|   | 
Details
   web
Records
Author Ustarroz, J.; Ke, X.; Hubin, A.; Bals, S.; Terryn, H.
Title New insights into the early stages of nanoparticle electrodeposition Type A1 Journal article
Year (down) 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 3 Pages 2322-2329
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electrodeposition is an increasingly important method to synthesize supported nanoparticles, yet the early stages of electrochemical nanoparticle formation are not perfectly understood. In this paper, the early stages of silver nanoparticle electrodeposition on carbon substrates have been studied by aberration-corrected TEM, using carbon-coated TEM grids as electrochemical electrodes. In this manner we have access to as-deposited nanoparticle size distribution and structural characterization at the atomic scale combined with electrochemical measurements, which represents a breakthrough in a full understanding of the nanoparticle electrodeposition mechanisms. Whereas classical models, based upon characterization at the nanoscale, assume that electrochemical growth is only driven by direct attachment, the results reported hereafter indicate that early nanoparticle growth is mostly driven by nanocluster surface movement and aggregation. Hence, we conclude that electrochemical nulceation and growth models should be revised and that an electrochemical aggregative growth mechanism should be considered in the early stages of nanoparticle electrodeposition.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000299584400037 Publication Date 2011-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 104 Open Access
Notes Fwo Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:96225 Serial 2316
Permanent link to this record
 

 
Author Khalilov, U.; Neyts, E.C.; Pourtois, G.; van Duin, A.C.T.
Title Can we control the thickness of ultrathin silica layers by hyperthermal silicon oxidation at room temperature? Type A1 Journal article
Year (down) 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 50 Pages 24839-24848
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations by means of the ReaxFF potential, we studied the growth mechanism of ultrathin silica (SiO2) layers during hyperthermal oxidation at room temperature. Oxidation of Si(100){2 × 1} surfaces by both atomic and molecular oxygen was investigated in the energy range 15 eV. The oxidation mechanism, which differs from thermal oxidation, is discussed. In the case of oxidation by molecular O2, silica is quickly formed and the thickness of the formed layers remains limited compared to oxidation by atomic oxygen. The Si/SiO2 interfaces are analyzed in terms of partial charges and angle distributions. The obtained structures of the ultrathin SiO2 films are amorphous, including some intrinsic defects. This study is important for the fabrication of silica-based devices in the micro- and nanoelectronics industry, and more specifically for the fabrication of metal oxide semiconductor devices.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297947700050 Publication Date 2011-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 36 Open Access
Notes Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:94303 Serial 273
Permanent link to this record
 

 
Author Bittencourt, C.; Navio, C.; Nicolay, A.; Ruelle, B.; Godfroid, T.; Snyders, R.; Colomer, J.-F.; Lagos, M.J.; Ke, X.; Van Tendeloo, G.; Suarez-Martinez, I.; Ewels, C.P.
Title Atomic oxygen functionalization of vertically aligned carbon nanotubes Type A1 Journal article
Year (down) 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 42 Pages 20412-20418
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Vertically aligned multiwalled carbon nanotubes (v-MWCNTs) are functionalized using atomic oxygen generated in a microwave plasma. X-ray photoelectron spectroscopy depth profile analysis shows that the plasma treatment effectively grafts oxygen exclusively at the v-MWCNT tips. Electron microscopy shows that neither the vertical alignment nor the structure of v-MWCNTs were affected by the plasma treatment. Density functional calculations suggest assignment of XPS C 1s peaks at 286.6 and 287.5 eV, to epoxy and carbonyl functional groups, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000296205600009 Publication Date 2011-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 31 Open Access
Notes Iap Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:91890 Serial 174
Permanent link to this record
 

 
Author Delabie, A.; Sioncke, S.; Rip, J.; van Elshocht, S.; Caymax, M.; Pourtois, G.; Pierloot, K.
Title Mechanisms for the trimethylaluminum reaction in aluminum oxide atomic layer deposition on sulfur passivated germanium Type A1 Journal article
Year (down) 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 35 Pages 17523-17532
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Germanium combined with high-κ dielectrics is investigated for the next generations of CMOS devices. Therefore, we study reaction mechanisms for Al2O3 atomic layer deposition on sulfur passivated Ge using calculations based on density functional theory and total reflection X-ray fluorescence (TXRF). TXRF indicates 6 S/nm2 and 4 Al/nm2 after the first TMA/H2O reaction cycle, and growth inhibition from the second reaction cycle on. Calculations are performed on molecular clusters representing −GeSH surface sites. The calculations confirm that the TMA reaction does not affect the S content. On fully SH-terminated Ge, TMA favorably reacts with up to three −GeSH sites, resulting in a near tetrahedral Al coordination. Electron deficient structures with a GeS site shared between two Al atoms are proposed. The impact of the cluster size on the structures and reaction energetics is systematically investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000294386000037 Publication Date 2011-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 9 Open Access
Notes Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:91714 Serial 1980
Permanent link to this record
 

 
Author Nourbakhsh, A.; Cantoro, M.; Klekachev, A.V.; Pourtois, G.; Vosch, T.; Hofkens, J.; van der Veen, M.H.; Heyns, M.M.; de Gendt, S.; Sels, B.F.
Title Single layer vs bilayer graphene : a comparative study of the effects of oxygen plasma treatment on their electronic and optical properties Type A1 Journal article
Year (down) 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 33 Pages 16619-16624
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This contribution presents the effects of a mild O2 plasma treatment on the structural, optical, and electrical properties of single-layer (SLG) and bilayer graphene (BLG). Unexpectedly, we observe only photoluminescence in the SLG parts of a graphene flake composed of regions of various thickness upon O2 plasma treatment, whereas the BLG and few-layer graphene (FLG) parts remain optically unchanged. Confirmed with X-ray photoelectron spectroscopy (XPS) that O2 plasma induces epoxide and hydroxyl-like groups in graphene, density functional theory (DFT) calculations are carried out on representative epoxidized and hydroxylated SLG and BLG models to predict density of states (DOS) and band structures. Sufficiently oxidized SLG shows a bandgap and thus loss of semimetallic behavior, while oxidized BLG maintains its semimetallic behavior even at high oxygen density in agreement with the results of the photoluminescence spectroscopy (PL) experiments. DFT calculations confirm that the Fermi velocity in epoxidized BLG is remarkably comparable with that of pristine SLG, pointing to a similarity of electronic band structure. The similarity is also experimentally demonstrated by the electrical characterization of a plasma-treated BLG-FET. As expected from the electronegative oxygen adatoms in the graphene, epoxidized BLG presents conductive features typical of hole doping. Moreover, the electrical characteristics suggest band structures closely related to that of epoxidized graphene while deviating from that of hydroxylated graphene. Finally, upon O2 plasma treatment of BLG, the four-component 2D peak around 2700 cm1 in the Raman spectrum evolves into a single Lorentzian line, very like the 2D peak of pristine SLG. Summarizing, the data in this contribution recommend that a controlled O2 plasma treatment, which is compatible with CMOS process flow in contrast to wet chemical oxidation methods, provides an efficient and valuable technique to exploit the transport properties of the bottom layer of BLG.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000294077000047 Publication Date 2011-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 46 Open Access
Notes Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:91715 Serial 3024
Permanent link to this record
 

 
Author Shenderova, O.A.; Vlasov, I.I.; Turner, S.; Van Tendeloo, G.; Orlinskii, S.B.; Shiryaev, A.A.; Khomich, A.A.; Sulyanov, S.N.; Jelezko, F.; Wrachtrup, J.
Title Nitrogen control in nanodiamond produced by detonation shock-wave-assisted synthesis Type A1 Journal article
Year (down) 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 29 Pages 14014-14024
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Development of efficient production methods of nanodiamond (ND) particles containing substitutional nitrogen and nitrogen-vacancy (NV) complexes remains an important goal in the nanodiamond community. ND synthesized from explosives is generally not among the preferred candidates for imaging applications owing to lack of optically active particles containing NV centers. In this paper, we have systematically studied representative classes of NDs produced by detonation shock wave conversion of different carbon precursor materials, namely, graphite and a graphite/hexogen mixture into ND, as well as ND produced from different combinations of explosives using different cooling methods (wet or dry cooling). We demonstrate that (i) the N content in nanodiamond particles can be controlled through a correct selection of the carbon precursor material (addition of graphite, explosives composition); (ii) particles larger than approximately 20 nm may contain in situ produced optically active NV centers, and (iii) in ND produced from explosives, NV centers are detected only in ND produced by wet synthesis. ND synthesized from a mixture of graphite/explosive contains the largest amount of NV centers formed during synthesis and thus deserves special attention.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000292892500009 Publication Date 2011-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 54 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:91259 Serial 2342
Permanent link to this record
 

 
Author Shenderova, O.; Koscheev, A.; Zaripov, N.; Petrov, I.; Skryabin, Y.; Detkov, P.; Turner, S.; Van Tendeloo, G.
Title Surface chemistry and properties of ozone-purified detonation nanodiamonds Type A1 Journal article
Year (down) 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 20 Pages 9827-9837
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanodiamond from ozone purification (NDO) demonstrates very distinctive properties within the class of detonation nanodiamonds, namely very high acidity and high colloidal stability in a broad pH range. To understand the origin of these unusual properties of NDO, the nature of the surface functional groups formed during detonation soot oxidation by ozone needs to be revealed. In this work, thermal desorption mass spectrometry (TDMS) and IR spectroscopy were used for the identification of surface groups and it was concluded that carboxylic anhydride groups prevail on the NDO surface. On the basis of the temperature profiles of the desorbed volatile products and their mass balance, it is hypothesized that decomposition of carboxylic anhydride groups from NDO during heating proceeds by two different mechanisms. Other distinctive features of NDO in comparison with air-treated nanodiamond are also reported.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000290652200001 Publication Date 2011-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 105 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:89556 Serial 3394
Permanent link to this record
 

 
Author Neyts, E.C.; Khalilov, U.; Pourtois, G.; van Duin, A.C.T.
Title Hyperthermal oxygen interacting with silicon surfaces : adsorption, implantation, and damage creation Type A1 Journal article
Year (down) 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 15 Pages 4818-4823
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations, we have investigated the effect of single-impact, low-energy (thermal-100 eV) bombardment of a Si(100){2 × 1} surface by atomic and molecular oxygen. Penetration probability distributions, as well as defect formation distributions, are presented as a function of the impact energy for both species. It is found that at low impact energy, defects are created chemically due to the chemisorption process in the top layers of the surface, while at high impact energy, additional defects are created by a knock-on displacement of Si. These results are of particular importance for understanding device performances of silica-based microelectronic and photovoltaic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000288401200060 Publication Date 2011-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 28 Open Access
Notes Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:89858 Serial 1543
Permanent link to this record
 

 
Author Ao, Z.M.; Peeters, F.M.
Title Electric field activated hydrogen dissociative adsorption to nitrogen-doped graphene Type A1 Journal article
Year (down) 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 114 Issue 34 Pages 14503-14509
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Graphane, hydrogenated graphene, was very recently synthesized and predicted to have great potential applications. In this work, we propose a new promising approach for hydrogenation of graphene based on density functional theory (DFT) calculations through the application of a perpendicular electric field after substitutionally doping by nitrogen atoms. These DFT calculations show that the doping by nitrogen atoms into the graphene layer and applying an electrical field normal to the graphene surface induce dissociative adsorption of hydrogen. The dissociative adsorption energy barrier of an H2 molecule on a pristine graphene layer changes from 2.7 to 2.5 eV on N-doped graphene, and to 0.88 eV on N-doped graphene under an electric field of 0.005 au. When increasing the electric field above 0.01 au, the reaction barrier disappears. Therefore, N doping and applying an electric field have catalytic effects on the hydrogenation of graphene, which can be used for hydrogen storage purposes and nanoelectronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000281129100027 Publication Date 2010-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 110 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524
Call Number UA @ lucian @ c:irua:84588 Serial 882
Permanent link to this record
 

 
Author Wendelen, W.; Dzhurakhalov, A.A.; Peeters, F.M.; Bogaerts, A.
Title Combined molecular dynamics: continuum study of phase transitions in bulk metals under ultrashort pulsed laser irradiation Type A1 Journal article
Year (down) 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 114 Issue 12 Pages 5652-5660
Keywords A1 Journal article; Integrated Molecular Plant Physiology Research (IMPRES); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The phase transition processes induced by ultrashort, 100 fs pulsed laser irradiation of Au, Cu, and Ni are studied by means of a combined atomistic-continuum approach. A moderately low absorbed laser fluence range, from 200 to 600 J/m2 is considered to study phase transitions by means of a local and a nonlocal order parameter. At low laser fluences, the occurrence of layer-by-layer evaporation has been observed, which suggests a direct solid to vapor transition. The calculated amount of molten material remains very limited under the conditions studied, especially for Ni. Therefore, our results show that a kinetic equation that describes a direct solid to vapor transition might be the best approach to model laser-induced phase transitions by continuum models. Furthermore, the results provide more insight into the applicability of analytical superheating theories that were implemented in continuum models and help the understanding of nonequilibrium phase transitions.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000275855600044 Publication Date 2010-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 2 Open Access
Notes ; A.D. gratefully acknowledges Professor M. Hot (ULB, Brussels) for the basic MD-code that was modified further for the laser-induced melting processes. W.W, and A.D. are thankful to Professor L.V. Zhigilei for useful discussions and advices. The calculations were performed on the CALCUA computing facility of the University of Antwerp. This work was supported by the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524
Call Number UA @ lucian @ c:irua:81391 Serial 402
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
Title Numerical study of the size-dependent melting mechanisms of nickel nanoclusters Type A1 Journal article
Year (down) 2009 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 113 Issue 7 Pages 2771-2776
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations were used to investigate the size-dependent melting mechanism of nickel nanoclusters of various sizes. The melting process was monitored by the caloric curve, the overall cluster Lindemann index, and the atomic Lindemann index. Size-dependent melting temperatures were determined, and the correct linear dependence on inverse diameter was recovered. We found that the melting mechanism gradually changes from dynamic coexistence melting to surface melting with increasing cluster size. These findings are of importance in better understanding carbon nanotube growth by catalytic chemical vapor deposition as the phase state of the catalyst nanoparticle codetermines the growth mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access
Notes Approved Most recent IF: 4.536; 2009 IF: 4.224
Call Number UA @ lucian @ c:irua:76495 Serial 2410
Permanent link to this record
 

 
Author Burriel, M.; Santiso, J.; Rossell, M.D.; Van Tendeloo, G.; Figueras, A.; Garcia, G.
Title Enhancing total conductivity of La2NiO4+\delta epitaxial thin films by reducing thickness Type A1 Journal article
Year (down) 2008 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 112 Issue 29 Pages 10982-10987
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High quality epitaxial c axis oriented La2NiO4+ä thin films have been prepared by the pulsed injection metal organic chemical vapor deposition technique on different substrates. High-resolution electron microscopy/transmission electron microscopy has been used to confirm the high crystalline quality of the deposited films. The c-parameter evolution has been studied by XRD as a function of time and gas atmosphere. The high temperature transport properties along the basal a−b plane of epitaxial La2NiO4+ä films have been measured, and the total conductivity of the layers has been found to increase as the thickness is reduced. Layers of 50 nm and thinner have shown a maximum conductivity larger than that measured for single-crystals, in particular, the 33 nm thick films with a conductivity of 475 S/cm in oxygen correspond to the highest value measured to date for this material.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000257724100057 Publication Date 2008-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 35 Open Access
Notes Approved Most recent IF: 4.536; 2008 IF: 3.396
Call Number UA @ lucian @ c:irua:76440 Serial 1067
Permanent link to this record