nanoparticles and their assemblies by electron tomography Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
  Volume 53 Issue 40 Pages 10600-10610
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract New developments in the field of nanomaterials drive the need for quantitative characterization techniques that yield information down to the atomic scale. In this Review, we focus on the three-dimensional investigations of metal nanoparticles and their assemblies by electron tomography. This technique has become a versatile tool to understand the connection between the properties and structure or composition of nanomaterials. The different steps of an electron tomography experiment are discussed and we show how quantitative three-dimensional information can be obtained even at the atomic scale.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000342761500006 Publication Date 2014-08-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited 58 Open Access OpenAccess
  Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261
  Call Number UA @ lucian @ c:irua:121093 Serial 3646
Permanent link to this record
 

 
Author (down) Bals, S.; Casavola, M.; van Huis, M.A.; Van Aert, S.; Batenburg, K.J.; Van Tendeloo, G.; Vanmaekelbergh, D.
  Title Three-dimensional atomic imaging of colloidal core-shell nanocrystals Type A1 Journal article
  Year 2011 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 11 Issue 8 Pages 3420-3424
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract Colloidal coreshell semiconductor nanocrystals form an important class of optoelectronic materials, in which the exciton wave functions can be tailored by the atomic configuration of the core, the interfacial layers, and the shell. Here, we provide a trustful 3D characterization at the atomic scale of a free-standing PbSe(core)CdSe(shell) nanocrystal by combining electron microscopy and discrete tomography. Our results yield unique insights for understanding the process of cation exchange, which is widely employed in the synthesis of coreshell nanocrystals. The study that we present is generally applicable to the broad range of colloidal heteronanocrystals that currently emerge as a new class of materials with technological importance.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos 000293665600062 Publication Date 2011-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 121 Open Access
  Notes Esteem 026019; Fwo Approved Most recent IF: 12.712; 2011 IF: 13.198
  Call Number UA @ lucian @ c:irua:91263 Serial 3643
Permanent link to this record
 

 
Author (down) Ball, J.M.; Schryvers, D.
  Title The analysis of macrotwins in NiAl martensite Type A1 Journal article
  Year 2003 Publication Journal de physique: 4 T2 – 10th International Conference on Martensitic Transformations, JUN 10-14, 2002, ESPOO, FINLAND Abbreviated Journal J Phys Iv
  Volume 112 Issue Part 1 Pages 159-162
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We present a theoretical study of macrotwins arising in cubic to tetragonal martensitic transformations. The results help to explain some features of such macrotwins observed in Ni65Al35.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Les Ulis Editor
  Language Wos 000186503200024 Publication Date 2008-08-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 11 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:103275 Serial 3569
Permanent link to this record
 

 
Author (down) Balashova, I.O.; Tolbin, A.Y.; Tarakanov, P.A.; Krot, A.R.; Fedorova, K., V; Sergeeva, I.A.; Trashin, S.A.; De Wael, K.; Pushkarev, V.E.; Koifman, M.O.; Ponomarev, G., V.
  Title A covalently linked dyad based on zinc phthalocyanine and methylpheophorbide α : synthetic and physicochemical study Type A1 Journal article
  Year 2021 Publication Macroheterocycles Abbreviated Journal
  Volume 14 Issue 1 Pages 40-50
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The first covalently linked conjugate of metal phthalocyaninate and chlorin e(6) derivative has been obtained by transesterification of alpha-ketomethyl ester in methylpheophorbide a with zinc(II) 2-(2-hydroxymethylbenzyloxy)-9(10),16(17),23(24)-tri-tert-butylphthalocyaninate under mild conditions. The dyad exhibits a panchromatic nature revealing both the phthalocyanine and pheophorbide derived bands in the UV-Vis absorption spectrum. The H-1 NMR spectroscopy data combined with theoretical calculations indicate the presence of spatial intramolecular interactions between the phthalocyanine, pheophorbide and spacer fragments of the dyad allowing to forecast its enhanced nonlinear optical properties, as well as the characteristic energy transfer from the excited pheophorbide subunit to the phthalocyanine core. Indeed, when excited in the UV-Vis range, the conjugate shows red fluorescence with the spectral maximum at 686 nm, which is close to the one of the initial zinc phthalocyaninate. Furthermore, the dyad effectively generates singlet oxygen and, in the presence of polyvinylpyrrolidone (PVP) as biocompatible solubilizer, forms stable micellar saline solutions with the particles ranged in size between 40 and 100 nm. These nanoparticles represent promising third-generation photosensitizing systems for application in theranostics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000659682000003 Publication Date 2021-06-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:179196 Serial 7386
Permanent link to this record
 

 
Author (down) Balaban, S.N.; Pokatilov, E.P.; Fomin, V.M.; Gladilin, V.N.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; van Rossum, M.; Sorée, B.
  Title Quantum transport in a cylindrical sub-0.1 μm silicon-based MOSFET Type A1 Journal article
  Year 2002 Publication Solid-State Electronics Abbreviated Journal Solid State Electron
  Volume 46 Issue Pages 435-444
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000174445000020 Publication Date 2002-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.58 Times cited 16 Open Access
  Notes Approved Most recent IF: 1.58; 2002 IF: 0.913
  Call Number UA @ lucian @ c:irua:40880 Serial 2791
Permanent link to this record
 

 
Author (down) Bal, K.M.; Neyts, E.C.
  Title On the time scale associated with Monte Carlo simulations Type A1 Journal article
  Year 2014 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
  Volume 141 Issue 20 Pages 204104
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Uniform-acceptance force-bias Monte Carlo (fbMC) methods have been shown to be a powerful technique to access longer timescales in atomistic simulations allowing, for example, phase transitions and growth. Recently, a new fbMC method, the time-stamped force-bias Monte Carlo (tfMC) method, was derived with inclusion of an estimated effective timescale; this timescale, however, does not seem able to explain some of the successes the method. In this contribution, we therefore explicitly quantify the effective timescale tfMC is able to access for a variety of systems, namely a simple single-particle, one-dimensional model system, the Lennard-Jones liquid, an adatom on the Cu(100) surface, a silicon crystal with point defects and a highly defected graphene sheet, in order to gain new insights into the mechanisms by which tfMC operates. It is found that considerable boosts, up to three orders of magnitude compared to molecular dynamics, can be achieved for solid state systems by lowering of the apparent activation barrier of occurring processes, while not requiring any system-specific input or modifications of the method. We furthermore address the pitfalls of using the method as a replacement or complement of molecular dynamics simulations, its ability to explicitly describe correct dynamics and reaction mechanisms, and the association of timescales to MC simulations in general.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000345641400005 Publication Date 2014-11-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.965 Times cited 26 Open Access
  Notes Approved Most recent IF: 2.965; 2014 IF: 2.952
  Call Number UA @ lucian @ c:irua:120667 Serial 2459
Permanent link to this record
 

 
Author (down) Bal, K.M.; Neyts, E.C.
  Title Merging Metadynamics into Hyperdynamics: Accelerated Molecular Simulations Reaching Time Scales from Microseconds to Seconds Type A1 Journal article
  Year 2015 Publication Journal of chemical theory and computation Abbreviated Journal J Chem Theory Comput
  Volume 11 Issue 11 Pages 4545-4554
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The hyperdynamics method is a powerful tool to simulate slow processes at the atomic level. However, the construction of an optimal hyperdynamics potential is a task that is far from trivial. Here, we propose a generally applicable implementation of the hyperdynamics algorithm, borrowing two concepts from metadynamics. First, the use of a collective variable (CV) to represent the accelerated dynamics gives the method a very large flexibility and simplicity. Second, a metadynamics procedure can be used to construct a suitable history-dependent bias potential on-the-fly, effectively turning the algorithm into a self-learning accelerated molecular dynamics method. This collective variable-driven hyperdynamics (CVHD) method has a modular design: both the local system properties on which the bias is based, as well as the characteristics of the biasing method itself, can be chosen to match the needs of the considered system. As a result, system-specific details are abstracted from the biasing algorithm itself, making it extremely versatile and transparent. The method is tested on three model systems: diffusion on the Cu(001) surface and nickel-catalyzed methane decomposition, as examples of reactive processes with a bond-length-based CV, and the folding of a long polymer-like chain, using a set of dihedral angles as a CV. Boost factors up to 109, corresponding to a time scale of seconds, could be obtained while still accurately reproducing correct dynamics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000362921700004 Publication Date 2015-09-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1549-9618 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.245 Times cited 41 Open Access
  Notes K.M.B. is funded as Ph.D. fellow (aspirant) of the FWOFlanders (Fund for Scientific Research-Flanders), Grant No. 11 V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), funded by the Hercules Foundation and the Flemish Government−Department EWI. Approved Most recent IF: 5.245; 2015 IF: 5.498
  Call Number c:irua:128183 Serial 3991
Permanent link to this record
 

 
Author (down) Bal, K.M.; Neyts, E.C.
  Title Direct observation of realistic-temperature fuel combustion mechanisms in atomistic simulations Type A1 Journal article
  Year 2016 Publication Chemical science Abbreviated Journal Chem Sci
  Volume 7 Issue 7 Pages 5280-5286
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Atomistic simulations can in principle provide an unbiased description of all mechanisms, intermediates, and products of complex chemical processes. However, due to the severe time scale limitation of conventional simulation techniques, unrealistically high simulation temperatures are usually applied, which are a poor approximation of most practically relevant low-temperature applications. In this work, we demonstrate the direct observation at the atomic scale of the pyrolysis and oxidation of n-dodecane at temperatures as low as 700 K through the use of a novel simulation technique, collective variable-driven hyperdynamics (CVHD). A simulated timescale of up to 39 seconds is reached. Product compositions and dominant mechanisms are found to be strongly temperature-dependent, and are consistent with experiments and kinetic models. These simulations provide a first atomic-level look at the full dynamics of the complicated fuel combustion process at industrially relevant temperatures and time scales, unattainable by conventional molecular dynamics simulations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000380893900059 Publication Date 2016-05-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.668 Times cited 22 Open Access
  Notes K. M. B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientic Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), funded by the Hercules Foundation and the Flemish Government – department EWI. The authors would also like to thank S. Banerjee for assisting with the interpretation of the experimental results. Approved Most recent IF: 8.668
  Call Number c:irua:134577 c:irua:135670 Serial 4105
Permanent link to this record
 

 
Author (down) Bal, K.M.; Neyts, E.C.
  Title Modelling molecular adsorption on charged or polarized surfaces: a critical flaw in common approaches Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 20 Issue 13 Pages 8456-8459
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A number of recent computational material design studies based on density functional theory (DFT) calculations have put forward a new class of materials with electrically switchable chemical characteristics that can be exploited in the development of tunable gas storage and electrocatalytic applications. We find systematic flaws in almost every computational study of gas adsorption on polarized or charged surfaces, stemming from an improper and unreproducible treatment of periodicity, leading to very large errors of up to 3 eV in some cases. Two simple corrective procedures that lead to consistent results are proposed, constituting a crucial course correction to the research in the field.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000428779700007 Publication Date 2018-03-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 8 Open Access OpenAccess
  Notes K. M. B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation – Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government – department EWI. Approved Most recent IF: 4.123
  Call Number PLASMANT @ plasmant @c:irua:150357 Serial 4916
Permanent link to this record
 

 
Author (down) Bal, K.M.; Neyts, E.C.
  Title Overcoming Old Scaling Relations and Establishing New Correlations in Catalytic Surface Chemistry: Combined Effect of Charging and Doping Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 123 Issue 10 Pages 6141-6147
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Optimization of catalytic materials for a given application is greatly constrained by linear scaling relations. Recently, however, it has been demonstrated that it is possible to reversibly modulate the chemisorption of molecules on nanomaterials by charging (i.e., injection or removal of electrons) and hence reversibly and selectively modify catalytic activity beyond structure−activity correlations. The fundamental physical relation between the properties of the material, the charging process, and the chemisorption energy, however, remains unclear, and a systematic exploration and optimization of charge-switchable sorbent materials is not yet possible. Using hybrid DFT calculations of CO2 chemisorption on hexagonal boron nitride nanosheets with several types of defects and dopants, we here reveal the existence of fundamental correlations between the electron affinity of a material and charge-induced chemisorption, show how defect engineering can be used to modulate the strength and efficiency of the adsorption process, and demonstrate that excess electrons stabilize many topological defects. We then show how these insights could be exploited in the development of new electrocatalytic materials and the synthesis of doped nanomaterials. Moreover, we demonstrate that calculated chemical properties of charged materials are highly sensitive to the employed computational methodology because of the self-interaction error, which underlines the theoretical challenge posed by such systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000461537400035 Publication Date 2019-03-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access: Available from 21.02.2020
  Notes Fonds Wetenschappelijk Onderzoek, 11V8915N ; Approved Most recent IF: 4.536
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158117 Serial 5160
Permanent link to this record
 

 
Author (down) Bal, K.M.; Neyts, E.C.
  Title Quantifying the impact of vibrational nonequilibrium in plasma catalysis: insights from a molecular dynamics model of dissociative chemisorption Type A1 Journal Article;plasma catalysis
  Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
  Volume 54 Issue 39 Pages 394004
  Keywords A1 Journal Article;plasma catalysis; vibrational nonequilibrium; dissociative chemisorption; free energy barriers; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
  Abstract The rate, selectivity and efficiency of plasma-based conversion processes is strongly affected by nonequilibrium phenomena. High concentrations of vibrationally excited molecules are such a plasma-induced effect. It is frequently assumed that vibrationally excited molecules are important in plasma catalysis because their presence lowers the apparent activation energy of dissociative chemisorption reactions and thus increases the conversion rate. A detailed atomic-level understanding of vibrationally stimulated catalytic reactions in the context of plasma catalysis is however lacking. Here, we couple a recently developed statistical model of a plasma-induced vibrational nonequilibrium to molecular dynamics simulations, enhanced sampling methods, and machine learning techniques. We quantify the impact of a vibrational nonequilibrium on the dissociative chemisorption barrier of H2 and CH4 on nickel catalysts over a wide range of vibrational temperatures. We investigate the effect of surface structure and compare the role of different vibrational modes of methane in the dissociation process. For low vibrational temperatures, very high vibrational efficacies are found, and energy in bend vibrations appears to dominate the dissociation of methane. The relative impact of vibrational nonequilibrium is much higher on terrace sites than on surface steps. We then show how our simulations can help to interpret recent experimental results, and suggest new paths to a better understanding of plasma catalysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000674464100001 Publication Date 2021-09-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek, 12ZI420N ; K M B was funded as a junior postdoctoral fellow of the FWO (Research Foundation—Flanders), Grant 12ZI420N. The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. HLDA calculations were performed with a script provided by G Piccini. Approved Most recent IF: 2.588
  Call Number PLASMANT @ plasmant @c:irua:179830 Serial 6808
Permanent link to this record
 

 
Author (down) Bal, K.M.; Neyts, E.C.
  Title Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory Type A1 Journal article
  Year 2022 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
  Volume 157 Issue 18 Pages 184113-10
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We calculate bubble nucleation rates in a Lennard-Jones fluid through explicit molecular dynamics simulations. Our approach-based on a recent free energy method (dubbed reweighted Jarzynski sampling), transition state theory, and a simple recrossing correction-allows us to probe a fairly wide range of rates in several superheated and cavitation regimes in a consistent manner. Rate predictions from this approach bridge disparate independent literature studies on the same model system. As such, we find that rate predictions based on classical nucleation theory, direct brute force molecular dynamics simulations, and seeding are consistent with our approach and one another. Published rates derived from forward flux sampling simulations are, however, found to be outliers. This study serves two purposes: First, we validate the reliability of common modeling techniques and extrapolation approaches on a paradigmatic problem in materials science and chemical physics. Second, we further test our highly generic recipe for rate calculations, and establish its applicability to nucleation processes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000885260600002 Publication Date 2022-11-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.4 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.4
  Call Number UA @ admin @ c:irua:192076 Serial 7266
Permanent link to this record
 

 
Author (down) Bal, K.M.; Huygh, S.; Bogaerts, A.; Neyts, E.C.
  Title Effect of plasma-induced surface charging on catalytic processes: application to CO2activation Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
  Volume 27 Issue 2 Pages 024001
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Understanding the nature and effect of the multitude of plasma–surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M=Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000424520100001 Publication Date 2018-02-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.302 Times cited 19 Open Access OpenAccess
  Notes KMB is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation—Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government— department EWI. Approved Most recent IF: 3.302
  Call Number PLASMANT @ plasmant @c:irua:149285 Serial 4813
Permanent link to this record
 

 
Author (down) Bal, K.M.; Fukuhara, S.; Shibuta, Y.; Neyts, E.C.
  Title Free energy barriers from biased molecular dynamics simulations Type A1 Journal article
  Year 2020 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
  Volume 153 Issue 11 Pages 114118
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Atomistic simulation methods for the quantification of free energies are in wide use. These methods operate by sampling the probability density of a system along a small set of suitable collective variables (CVs), which is, in turn, expressed in the form of a free energy surface (FES). This definition of the FES can capture the relative stability of metastable states but not that of the transition state because the barrier height is not invariant to the choice of CVs. Free energy barriers therefore cannot be consistently computed from the FES. Here, we present a simple approach to calculate the gauge correction necessary to eliminate this inconsistency. Using our procedure, the standard FES as well as its gauge-corrected counterpart can be obtained by reweighing the same simulated trajectory at little additional cost. We apply the method to a number of systems—a particle solvated in a Lennard-Jones fluid, a Diels–Alder reaction, and crystallization of liquid sodium—to demonstrate its ability to produce consistent free energy barriers that correctly capture the kinetics of chemical or physical transformations, and discuss the additional demands it puts on the chosen CVs. Because the FES can be converged at relatively short (sub-ns) time scales, a free energy-based description of reaction kinetics is a particularly attractive option to study chemical processes at more expensive quantum mechanical levels of theory.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000574665600004 Publication Date 2020-09-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.4 Times cited Open Access
  Notes Japan Society for the Promotion of Science, 19H02415 18J22727 ; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; This work was supported, in part, by a Grant-in-Aid for Scientific Research (B) (Grant No. 19H02415) and Grant-in-Aid for a JSPS Research Fellow (Grant No. 18J22727) from the Japan Society for the Promotion of Science (JSPS), Japan. K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation – Flanders), Grant No. 12ZI420N. S.F. was supported by JSPS through the Program for Leading Graduate Schools (MERIT). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. The authors are grateful to Pablo Piaggi for making the pair entropy CV code publicly available. Approved Most recent IF: 4.4; 2020 IF: 2.965
  Call Number PLASMANT @ plasmant @c:irua:172456 Serial 6420
Permanent link to this record
 

 
Author (down) Bal, K.M.; Cautereels, J.; Blockhuys, F.
  Title Structures and spectroscopic properties of sulfur-nitrogen-pnictogen chains : R2P-N=S=N-PR2 and R2P-N=S=N-AsR2 Type A1 Journal article
  Year 2017 Publication Journal of molecular structure Abbreviated Journal J Mol Struct
  Volume 1132 Issue Pages 102-108
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The conformational and configurational preferences of Me2PNSNPMe2 (3) and Me2PNSNAsMe2 (4) have been identified using quantum chemical calculations at the DFT/B3LYP/6-311+G* level of theory. An approach in which energetic, structural (geometries and bond orders), electronic (analysis of the electron density) and spectroscopic properties are combined leads to the conclusion that these sulfur-nitrogen-pnictogen chains share many of the properties of their chalcogen-nitrogen analogues but that the through-space intramolecular interactions favouring the Z,Z configuration are even weaker than in these latter compounds. The results of this analysis also lead to an unambiguous assignment of the variable-temperature 31P and 15N NMR spectra of these compounds and their structures both in solution and in the solid state.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000393254400015 Publication Date 2016-08-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-2860 ISBN Additional Links UA library record; WoS full record
  Impact Factor 1.753 Times cited Open Access Not_Open_Access: Available from 03.10.2019
  Notes Approved Most recent IF: 1.753
  Call Number UA @ lucian @ c:irua:145533 Serial 4726
Permanent link to this record
 

 
Author (down) Bal, K.M.; Bogaerts, A.; Neyts, E.C.
  Title Ensemble-Based Molecular Simulation of Chemical Reactions under Vibrational Nonequilibrium Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
  Volume 11 Issue 2 Pages 401-406
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We present an approach to incorporate the effect of vibrational nonequilibrium in molecular dynamics (MD) simulations. A perturbed canonical ensemble, in which selected modes are excited to higher temperature while all others remain equilibrated at low temperature, is simulated by applying a specifically tailored bias potential. Our method can be readily applied to any (classical or quantum mechanical) MD setup at virtually no additional computational cost and allows the study of reactions of vibrationally excited molecules in nonequilibrium environments such as plasmas. In combination with enhanced sampling methods, the vibrational efficacy and mode selectivity of vibrationally stimulated reactions can then be quantified in terms of chemically relevant observables, such as reaction rates and apparent free energy barriers. We first validate our method for the prototypical hydrogen exchange reaction and then show how it can capture the effect of vibrational excitation on a symmetric SN2 reaction and radical addition on CO2.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000508473400008 Publication Date 2020-01-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.7 Times cited Open Access
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; Departement Economie, Wetenschap en Innovatie van de Vlaamse Overheid; K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation − Flanders), Grant 12ZI420N, and through a TOP-BOF research project of the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government− department EWI. Approved Most recent IF: 5.7; 2020 IF: 9.353
  Call Number PLASMANT @ plasmant @c:irua:165587 Serial 5442
Permanent link to this record
 

 
Author (down) Bal, K.M.
  Title Nucleation rates from small scale atomistic simulations and transition state theory Type A1 Journal article
  Year 2021 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
  Volume 155 Issue 14 Pages 144111
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The evaluation of nucleation rates from molecular dynamics trajectories is hampered by the slow nucleation time scale and impact of finite size effects. Here, we show that accurate nucleation rates can be obtained in a very general fashion relying only on the free energy barrier, transition state theory, and a simple dynamical correction for diffusive recrossing. In this setup, the time scale problem is overcome by using enhanced sampling methods, in casu metadynamics, whereas the impact of finite size effects can be naturally circumvented by reconstructing the free energy surface from an appropriate ensemble. Approximations from classical nucleation theory are avoided. We demonstrate the accuracy of the approach by calculating macroscopic rates of droplet nucleation from argon vapor, spanning 16 orders of magnitude and in excellent agreement with literature results, all from simulations of very small (512 atom) systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000755502100008 Publication Date 2021-09-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.965 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 2.965
  Call Number UA @ admin @ c:irua:184937 Serial 8320
Permanent link to this record
 

 
Author (down) Bal, K.M.
  Title Reweighted Jarzynski sampling : acceleration of rare events and free energy calculation with a bias potential learned from nonequilibrium work Type A1 Journal article
  Year 2021 Publication Journal Of Chemical Theory And Computation Abbreviated Journal J Chem Theory Comput
  Volume 17 Issue 11 Pages 6766-6774
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We introduce a simple enhanced sampling approach for the calculation of free energy differences and barriers along a one-dimensional reaction coordinate. First, a small number of short nonequilibrium simulations are carried out along the reaction coordinate, and the Jarzynski equality is used to learn an approximate free energy surface from the nonequilibrium work distribution. This free energy estimate is represented in a compact form as an artificial neural network and used as an external bias potential to accelerate rare events in a subsequent molecular dynamics simulation. The final free energy estimate is then obtained by reweighting the equilibrium probability distribution of the reaction coordinate sampled under the influence of the external bias. We apply our reweighted Jarzynski sampling recipe to four processes of varying scales and complexities.spanning chemical reaction in the gas phase, pair association in solution, and droplet nucleation in supersaturated vapor. In all cases, we find reweighted Jarzynski sampling to be a very efficient strategy, resulting in rapid convergence of the free energy to high precision.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000718183600008 Publication Date 2021-10-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1549-9618 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.245 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 5.245
  Call Number UA @ admin @ c:irua:184676 Serial 8479
Permanent link to this record
 

 
Author (down) Bakalov, P.; Esfahani, D.N.; Covaci, L.; Peeters, F.M.; Tempere, J.; Locquet, J.-P.
  Title Electric-field-driven Mott metal-insulator transition in correlated thin films : an inhomogeneous dynamical mean-field theory approach Type A1 Journal article
  Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 93 Issue 93 Pages 165112
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
  Abstract Simulations are carried out based on the dynamical mean-field theory (DMFT) in order to investigate the properties of correlated thin films for various values of the chemical potential, temperature, interaction strength, and applied transverse electric field. Application of a sufficiently strong field to a thin film at half filling leads to the appearance of conducting regions near the surfaces of the film, whereas in doped slabs the application of a field leads to a conductivity enhancement on one side of the film and a gradual transition to the insulating state on the opposite side. In addition to the inhomogeneous DMFT, a local density approximation (LDA) is considered in which the particle density n, quasiparticle residue Z, and spectral weight at the Fermi level A(ω=0) of each layer are approximated by a homogeneous bulk environment. A systematic comparison between the two approaches reveals that the less expensive LDA results are in good agreement with the DMFT approach, except close to the metal-to-insulator transition points and in the layers immediately at the film surfaces. LDA values for n are overall more reliable than those for Z and A(ω=0). The hysteretic behavior (memory effect) characteristic of the bulk doping driven Mott transition persists in the slab.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000373572700002 Publication Date 2016-04-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 5 Open Access
  Notes ; This work was partially funded by the Flemish Fund for Scientific Research (FWO Belgium) under FWO Grant No. G.0520.10 and the joint FWF (Austria)-FWO Grant No. GOG6616N, and by the SITOGA FP7 project. Most of the calculations were performed on KU Leuven's ThinKing HPC cluster provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:132872 Serial 4167
Permanent link to this record
 

 
Author (down) Bai, J.; Wang, J.T.-W.; Rubio, N.; Protti, A.; Heidari, H.; Elgogary, R.; Southern, P.; Al-Jamal, W.' T.; Sosabowski, J.; Shah, A.M.; Bals, S.; Pankhurst, Q.A.; Al-Jamal, K.T.
  Title Triple-Modal Imaging of Magnetically-Targeted Nanocapsules in Solid TumoursIn Vivo Type A1 Journal article
  Year 2016 Publication Theranostics Abbreviated Journal Theranostics
  Volume 6 Issue 6 Pages 342-356
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Triple-modal imaging magnetic nanocapsules, encapsulating hydrophobic superparamagnetic iron oxide nanoparticles, are formulated and used to magnetically target solid tumours after intravenous administration in tumour-bearing mice. The engineered magnetic polymeric nanocapsules m-NCs are ~200 nm in size with negative Zeta potential and shown to be spherical in shape. The loading efficiency of superparamagnetic iron oxide nanoparticles in the m-NC was ~100%. Up to ~3- and ~2.2-fold increase in tumour uptake at 1 and 24 h was achieved, when a static magnetic field was applied to the tumour for 1 hour. m-NCs, with multiple imaging probes (e.g. indocyanine green, superparamagnetic iron oxide nanoparticles and indium-111), were capable of triple-modal imaging (fluorescence/magnetic resonance/nuclear imaging) in vivo. Using triple-modal imaging is to overcome the intrinsic limitations of single modality imaging and provides complementary information on the spatial distribution of the nanocarrier within the tumour. The significant findings of this study could open up new research perspectives in using novel magnetically-responsive nanomaterials in magnetic-drug targeting combined with multi-modal imaging.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000377797200005 Publication Date 2015-12-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1838-7640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.712 Times cited 54 Open Access OpenAccess
  Notes The authors would like to thank Prof Robert Hider (King's College London) for useful discussion on the chemical functionalization of the polymers, Mr William Luckhurst (King's College London) on the technical help of AFM measurements and Mr Andrew Cakebread (King's College London) on his technical help of ICP-MS measurements. J.B. acknowledges funding from King's-China Scholarship Council (CSC). J.W. and N.R. acknowledge funding from Biotechnology and Biological Sciences Research Council (BB/J008656/1) and Associated International Cancer Research (12-1054). K.T.AJ. acknowledges funding from EU FP7-ITN Marie-Curie Network programme RADDEL (290023). S.B. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS, and the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 8.712
  Call Number c:irua:130058 Serial 3995
Permanent link to this record
 

 
Author (down) Bahrami, F.; Hammad, M.; Fivel, M.; Huet, B.; D'Haese, C.; Ding, L.; Nysten, B.; Idrissi, H.; Raskin, J.P.; Pardoen, T.
  Title Single layer graphene controlled surface and bulk indentation plasticity in copper Type A1 Journal article
  Year 2021 Publication International Journal Of Plasticity Abbreviated Journal Int J Plasticity
  Volume 138 Issue Pages 102936
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The impact of graphene reinforcement on the mechanical properties of metals has been a subject of intense investigation over the last decade in surface applications to mitigate the impact of tribological loadings or for strengthening purposes when dispersed into a bulk material. Here, the effect on the plastic indentation response of a single graphene layer grown on copper is analyzed for two configurations: one with graphene at the surface, the other with graphene sandwiched under a 100 nm thick copper cap layer. Nanoindentation under both displacement and load control conditions show both earlier and shorter pop-in excursions compared to systems without graphene. Atomic force microscopy reveals much smoother pile-ups with no slip traces in the presence of a surface graphene layer. The configuration with the intercalated graphene layer appears as an ideal elementary system to address bulk hardening mechanisms by indentation testing. Transmission electron microscopy (TEM) cross-sections below indents show more diffuse and homogeneous dislocation activity in the presence of graphene. 3D dislocation dynamics simulations allow unraveling of the origin of these 3D complex phenomena and prove that the collective dislocation mechanisms are dominantly controlled by the strong back stress caused by the graphene barrier. These results provide a quantitative understanding of the impact of graphene on dislocation mechanisms for both surface and bulk applications, but with an impact that is not as large as anticipated from other studies or general literature claims.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000623869800001 Publication Date 2021-01-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0749-6419 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.702 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 5.702
  Call Number UA @ admin @ c:irua:176729 Serial 6735
Permanent link to this record
 

 
Author (down) Bagiński, M.; Pedrazo-Tardajos, A.; Altantzis, T.; Tupikowska, M.; Vetter, A.; Tomczyk, E.; Suryadharma, R.N.S.; Pawlak, M.; Andruszkiewicz, A.; Górecka, E.; Pociecha, D.; Rockstuhl, C.; Bals, S.; Lewandowski, W.
  Title Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano
  Volume Issue Pages acsnano.0c09746
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
  Abstract The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV−vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV−vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000634569100101 Publication Date 2021-02-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 10 Open Access OpenAccess
  Notes Ministerstwo Nauki i Szkolnictwa Wyzszego, 0112/DIA/2019/48 ; European Commission, 731019 E171000009 (EUSMI) ; Narodowe Centrum Nauki, 2016/21/N/ST5/03356 ; Deutsche Forschungsgemeinschaft, RO 3640/12-1 ; Fundacja na rzecz Nauki Polskiej, First TEAM2016–2/15 ; European Research Council, 815128 (REALNANO) ; sygma; Approved Most recent IF: 13.942
  Call Number EMAT @ emat @c:irua:175872 Serial 6673
Permanent link to this record
 

 
Author (down) Bagherpour, A.; Baral, P.; Colla, M.-S.; Orekhov, A.; Idrissi, H.; Haye, E.; Pardoen, T.; Lucas, S.
  Title Tailoring Mechanical Properties of a-C:H:Cr Coatings Type A1 Journal Article
  Year 2023 Publication Coatings Abbreviated Journal Coatings
  Volume 13 Issue 12 Pages 2084
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
  Abstract The development of coatings with tunable performances is critical to meet a wide range of technological applications each one with different requirements. Using the plasma-enhanced chemical vapor deposition (PECVD) process, scientists can create hydrogenated amorphous carbon coatings doped with metal (a-C:H:Me) with a broad range of mechanical properties, varying from those resembling polymers to ones resembling diamond. These diverse properties, without clear relations between the different families, make the material selection and optimization difficult but also very rich. An innovative approach is proposed here based on projected performance indices related to fracture energy, strength, and stiffness in order to classify and optimize a-C:H:Me coatings. Four different a-C:H:Cr coatings deposited by PECVD with Ar/C2H2 discharge under different bias voltage and pressures are investigated. A path is found to produce coatings with a selective critical energy release rate between 5–125 J/m2 without compromising yield strength (1.6–2.7 GPa) and elastic limit (≈0.05). Finally, fine-tuned coatings are categorized to meet desired applications under different testing conditions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001136013600001 Publication Date 2023-12-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2079-6412 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Walloon region under the PDR FNRS, C 62/5—PDR/OL 33677636 ; Belgian National Fund for Scientific Research, CDR—J.0113.20 ; National Fund for Scientific Reaserch; Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:202390 Serial 8982
Permanent link to this record
 

 
Author (down) Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M.; Kim, D.; Mortazavi, B.
  Title Electro-optical and mechanical properties of Zinc antimonide (ZnSb) monolayer and bilayer : a first-principles study Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci
  Volume 540 Issue 1 Pages 148289
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Latest synthesis of ZnSb monolayer, encouraged us to conduct density functional theory (DFT) simulations in order to study the structural, magnetic, electronic/optical and mechanical features of the sp2-hybridized honeycomb ZnSb monolayer (ML-ZnSb) and bilayer (BL-ZnSb). Our structural optimizations reveal that ML-ZnSb is an anisotropic hexagonal structure while BL-ZnSb is composed of shifted ZnSb layers which are covalently binded. ML-ZnSb is found to be a ferromagnetic metal, in contrast BL-ZnSb has a non-magnetic indirect band gap semiconducting ground state. For the in-plane polarization, first absorption peak of ML-ZnSb and BL-ZnSb confirm the absorbance of the light within the infrared domain wand visible range, respectively. Moreover, our results reveal that the layer-layer chemical bonding in BL-ZnSb significantly enhances the mechanical response of ML-ZnSb whose in-plane stiness is the smallest among all 2D materials (2DM). Notably, the strong in-plane anisotropy of ML-ZnSb in its stiness reduces in BL-ZnSb.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000599883200005 Publication Date 2020-11-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.387 Times cited 1 Open Access Not_Open_Access
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). Computational resources were provided by the Flemish Supercomputer Center (VSC). M.Y. is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. B.M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 3.387
  Call Number UA @ admin @ c:irua:174956 Serial 6688
Permanent link to this record
 

 
Author (down) Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M.
  Title Electro-optical properties of monolayer and bilayer boron-doped C₃N: Tunable electronic structure via strain engineering and electric field Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon
  Volume 168 Issue Pages 220-229
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract In this work, the structural, electronic and optical properties of monolayer and bilayer of boron doped C3N are investigated by means of density functional theory-based first-principles calculations. Our results show that with increasing the B dopant concentration from 3.1% to 12.5% in the hexagonal pattern, an indirect-to-direct band gap (0.8 eV) transition occurs. Furthermore, we study the effect of electric field and strain on the B doped C3N bilayer (B-C3N@2L). It is shown that by increasing E-field strength from 0.1 to 0.6V/angstrom, the band gap displays almost a linear decreasing trend, while for the > 0.6V/angstrom, we find dual narrow band gap with of 50 meV (in parallel E-field) and 0.4 eV (in antiparallel E-field). Our results reveal that in-plane and out-of-plane strains can modulate the band gap and band edge positions of the B-C3N@2L. Overall, we predict that B-C3N@2L is a new platform for the study of novel physical properties in layered two-dimensional materials (2DM) which may provide new opportunities to realize high-speed low-dissipation devices. (C) 2020 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000565900900008 Publication Date 2020-07-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.9 Times cited 21 Open Access
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2B2011989). M. Yagmurcukardes acknowledges Flemish Science Foundation (FWO-VI) by a postdoctoral fellowship. ; Approved Most recent IF: 10.9; 2020 IF: 6.337
  Call Number UA @ admin @ c:irua:171914 Serial 6500
Permanent link to this record
 

 
Author (down) Bafekry, A.; Yagmurcukardes, M.; Akgenc, B.; Ghergherehchi, M.; Nguyen, C.
  Title Van der Waals heterostructures of MoS₂ and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC₃, C₃N, C₃N₄ and C₄N₃) nanosheets: a first-principles study Type A1 Journal article
  Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
  Volume Issue Pages 1-10
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract In this work, we extensively investigate the structural and electronic properties of van der Waals heterostructures (HTs) constructed by MoS${2}$/$BC3$, MoS${2}$/$C3N$, MoS${2}$/$C3N4$, MoS${2}$/$C4N3$ and those using Janus MoSSe instead of MoS$2$ by performing density functional theory calculations. The electronic band structure calculations and the corresponding partial density of states reveal that the significant changes are driven by quite strong layer-layer interaction between the constitutive layers. Our results show that although all monolayers are semiconductors as free-standing layers, the MoS${2}$/$C3N$ and MoS${2}$/$C4N3$ bilayer HTs display metallic behavior as a consequence of transfer of charge carriers between two constituent layers. In addition, it is found that in MoSSe/$C3N$ bilayer HT, the degree of metallicity is affected by the interface chalcogen atom type when Se atoms are facing to $C3N$ layer, the overlap of the bands around the Fermi level is smaller. Moreover, the half-metallic magnetic $C4N3$ is shown to form magnetic half-metallic trilayer HT with MoS$2$ independent of the stacking sequence, i.e. whether it is sandwiched or two $C4N3$ layer encapsulate MoS$2$ layer. We further analyze the trilayer HTs in which MoS$2$ is encapsulated by two different monolayers and it is revealed that at least with one magnetic monolayer, it is possible to construct a magnetic trilayer. While the trilayer of $C4N3$/MoS${2}$/$BC3$ and $C4N3$/MoS${2}$/$C3N4$ exhibit half-metallic characteristics, $C4N3$/MoS${_2}$/$C3$N possesses a magnetic metallic ground state. Overall, our results reveal that holly structures of BCN crystals are suitable for heterostructure formation even over van der Waals type interaction which significantly changes electronic nature of the constituent layers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000543344800001 Publication Date 2020-04-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.4 Times cited Open Access
  Notes Approved Most recent IF: 3.4; 2020 IF: 2.588
  Call Number UA @ admin @ c:irua:169754 Serial 6651
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: