toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Van Tendeloo, G.; Richard, O.; Schuddinck, W.; Hervieu, M.
  Title (up) Fine structure of CMR perovskites by HREM and CBEM Type A1 Journal article
  Year 1998 Publication Electron microscopy: vol. 1 Abbreviated Journal
  Volume Issue Pages 383-384
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000077017600178 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:25674 Serial 1194
Permanent link to this record
 

 
Author Freire, J.A.K.; Matulis, A.; Peeters, F.M.; Freire, V.N.; Farias, G.A.
  Title (up) Fine structure of excitons in a quantum well in the presence of a non-homogeneous magnetic field Type A1 Journal article
  Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 62 Issue Pages 7316-7324
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000089413500083 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 14 Open Access
  Notes Approved Most recent IF: 3.836; 2000 IF: NA
  Call Number UA @ lucian @ c:irua:34353 Serial 1195
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Elmurodov, A.K.; Peeters, F.M.; Vodolazov, D.Y.
  Title (up) Finite-size effect on the resistive state in a mesoscopic type-II superconducting stripe Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
  Volume 79 Issue 17 Pages 174506,1-174506,6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Within the time-dependent Ginzburg-Landau (TDGL) theory we studied the creation of phase-slip lines and the interplay with a vortex lattice in a finite-length superconducting thin stripe with finite-size normal metal leads. In zero magnetic field and with increasing transport current phase-slip lines appear across the sample leading to distinct jumps in the current-voltage characteristics. When a magnetic field is applied, the moving vortex lattice becomes rearranged by the external current and fast and slow moving vortex channels are formed. Curved vortex channels are observed near the normal contacts. We found the remarkable result that at small applied magnetic field the normal-state transition current is increased as compared to the one at zero magnetic field. This effect is more pronounced for larger values of the parameter in the TDGL formalism. This unusual field-induced increase in the critical current is a consequence of the nonuniform distribution of the current in the sample.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000266501100096 Publication Date 2009-05-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 36 Open Access
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
  Call Number UA @ lucian @ c:irua:77398 Serial 1196
Permanent link to this record
 

 
Author Klimin, S.N.; Tempere, J.; Verhelst, N.; Milošević, M.V.
  Title (up) Finite-temperature vortices in a rotating Fermi gas Type A1 Journal article
  Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A
  Volume 94 Issue 94 Pages 023620
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
  Abstract Vortices and vortex arrays have been used as a hallmark of superfluidity in rotated, ultracold Fermi gases. These superfluids can be described in terms of an effective field theory for a macroscopic wave function representing the field of condensed pairs, analogous to the Ginzburg-Landau theory for superconductors. Here we establish how rotation modifies this effective field theory, by rederiving it starting from the action of Fermi gas in the rotating frame of reference. The rotation leads to the appearance of an effective vector potential, and the coupling strength of this vector potential to the macroscopic wave function depends on the interaction strength between the fermions, due to a renormalization of the pair effective mass in the effective field theory. The mass renormalization derived here is in agreement with results of functional renormalization-group theory. In the extreme Bose-Einstein condensate regime, the pair effective mass tends to twice the fermion mass, in agreement with the physical picture of a weakly interacting Bose gas of molecular pairs. Then we use our macroscopic-wave-function description to study vortices and the critical rotation frequencies to form them. Equilibrium vortex state diagrams are derived and they are in good agreement with available results of the Bogoliubov-de Gennes theory and with experimental data.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y. Editor
  Language Wos 000381473100001 Publication Date 2016-08-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9934 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.925 Times cited 6 Open Access
  Notes ; We are grateful to G. C. Strinati and H. Warringa for valuable discussions. This research was supported by the Flemish Research Foundation Projects No. G.0115.12N, No. G.0119.12N, No. G.0122.12N, and No. G.0429.15N, by the Scientific Research Network of the Flemish Research Foundation, Grant No. WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved Most recent IF: 2.925
  Call Number UA @ lucian @ c:irua:135686 Serial 4304
Permanent link to this record
 

 
Author Klimin, S.N.; Tempère, J.; Misko, V.R.; Wouters, M.
  Title (up) Finite-temperature Wigner solid and other phases of ripplonic polarons on a helium film Type A1 Journal article
  Year 2016 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
  Volume 89 Issue 89 Pages 172
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
  Abstract Electrons on liquid helium can form different phases depending on density, and temperature. Also the electron-ripplon coupling strength influences the phase diagram, through the formation of so-called “ripplonic polarons”, that change how electrons are localized, and that shifts the transition between the Wigner solid and the liquid phase. We use an all-coupling, finite-temperature variational method to study the formation of a ripplopolaron Wigner solid on a liquid helium film for different regimes of the electron-ripplon coupling strength. In addition to the three known phases of the ripplopolaron system (electron Wigner solid, polaron Wigner solid, and electron fluid), we define and identify a fourth distinct phase, the ripplopolaron liquid. We analyse the transitions between these four phases and calculate the corresponding phase diagrams. This reveals a reentrant melting of the electron solid as a function of temperature. The calculated regions of existence of the Wigner solid are in agreement with recent experimental data.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos 000391225200001 Publication Date 2016-07-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1434-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.461 Times cited 1 Open Access
  Notes ; We thank A.S. Mishchenko and D.G. Rees for valuable discussions. This research has been supported by the Flemish Research Foundation (FWO-Vl), Project Nos. G.0115.12N, G.0119.12N, G.0122.12N, G.0429.15N, by the Scientific Research Network of the Research Foundation-Flanders, WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved Most recent IF: 1.461
  Call Number UA @ lucian @ c:irua:140351 Serial 4454
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.
  Title (up) First principles computation of thermo-chemical properties beyond the harmonic approximation: 1: method and application to the water molecule and its isotopomers Type A1 Journal article
  Year 1992 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
  Volume 96 Issue 10 Pages 7633-7645
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos A1992HU55700047 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.952 Times cited 59 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:4195 Serial 1206
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.
  Title (up) First principles computation of thermo-chemical properties beyond the harmonic approximation: 2: application to the amino radical and its isotopomers Type A1 Journal article
  Year 1992 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
  Volume 97 Issue 5 Pages 3530-3536
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos A1992JL37200072 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.952 Times cited 22 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:4197 Serial 1207
Permanent link to this record
 

 
Author Bercx, M.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
  Title (up) First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 18 Issue 18 Pages 20542-20549
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Chalcopyrite semiconductors are of considerable interest for application as absorber layers in thin-film photovoltaic cells. When growing films of these compounds, however, they are often found to contain CuAu-like domains, a metastable phase of chalcopyrite. It has been reported that for CuInS2, the presence of the CuAu-like phase improves the short circuit current of the chalcopyrite-based photovoltaic cell. We investigate the thermodynamic stability of both phases for a selected list of I-III-VI2 materials using a first-principles density functional theory approach. For the CuIn-VI2 compounds, the difference in formation energy between the chalcopyrite and CuAu-like phase is found to be close to 2 meV per atom, indicating a high likelihood of the presence of CuAu-like domains. Next, we calculate the spectroscopic limited maximum efficiency (SLME) of the CuAu-like phase and compare the results with those of the corresponding chalcopyrite phase. We identify several candidates with a high efficiency, such as CuAu-like CuInS2, for which we obtain an SLME of 29% at a thickness of 500 nm. We observe that the SLME can have values above the Shockley-Queisser (SQ) limit, and show that this can occur because the SQ limit assumes the absorptivity to be a step function, thus overestimating the radiative recombination in the detailed balance approach. This means that it is possible to find higher theoretical efficiencies within this framework simply by calculating the J-V characteristic with an absorption spectrum. Finally, we expand our SLME analysis to indirect band gap absorbers by studying silicon, and find that the SLME quickly overestimates the reverse saturation current of indirect band gap materials, drastically lowering their calculated efficiency.
  Address EMAT & CMT groups, Department of Physics, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerp, Belgium. marnik.bercx@uantwerpen.be
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000381428600058 Publication Date 2016-07-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 34 Open Access
  Notes We acknowledge financial support of FWO-Vlaanderen through projects G.0150.13N and G.0216.14N and ERA-NET RUS Plus/FWO, Grant G0D6515N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO FWOVlaanderen. Approved Most recent IF: 4.123
  Call Number c:irua:135091 Serial 4112
Permanent link to this record
 

 
Author Rosenauer, A.; Schowalter, M.; Glas, F.; Lamoen, D.
  Title (up) First-principles calculations of 002 structure factors for electron scattering in strained InxGa1-xAs Type A1 Journal article
  Year 2005 Publication Physical Review B Abbreviated Journal Phys Rev B
  Volume 72 Issue 8 Pages 1-10
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
  Abstract This work provides values of electron scattering 002 structure factors for InxGa1-xAs as a function of the In concentration x=0 to 1. These results allow accurate compositional analysis of pseudomorphically grown InxGa1-xAs/GaAs layers by transmission electron microscopy methods relying on the chemical sensitivity of the (002) beam. The calculations go beyond the limits of the isolated atom approximation, because they take into account charge redistribution effects between atomic sites in the crystal, strain, and static atomic displacements. The computations were performed by the full potential linearized augmented plane-wave method using a generalized gradient approximation for the exchange and correlation part of the potential. The calculations of strained InxGa1-xAs correspond to the strain state in specimens with large, small, and intermediate thickness in the electron beam direction. Additionally, the effect of static atomic displacements is taken into account. All results are listed in a parameterized form. The calculated 002 structure factor vanishes at an In concentration of 16.4%. This value is in a good agreement with previously reported experimental measurements. Hence, our results are a significant improvement with respect to the isolated atom approximation which is conventionally applied in transmission electron microscopy simulations, and which predicts a value of 22.5%.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000231564600106 Publication Date 2005-08-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 42 Open Access
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
  Call Number UA @ lucian @ c:irua:54918 Serial 1201
Permanent link to this record
 

 
Author Rosenauer, A.; Schowalter, M.; Glas, F.; Lamoen, D.
  Title (up) First-principles calculations of 002 structure factors for electron scattering in strained InxGa1-xAs Type A1 Journal article
  Year 2005 Publication Abbreviated Journal
  Volume 107 Issue Pages 151-154
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:72916 Serial 1202
Permanent link to this record
 

 
Author Schowalter, M.; Lamoen, D.; Kruse, P.; Gerthsen, D.; Rosenauer, A.
  Title (up) First-principles calculations of the mean inner Coulomb potential for sphalerite type II.VI semiconductors Type A1 Journal article
  Year 2004 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
  Volume 85 Issue 21 Pages 4938-4940
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
  Abstract
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000225300600037 Publication Date 2004-11-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 16 Open Access
  Notes Approved Most recent IF: 3.411; 2004 IF: 4.308
  Call Number UA @ lucian @ c:irua:49657 Serial 1203
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
  Title (up) First-principles electronic functionalization of silicene and germanene by adatom chemisorption Type A1 Journal article
  Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 291 Issue Pages 104-108
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract This study presents first-principles results on the electronic functionalization of silicene and germanene monolayers by means of chemisorption of adatom species H, Li, F, Sc, Ti, V. Three general adatom-monolayer configurations are considered, each having its distinct effect on the electronic structure, yielding metallic or semiconducting dispersions depending on the adatom species and configuration. The induced bandgap is a (in)direct F gap ranging from 0.2 to 2.3 eV for both silicene and germanene. In general the alternating configuration was found to be the most energetically stable. The boatlike and chairlike conformers are degenerate with the former having anisotropic effective carrier masses. The top configuration leads to the planar monolayer and predominately to a gapped dispersion. The hollow configuration with V adatoms retains the Dirac cone, but with strong orbital planar hybridization at the Fermi level. We also observe a planar surface state the Fermi level for the latter systems. (C) 2013 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000329327700023 Publication Date 2013-09-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.387 Times cited 32 Open Access
  Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
  Call Number UA @ lucian @ c:irua:113766 Serial 1208
Permanent link to this record
 

 
Author Bekaert, J.; Sevik, C.; Milošević, M.V.
  Title (up) First-principles exploration of superconductivity in MXenes Type A1 Journal article
  Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 12 Issue Pages 17354-17361
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract MXenes are an emerging class of two-dimensional materials, which in their thinnest limit consist of a monolayer of carbon or nitrogen (X) sandwiched between two transition metal (M) layers. We have systematically searched for superconductivity among MXenes for a range of transition metal elements, based on a full first-principles characterization in combination with the Eliashberg formalism. Thus, we identified six superconducting MXenes: three carbides (Mo2C, W2C and Sc2C) and three nitrides (Mo2N, W2N and Ta2N). The highest critical temperature of similar to 16 K is found in Mo2N, for which a successful synthesis method has been established [Urbankowskiet al.,Nanoscale, 2017,9, 17722-17730]. Moreover, W2N presents a novel case of competing superconducting and charge density wave phases.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000563481700017 Publication Date 2020-08-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.7 Times cited 15 Open Access
  Notes ; This work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under the contract number COST-118F187, the Air Force Office of Scientific Research under award number FA9550-19-1-7048, by Research Foundation-Flanders (FWO) and the University of Antwerp (BOF). The collaboration was fostered by COST action NANOCOHYBRI (CA16218). Computational resources were provided by the High Performance and Grid Computing Center (TRGrid e-Infrastructure) of TUBITAK ULAKBIM, the National Center for High Performance Computing (UHeM) of Istanbul Technical University, and by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government – department EWI. J. B. acknowledges support of a postdoctoral fellowship of the FWO. ; Approved Most recent IF: 6.7; 2020 IF: 7.367
  Call Number UA @ admin @ c:irua:171988 Serial 6521
Permanent link to this record
 

 
Author Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M.
  Title (up) First-principles investigation of B- and N-doped fluorographene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 88 Issue 3 Pages 035434-35435
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The effect of substitutional doping of fluorographene with boron and nitrogen atoms on its electronic and magnetic properties is investigated using first-principles calculations. It is found that boron dopants can be readily incorporated in the fluorographene crystal where they act as shallow acceptors and cause hole doping, but no changes in the magnetic properties are observed. Nitrogen dopants act as deep donors and give rise to a magnetic moment, but the resulting system becomes chemically unstable. These results are opposite to what was found for substitutional doping of graphane, i.e., hydrogenated graphene, in which case B substituents induce magnetism and N dopants do not.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000322083700002 Publication Date 2013-07-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 16 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
  Call Number UA @ lucian @ c:irua:109807 Serial 1210
Permanent link to this record
 

 
Author Sivek, J.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
  Title (up) First-principles investigation of bilayer fluorographene Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 116 Issue 36 Pages 19240-19245
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Ab initio calculations within the density functional theory formalism are performed to investigate the stability and electronic properties of fluorinated bilayer graphene (bilayer fluorographene). A comparison is made to previously investigated graphane, bilayer graphane, and fluorographene. Bilayer fluorographene is found to be a much more stable material than bilayer graphane. Its electronic band structure is similar to that of monolayer fluorographene, but its electronic band gap is significantly larger (about 1 eV). We also calculate the effective masses around the Gamma-point for fluorographene and bilayer fluorographene and find that they are isotropic, in contrast to earlier reports. Furthermore, it is found that bilayer fluorographene is almost as strong as graphene, as its 2D Young's modulus is approximately 300 N m(-1).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000308631300022 Publication Date 2012-08-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 39 Open Access
  Notes ; This work is supported by the ESF-Eurocores program EuroGRAPHENE (project CONERAN) and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 4.536; 2012 IF: 4.814
  Call Number UA @ lucian @ c:irua:101842 Serial 1211
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Akgenc, B.; Ghergherehchi, M.; Mortazavi, B.
  Title (up) First-principles investigation of electronic, mechanical and thermoelectric properties of graphene-like XBi (X = Si, Ge, Sn) monolayers Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
  Volume 23 Issue 21 Pages 12471-12478
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Research progress on single layer group III monochalcogenides has been increasing rapidly owing to their interesting physics. Herein, we investigate the dynamically stable single layer forms of XBi (X = Ge, Si or Sn) using density functional theory calculations. Phonon band dispersion calculations and ab initio molecular dynamics simulations reveal the dynamical and thermal stability of the considered monolayers. Raman spectra calculations indicate the existence of 5 Raman active phonon modes, 3 of which are prominent and can be observed in possible Raman measurements. The electronic band structures of the XBi single layers were investigated with and without the effects of spin-orbit coupling (SOC). Our results show that XBi single layers show semiconducting properties with narrow band gap values without SOC. However, only single layer SiBi is an indirect band gap semiconductor, while GeBi and SnBi exhibit metallic behaviors when adding spin-orbit coupling effects. In addition, the calculated linear elastic parameters indicate the soft nature of the predicted monolayers. Moreover, our predictions for the thermoelectric properties of single layer XBi reveal that SiBi is a good thermoelectric material with increasing temperature. Overall, it is proposed that single layer XBi structures can be alternative, stable 2D single layers with varying electronic and thermoelectric properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000653851100001 Publication Date 2021-04-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.123
  Call Number UA @ admin @ c:irua:179007 Serial 6992
Permanent link to this record
 

 
Author Leenaerts, O.; Peelaers, H.; Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M.
  Title (up) First-principles investigation of graphene fluoride and graphane Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 82 Issue 19 Pages 195436,1-195436,6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Different stoichiometric configurations of graphane and graphene fluoride are investigated within density-functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various configurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Youngs moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000284399200004 Publication Date 2010-11-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 367 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-V1), the NOI-BOF of the University of Antwerp, the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Grant No. FW/08/01). A.D.H. also acknowledges support from ANPCyT (Grant No. PICT 2008-2236). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
  Call Number UA @ lucian @ c:irua:86916 Serial 1212
Permanent link to this record
 

 
Author Obeid, M.M.; Stampfl, C.; Bafekry, A.; Guan, Z.; Jappor, H.R.; Nguyen, C., V; Naseri, M.; Hoat, D.M.; Hieu, N.N.; Krauklis, A.E.; Tuan V Vu; Gogova, D.
  Title (up) First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate Type A1 Journal article
  Year 2020 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
  Volume 22 Issue 27 Pages 15354-15364
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Nonmetal doping is an effective approach to modify the electronic band structure and enhance the photocatalytic performance of bismuth oxyhalides. Using density functional theory, we systematically examine the fundamental properties of single-layer BiOBr doped with boron (B) and phosphorus (P) atoms. The stability of the doped models is investigated based on the formation energies, where the substitutional doping is found to be energetically more stable under O-rich conditions than under Bi-rich ones. The results showed that substitutional doping of P atoms reduced the bandgap of pristine BiOBr to a greater extent than that of boron substitution. The calculation of the effective masses reveals that B doping can render the electrons and holes of pristine BiOBr lighter and heavier, respectively, resulting in a slower recombination rate of photoexcited electron-hole pairs. Based on the results of HOMO-LUMO calculations, the introduction of B atoms tends to increase the number of photocatalytically active sites. The top of the valence band and the conduction band bottom of the B doped BiOBr monolayer match well with the water redox potentials in an acidic environment. The absorption spectra propose that B(P) doping causes a red-shift. Overall, the results predict that nonmetal-doped BiOBr monolayers have a reduced bandgap, a slow recombination rate, more catalytically active sites, enhanced optical absorption edges, and reduced work functions, which will contribute to superior photocatalytic performance.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000549894000018 Publication Date 2020-06-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.3 Times cited 18 Open Access
  Notes ; This work was partially supported by the financial support from the Natural Science Foundation of China (Grant No. 11904203) and the Fundamental Research Funds of Shandong University (Grant No. 2019GN065). ; Approved Most recent IF: 3.3; 2020 IF: 4.123
  Call Number UA @ admin @ c:irua:171235 Serial 6522
Permanent link to this record
 

 
Author Yayak, Y.O.; Sozen, Y.; Tan, F.; Gungen, D.; Gao, Q.; Kang, J.; Yagmurcukardes, M.; Sahin, H.
  Title (up) First-principles investigation of structural, Raman and electronic characteristics of single layer Ge3N4 Type A1 Journal article
  Year 2022 Publication Applied surface science Abbreviated Journal Appl Surf Sci
  Volume 572 Issue Pages 151361
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract By means of density functional theory-based first-principle calculations, the structural, vibrational and electronic properties of single-layer Ge3N4 are investigated. Structural optimizations and phonon band dispersions reveal that single-layer ultrathin form of Ge3N4 possesses a dynamically stable buckled structure with large hexagonal holes. Predicted Raman spectrum of single-layer Ge3N4 indicates that the buckled holey structure of the material exhibits distinctive vibrational features. Electronic band dispersion calculations indicate the indirect band gap semiconducting nature of single-layer Ge3N4. It is also proposed that single-layer Ge3N4 forms type-II vertical heterostructures with various planar and puckered 2D materials except for single-layer GeSe which gives rise to a type-I band alignment. Moreover, the electronic properties of single-layer Ge3N4 are investigated under applied external in-plane strain. It is shown that while the indirect gap behavior of Ge3N4 is unchanged by the applied strain, the energy band gap increases (decreases) with tensile (compressive) strain.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000723664000006 Publication Date 2021-10-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.7 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 6.7
  Call Number UA @ admin @ c:irua:184752 Serial 6993
Permanent link to this record
 

 
Author Bercx, M.; Slap, L.; Partoens, B.; Lamoen, D.
  Title (up) First-Principles Investigation of the Stability of the Oxygen Framework of Li-Rich Battery Cathodes Type A1 Journal article
  Year 2019 Publication MRS advances Abbreviated Journal MRS Adv.
  Volume 4 Issue 14 Pages 813-820
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Lithium-rich layered oxides such as Li<sub>2</sub>MnO<sub>3</sub>have shown great potential as cathodes in Li-ion batteries, mainly because of their large capacities. However, these materials still suffer from structural degradation as the battery is cycled, reducing the average voltage and capacity of the cell. The voltage fade is believed to be related to the migration of transition metals into the lithium layer, linked to the formation of O-O dimers with a short bond length, which in turn is driven by the presence of oxygen holes due to the participation of oxygen in the redox process. We investigate the formation of O-O dimers for partially charged O1-Li<sub>2</sub>MnO<sub>3</sub>using a first-principles density functional theory approach by calculating the reaction energy and kinetic barriers for dimer formation. Next, we perform similar calculations for partially charged O1-Li<sub>2</sub>IrO<sub>3</sub>, a Li-rich material for which the voltage fade was not observed during cycling. When we compare the stability of the oxygen framework, we conclude that the formation of O-O dimers is both thermodynamically and kinetically viable for O1-Li<sub>0.5</sub>MnO<sub>3</sub>. For O1-Li<sub>0.5</sub>IrO<sub>3</sub>, we observe that the oxygen lattice is much more stable, either returning to its original state when perturbed, or resulting in a structure with an O-O dimer that is much higher in energy. This can be explained by the mixed redox process for Li<sub>2</sub>IrO<sub>3</sub>, which is also shown from the calculated magnetic moments. The lack of O-O dimer formation in O1-Li<sub>0.5</sub>IrO<sub>3</sub>provides valuable insight as to why Li<sub>2</sub>IrO<sub>3</sub>does not demonstrate a voltage fade as the battery is cycled, which can be used to design Li-rich battery cathodes with an improved cycling performance.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000466846700004 Publication Date 2019-02-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2059-8521 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 3 Open Access Not_Open_Access: Available from 22.02.2020
  Notes We acknowledge the financial support of FWO-Vlaanderen through project G040116N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: NA
  Call Number EMAT @ emat @UA @ admin @ c:irua:160121 Serial 5179
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Rosciano, F.; Put, B.; Vereecken, P.M.; Stesmans, A.
  Title (up) First-principles material modeling of solid-state electrolytes with the spinel structure Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume Issue Pages
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2...0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0...1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000332395700048 Publication Date 2014-02-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 8 Open Access
  Notes Approved Most recent IF: 4.123; 2014 IF: 4.493
  Call Number UA @ lucian @ c:irua:128893 Serial 4520
Permanent link to this record
 

 
Author Sankaran, K.; Pourtois, G.; Degraeve, R.; Zahid, M.B.; Rignanese, G.-M.; Van Houdt, J.
  Title (up) First-principles modeling of intrinsic and extrinsic defects in \gamma-Al2O3 Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 97 Issue 21 Pages 212906
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The electronic properties of a set of intrinsic and extrinsic point defects in gamma-Al2O3 are investigated using quasiparticle calculations within the G(0)W(0) approximation. We find that the electronic signature of atomic vacancies lie deep in the band gap, close to the top of the valence band edge. The introduction of C, Si, and N impurities induces defective levels that are located close to the conduction band edge and near the middle of the band gap of the oxide. The comparison with electrical measurements reveals that the energy levels of some of these defects match with the electronic fingerprint of the defects reported in gamma-Al2O3 based nonvolatile memories. (C) 2010 American Institute of Physics. [doi:10.1063/1.3507385]
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000284618300039 Publication Date 2010-11-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 12 Open Access
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841
  Call Number UA @ lucian @ c:irua:105617 Serial 1213
Permanent link to this record
 

 
Author Clima, S.; McMitchell, S.R.C.; Florent, K.; Nyns, L.; Popovici, M.; Ronchi, N.; Di Piazza, L.; Van Houdt, J.; Pourtois, G.
  Title (up) First-principles perspective on poling mechanisms and ferroelectric/antiferroelectric behavior of Hf1-xZrxO2 for FEFET applications Type P1 Proceeding
  Year 2018 Publication 2018 Ieee International Electron Devices Meeting (iedm) Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We investigate at the atomic level the most probable phase transformations under strain, that are responsible for the ferroelectric/ antiferroelectric behavior in Hf1-xZrxO2 materials. Four different crystalline phase transformations exhibit a polar/non-polar transition: monoclinic-to-orthorhombic requires a gliding strain tensor, orthorhombic-to-orthorhombic transformation does not need strain to polarize the material, whereas tetragonal-to-cubic cell compression and tetragonal-to-orthorhombic cell elongation destabilizes the non-polar tetragonal phase, facilitating the transition towards a polar atomic configuration, therefore changing the polarization-electric field loop from antiferroelectric to ferroelectric. Oxygen vacancies can reduce drastically the polarization reversal barriers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000459882300073 Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-1-72811-987-8; 978-1-72811-987-8 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:158693 Serial 7972
Permanent link to this record
 

 
Author Clima, S.; Chen, Y.Y.; Degraeve, R.; Mees, M.; Sankaran, K.; Govoreanu, B.; Jurczak, M.; De Gendt, S.; Pourtois, G.
  Title (up) First-principles simulation of oxygen diffusion in HfOx : role in the resistive switching mechanism Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 100 Issue 13 Pages 133102-133102,4
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Transition metal oxide-based resistor random access memory (RRAM) takes advantage of oxygen-related defects in its principle of operation. Since the change in resistivity of the material is controlled by the oxygen deficiency level, it is of major importance to quantify the kinetics of the oxygen diffusion, key factor for oxide stoichiometry. Ab initio accelerated molecular dynamics techniques are employed to investigate the oxygen diffusivity in amorphous hafnia (HfOx, x = 1.97, 1.0, 0.5). The computed kinetics is in agreement with experimental measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697690]
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000302230800060 Publication Date 2012-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 63 Open Access
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:97786 Serial 1214
Permanent link to this record
 

 
Author Saniz, R.; Sarmadian, N.; Partoens, B.; Batuk, M.; Hadermann, J.; Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Lamoen, D.
  Title (up) First-principles study of CO and OH adsorption on in-doped ZnO surfaces Type A1 Journal article
  Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids
  Volume 132 Issue Pages 172-181
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract We present a first-principles computational study of CO and OH adsorption on non-polar ZnO (10¯10) surfaces doped with indium. The calculations were performed using a model ZnO slab. The position of the In dopants was varied from deep bulk-like layers to

the surface layers. It was established that the preferential location of the In atoms is at the surface by examining the dependence of

the defect formation energy as well as the surface energy on In location. The adsorption sites on the surface of ZnO and the energy

of adsorption of CO molecules and OH-species were determined in connection to In doping. It was found that OH has higher

bonding energy to the surface than CO. The presence of In atoms at the surface of ZnO is favorable for CO adsorption, resulting

in an elongation of the C-O bond and in charge transfer to the surface. The effect of CO and OH adsorption on the electronic

and conduction properties of surfaces was assessed. We conclude that In-doped ZnO surfaces should present a higher electronic

response upon adsorption of CO.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472124700023 Publication Date 2019-04-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.059 Times cited 7 Open Access Not_Open_Access: Available from 26.04.2021
  Notes FWO-Vlaanderen, G0D6515N ; ERA.Net RUS Plus, 096 ; VSC; HPC infrastructure of the University of Antwerp; FWO-Vlaanderen; Flemish Government-department EWI; Approved Most recent IF: 2.059
  Call Number EMAT @ emat @UA @ admin @ c:irua:159656 Serial 5170
Permanent link to this record
 

 
Author Amini, M.
  Title (up) First-principles study of defects in transparent conducting oxide materials Type Doctoral thesis
  Year 2014 Publication Abbreviated Journal
  Volume Issue Pages
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Antwerpen Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:113390 Serial 1216
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M.
  Title (up) First-principles study of doped Si and Ge nanowires Type A1 Journal article
  Year 2008 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
  Volume 40 Issue 6 Pages 2169-2171
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000255717400123 Publication Date 2007-12-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 7 Open Access
  Notes Approved Most recent IF: 2.221; 2008 IF: 1.230
  Call Number UA @ lucian @ c:irua:69134 Serial 1217
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
  Title (up) First-principles study of strained 2D MoS2 Type A1 Journal article
  Year 2014 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
  Volume 56 Issue Pages 416-421
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The electronic and vibrational properties of 2D honeycomb structures of molybdenum disulfide (MoS2) subjected to strain have been investigated using first-principles calculations based on density functional theory. We have studied the evolution of the electronic properties of bulk and layered MoS2, going down from a few layers up to a mono-layer, and next investigated the effect of bi-axial strain on their electronic structure and vibrational frequencies. Both for tensile and compressive biaxial strains, the shrinking of the energy band-gap of MoS2 with increasing level of applied strain is observed and a transition limit of the system from semiconducting to metallic is predicted to occur for strains in the range of 8-10%. We also found a progressive downshift (upshift) of both the E-2g(1) and A(1g) Raman active modes with increasing level of applied tensile (compressive) strain. Interestingly, significant changes in the curvature of the conduction and valence band near their extrema upon the application of strain are also predicted, with correlated variations of the electron and hole effective masses. These changes present interesting possibilities for engineering the electronic properties of 2D structures of MoS2. (C) 2012 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000330815800070 Publication Date 2012-08-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 72 Open Access
  Notes Approved Most recent IF: 2.221; 2014 IF: 2.000
  Call Number UA @ lucian @ c:irua:115761 Serial 1220
Permanent link to this record
 

 
Author Aierken, Y.; Leenaerts, O.; Peeters, F.M.
  Title (up) First-principles study of the stability and edge stress of nitrogen-decorated graphene nanoribbons Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 97 Issue 23 Pages 235436
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Edge functionalization of graphene nanoribbons with nitrogen atoms for various adatom configurations at armchair and zigzag edges are investigated. We provide comprehensive information on the electronic and magnetic properties and investigate the stability of the various systems. Two types of rippling of the nanoribbons, namely edge and bulk rippling depending on the sign of edge stress induced at the edge, are found. They are found to play the decisive role for the stability of the structures. We also propose a type of edge decoration in which every third nitrogen adatom at the zigzag edges is replaced by an oxygen atom. In this way, the electron count is compatible with a full aromatic structure, leading to additional stability and a disappearance of magnetism that is usually associated with zigzag nanoribbons.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000436192300006 Publication Date 2018-06-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 1 Open Access
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:152478UA @ admin @ c:irua:152478 Serial 5104
Permanent link to this record
 

 
Author Zhang, Z.; Partoens, B.; Chang, K.; Peeters, F.M.
  Title (up) First-principles study of transition metal impurities in Si Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 77 Issue 15 Pages 155201,1-8
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000255457400057 Publication Date 2008-04-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 72 Open Access
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
  Call Number UA @ lucian @ c:irua:68846 Serial 1221
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: