toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Boschker, H.; Huijben, M.; Vailinois, A.; Verbeeck, J.; Van Aert, S.; Luysberg, M.; Bals, S.; Van Tendeloo, G.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G.
  Title Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics Type A1 Journal article
  Year (up) 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
  Volume 44 Issue 20 Pages 205001-205001,9
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In this paper, an overview of the fabrication and properties of high-quality La0.67Sr0.33MnO3 (LSMO) thin films is given. A high-quality LSMO film combines a smooth surface morphology with a large magnetization and a small residual resistivity, while avoiding precipitates and surface segregation. In the literature, typically only a few of these issues are adressed. We therefore present a thorough characterization of our films, which were grown by pulsed laser deposition. The films were characterized with reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, magnetization and transport measurements, x-ray photoelectron spectroscopy and scanning transmission electron microscopy. The films have a saturation magnetization of 4.0 µB/Mn, a Curie temperature of 350 K and a residual resistivity of 60 µΩ cm. These results indicate that high-quality films, combining both large magnetization and small residual resistivity, were realized. A comparison between different samples presented in the literature shows that focussing on a single property is insufficient for the optimization of the deposition process. For high-quality films, all properties have to be adressed. For LSMO devices, the thin-film quality is crucial for the device performance. Therefore, this research is important for the application of LSMO in devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000290150900001 Publication Date 2011-04-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited 99 Open Access
  Notes This research was financially supported by the Dutch Science Foundation, by NanoNed, a nanotechnology program of the Dutch Ministry of Economic Affairs, and by the NanOxide program of the European Science Foundation. This work is supported in part by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515. Approved Most recent IF: 2.588; 2011 IF: 2.544
  Call Number UA @ lucian @ c:irua:89557UA @ admin @ c:irua:89557 Serial 2491
Permanent link to this record
 

 
Author Simon, Q.; Barreca, D.; Bekermann, D.; Gasparotto, A.; Maccato, C.; Comini, E.; Gombac, V.; Fornasiero, P.; Lebedev, O.I.; Turner, S.; Devi, A.; Fischer, R.A.; Van Tendeloo, G.
  Title Plasma-assisted synthesis of Ag/ZnO nanocomposites : first example of photo-induced H2 production and sensing Type A1 Journal article
  Year (up) 2011 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
  Volume 36 Issue 24 Pages 15527-15537
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Ag/ZnO nanocomposites were developed by a plasma-assisted approach. The adopted strategy exploits the advantages of Plasma Enhanced-Chemical Vapor Deposition (PE-CVD) for the growth of columnar ZnO arrays on Si(100) and Al2O3 substrates, in synergy with the infiltration power of the Radio Frequency (RF)-sputtering technique for the subsequent dispersion of different amounts of Ag nanoparticles (NPs). The resulting composites, both as-prepared and after annealing in air, were thoroughly characterized with particular attention on their morphological organization, structure and composition. For the first time, the above systems have been used as catalysts in the production of hydrogen by photo-reforming of alcoholic solutions, yielding a stable H2 evolution even by the sole use of simulated solar radiation. In addition, Ag/ZnO nanocomposites presented an excellent response in the gas-phase detection of H2, opening attractive perspectives for advanced technological applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000297089700006 Publication Date 2011-10-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.582 Times cited 62 Open Access
  Notes Esteem 026019; Fwo Approved Most recent IF: 3.582; 2011 IF: 4.054
  Call Number UA @ lucian @ c:irua:91901 Serial 2627
Permanent link to this record
 

 
Author Idrissi, H.; Turner, S.; Mitsuhara, M.; Wang, B.; Hata, S.; Coulombier, M.; Raskin, J.-P.; Pardoen, T.; Van Tendeloo, G.; Schryvers, D.
  Title Point defect clusters and dislocations in FIB irradiated nanocrystalline aluminum films : an electron tomography and aberration-corrected high-resolution ADF-STEM study Type A1 Journal article
  Year (up) 2011 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
  Volume 17 Issue 6 Pages 983-990
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Focused ion beam (FIB) induced damage in nanocrystalline Al thin films has been characterized using advanced transmission electron microscopy techniques. Electron tomography was used to analyze the three-dimensional distribution of point defect clusters induced by FIB milling, as well as their interaction with preexisting dislocations generated by internal stresses in the Al films. The atomic structure of interstitial Frank loops induced by irradiation, as well as the core structure of Frank dislocations, has been resolved with aberration-corrected high-resolution annular dark-field scanning TEM. The combination of both techniques constitutes a powerful tool for the study of the intrinsic structural properties of point defect clusters as well as the interaction of these defects with preexisting or deformation dislocations in irradiated bulk or nanostructured materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge, Mass. Editor
  Language Wos 000297832300018 Publication Date 2011-10-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.891 Times cited 25 Open Access
  Notes Iap; Fwo Approved Most recent IF: 1.891; 2011 IF: 3.007
  Call Number UA @ lucian @ c:irua:93627 Serial 2653
Permanent link to this record
 

 
Author Wouters, J.; Lebedev, O.I.; Van Tendeloo, G.; Yamada, H.; Sato, N.; Vanacken, J.; Moshchalkov, V.V.; Verbiest, T.; Valev, V.K.
  Title Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy Type A1 Journal article
  Year (up) 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 109 Issue 7 Pages 076105-076105,3
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Faraday rotation has been used to investigate a series of polymer films doped with magnetic iron oxide nanoparticles. The films have been prepared by spin-coating and melt-processing. In each case, upon varying the angle of optical incidence on the films, an in-plane magnetic anisotropy is observed. The effect of such an anisotropy on the Faraday rotation as a function of the angle of optical incidence is verified by comparison with magnetically poled films. These results demonstrate that care should be taken upon analyzing the magnetic behavior of such films on account of the sample preparation techniques themselves being able to affect the magnetization.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000289949000166 Publication Date 2011-04-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 10 Open Access
  Notes Fwo; Iap; Iwt Approved Most recent IF: 2.068; 2011 IF: 2.168
  Call Number UA @ lucian @ c:irua:89917 Serial 2709
Permanent link to this record
 

 
Author Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Kuznetsov, A.S.; Chibotaru, L.F.; Baranov, A.N.; Van Tendeloo, G.; Moshchalkov, V.V.
  Title Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host Type A1 Journal article
  Year (up) 2011 Publication Optics express Abbreviated Journal Opt Express
  Volume 19 Issue 17 Pages 15955-15964
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Li-Yb co-doped nano-crystalline ZnO has been synthesized by a method of thermal growth from the salt mixtures. X-ray diffraction, transmission electron microscopy, atomic absorption spectroscopy and optical spectroscopy confirm the doping and indicate that the dopants may form Li-Li and Yb3+-Li based nanoclusters. When pumped into the conduction and exciton absorption bands of ZnO between 250 to 425 nm, broad emission bands of about 100 nm half-height-width are excited around 770 and 1000 nm, due to Li and Yb dopants, respectively. These emission bands are activated by energy transfer from the ZnO host mostly by quantum cutting processes, which generate pairs of quanta in Li (770 nm) and Yb (1000 nm) emission bands, respectively, out of one quantum absorbed by the ZnO host. These quantum cutting phenomena have great potential for application in the down-conversion layers coupled to the Si solar cells.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000293894900033 Publication Date 2011-08-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.307 Times cited 19 Open Access
  Notes FWO; Methusalem Approved Most recent IF: 3.307; 2011 IF: 3.587
  Call Number UA @ lucian @ c:irua:92428 Serial 2776
Permanent link to this record
 

 
Author Kalkert, C.; Krisponeit, J.-O.; Esseling, M.; Lebedev, O.I.; Moshnyaga, V.; Damaschke, B.; Van Tendeloo, G.; Samwer, K.
  Title Resistive switching at manganite/manganite interfaces Type A1 Journal article
  Year (up) 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 99 Issue 13 Pages 132512-132512,3
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We report bipolar resistive switching between the interfaces of manganite nanocolumns. La0.7Sr0.3MnO3 films were prepared on Al2O3 substrates, where the films grow in nanocolumns from the substrate to the surface. Conductive atomic force microscopy directly detects that the resistive switching is located at the boundaries of the grains. Furthermore, mesoscopic transport measurements reveal a tunnel magnetoresistance. In combination with the resistive switching, this leads to a total of four different resistive states.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000295618000052 Publication Date 2011-09-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 10 Open Access
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844
  Call Number UA @ lucian @ c:irua:91884 Serial 2881
Permanent link to this record
 

 
Author Quintana, M.; Montellano, A.; Esau del Rio Castillo, A.; Van Tendeloo, G.; Bittencourt, C.; Prato, M.
  Title Selective organic functionalization of graphene bulk or graphene edges Type A1 Journal article
  Year (up) 2011 Publication Chemical communications Abbreviated Journal Chem Commun
  Volume 47 Issue 33 Pages 9330-9332
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Graphene sheets have been functionalized with a PAMAM dendron, finding that graphene can be efficiently functionalized all over the surface, or only at the edges, depending on the reactions used in the functionalization process.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000293648200010 Publication Date 2011-07-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.319 Times cited 84 Open Access
  Notes Approved Most recent IF: 6.319; 2011 IF: 6.169
  Call Number UA @ lucian @ c:irua:91892 Serial 2968
Permanent link to this record
 

 
Author Dachraoui, W.; Yang, T.; Liu, C.; Ling, G.; Hadermann, J.; Van Tendeloo, G.; Llobet, A.; Greenblatt, M.
  Title Short-range layered A-site ordering in double perovskites NaLaBB'O6 (B = Mn, Fe; B' = Nb, Ta) Type A1 Journal article
  Year (up) 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 23 Issue 9 Pages 2398-2406
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The new compounds NaLaFeTaO6, NaLaFeNbO6, NaLaMnTaO6, and NaLaMnNbO6 have been synthesized and characterized with a combination of transmission electron microscopy, X-ray powder diffraction (XRPD), neutron powder diffraction (NPD), and magnetization measurements. Through electron microscopy study, a local layered order of the A-cations has been detected without the typical occurrence of rock salt order at the B-cation site. Satellite reflections in the electron diffraction related to the local layered order are not visible on the XRPD or NPD patterns. The occurrence of local layered order is supported by pair distribution function analysis, which also reveals the presence of uncorrelated displacements of the Nb and Ta cations. The octahedra are tilted according to the system a−b+a−, and the coordinates were refined from XRPD and NPD with a disordered cation distribution in the space group Pnma. The magnetic exchange interactions in NaLaFeTaO6 and NaLaFeNbO6 are antiferromagnetic, while they are ferromagnetic in NaLaMnTaO6 and NaLaMnNbO6. Long-range magnetic ordering is not observed down to 4 K for any of the compositions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000290063600016 Publication Date 2011-04-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 14 Open Access
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2011 IF: 7.286
  Call Number UA @ lucian @ c:irua:89944 Serial 2996
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Turner, S.; Hafideddine, Z.; Khasanova, N.R.; Antipov, E.V.; Van Tendeloo, G.
  Title Solving the structure of Li ion battery materials with precession electron diffraction : application to Li2CoPo4F Type A1 Journal article
  Year (up) 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 23 Issue 15 Pages 3540-3545
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The crystal structure of the Li2CoPO4F high-voltage cathode for Li ion rechargeable batteries has been completely solved from precession electron diffraction (PED) data, including the location of the Li atoms. The crystal structure consists of infinite chains of CoO4F2 octahedra sharing common edges and linked into a 3D framework by PO4 tetrahedra. The chains and phosphate anions together delimit tunnels filled with the Li atoms. This investigation demonstrates that PED can be successfully applied for obtaining structural information on a variety of Li-containing electrode materials even from single micrometer-sized crystallites.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000293357100019 Publication Date 2011-07-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 46 Open Access
  Notes Fwo; Bof Approved Most recent IF: 9.466; 2011 IF: 7.286
  Call Number UA @ lucian @ c:irua:90357 Serial 3053
Permanent link to this record
 

 
Author Canioni, R.; Roch-Marchal, C.; Sécheresse, F.; Horcajada, P.; Serre, C.; Hardi-Dan, M.; Férey, G.; Grenèche, J.-M.; Lefebvre, F.; Chang, J.-S.; Hwang, Y.-K.; Lebedev, O.; Turner, S.; Van Tendeloo, G.
  Title Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe) Type A1 Journal article
  Year (up) 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
  Volume 21 Issue 4 Pages 1226-1233
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Successful encapsulation of polyoxometalate (POM) within the framework of a mesoporous iron trimesate MIL-100(Fe) sample has been achieved by direct hydrothermal synthesis in the absence of fluorine. XRPD, 31P MAS NMR, IR, EELS, TEM and 57Fe Mössbauer spectrometry corroborate the insertion of POM within the cavities of the MOF. The experimental Mo/Fe ratio is 0.95, in agreement with the maximum theoretical amount of POM loaded within the pores of MIL-100(Fe), based on steric hindrance considerations. The POM-MIL-100(Fe) sample exhibits a pore volume of 0.373 cm3 g−1 and a BET surface area close to 1000 m2 g−1, indicating that small gas molecules can easily diffuse inside the cavities despite the presence of heavy phosphomolybdates. These latter contribute to the decrease in the overall surface area, due to the increase in molar weight, by 65%. Moreover, the resulting Keggin containing MIL-100(Fe) solid is stable in aqueous solution with no POM leaching even after more than 2 months. In addition, no exchange of the Keggin anions by tetrabutylammonium perchlorate in organic media has been observed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000286110400042 Publication Date 2010-11-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 158 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:88642 Serial 3145
Permanent link to this record
 

 
Author Rusakov, D.; Abakumov, A.M.; Yamaura, K.; Belik, A.A.; Van Tendeloo, G.; Takayama-Muromachi, E.
  Title Structural evolution of the BiFeO3-LaFeO3 system Type A1 Journal article
  Year (up) 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 23 Issue 2 Pages 285-292
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The (1 − x)BiFeO3−xLaFeO3 system has been investigated and characterized by room-temperature and high-temperature laboratory and synchrotron powder X-ray diffraction, electron diffraction, high-resolution transmission electron microscopy, differential scanning calorimetry, and magnetization measurements. At room temperature, the ferroelectric R3c phase is observed for 0.0 ≤ x ≤ 0.10. The PbZrO3-related √2ap × 2√2ap × 4ap superstructure (where ap is the parameter of the cubic perovskite subcell) is observed for Bi0.82La0.18FeO3, while an incommensurately modulated phase is formed for 0.19 ≤ x ≤ 0.30 with the √2ap × 2ap × √2ap basic unit cell. The GdFeO3-type phase with space group Pnma (√2ap × 2ap × √2ap) is stable at 0.50 ≤ x ≤ 1. Bi0.82La0.18FeO3 has no detectable homogeneity range (space group Pnam, a = 5.6004(1) Å, b = 11.2493(3) Å, c = 15.6179(3) Å). The incommensurately modulated Bi0.75La0.25FeO3 structure was solved from synchrotron X-ray powder diffraction data (Imma(00γ)s00 superspace group, a = 5.5956(1) Å, b = 7.8171(1) Å, c = 5.62055(8) Å, q = 0.4855(4)c*, RP = 0.023, RwP = 0.033). In this structure, cooperative displacements of the Bi and O atoms occur, which order within the (AO) (where A = Bi, La) layers, resulting in an antipolar structure. Local fluctuations of the intralayer antipolar ordering are compensated by an interaction with the neighboring (AO) layers. A coupling of the antipolar displacements with the cooperative tilting distortion of the perovskite octahedral framework is proposed as the origin of the incommensurability. All the phases transform to the GdFeO3-type structure at high temperatures. Bi0.82La0.18FeO3 shows an intermediate PbZrO3-type phase with √2ap × 2√2ap × 2ap (space group Pbam; a = 5.6154(2) Å, b = 11.2710(4) Å, and c = 7.8248(2) Å at 570 K). The compounds in the compositional range of 0.18 ≤ x ≤ 0.95 are canted antiferromagnets.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000286160800021 Publication Date 2010-12-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 133 Open Access
  Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
  Call Number UA @ lucian @ c:irua:88650 Serial 3236
Permanent link to this record
 

 
Author Shenderova, O.; Koscheev, A.; Zaripov, N.; Petrov, I.; Skryabin, Y.; Detkov, P.; Turner, S.; Van Tendeloo, G.
  Title Surface chemistry and properties of ozone-purified detonation nanodiamonds Type A1 Journal article
  Year (up) 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 115 Issue 20 Pages 9827-9837
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Nanodiamond from ozone purification (NDO) demonstrates very distinctive properties within the class of detonation nanodiamonds, namely very high acidity and high colloidal stability in a broad pH range. To understand the origin of these unusual properties of NDO, the nature of the surface functional groups formed during detonation soot oxidation by ozone needs to be revealed. In this work, thermal desorption mass spectrometry (TDMS) and IR spectroscopy were used for the identification of surface groups and it was concluded that carboxylic anhydride groups prevail on the NDO surface. On the basis of the temperature profiles of the desorbed volatile products and their mass balance, it is hypothesized that decomposition of carboxylic anhydride groups from NDO during heating proceeds by two different mechanisms. Other distinctive features of NDO in comparison with air-treated nanodiamond are also reported.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000290652200001 Publication Date 2011-04-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 105 Open Access
  Notes Esteem 026019; Fwo Approved Most recent IF: 4.536; 2011 IF: 4.805
  Call Number UA @ lucian @ c:irua:89556 Serial 3394
Permanent link to this record
 

 
Author Yang, T.; Perkisas, T.; Hadermann, J.; Croft, M.; Ignatov, A.; Van Tendeloo, G.; Greenblatt, M.
  Title Synthesis and structure determination of ferromagnetic semiconductors LaAMnSnO6(A = Sr, Ba) Type A1 Journal article
  Year (up) 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
  Volume 21 Issue 1 Pages 199-205
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract LaAMnSnO(6) (A = Sr, Ba) have been synthesized by high temperature solid-state reactions under dynamic 1% H(2)/Ar flow. Rietveld refinements on room temperature powder X-ray diffraction data indicate that LaSrMnSnO(6) crystallizes in the GdFeO(3)-structure, with space group Pnma and, combined with transmission electron microscopy, LaBaMnSnO(6) in Imma. Both space groups are common in disordered double-perovskites. The Mn(3+) and Sn(4+) ions whose valence states were confirmed by X-ray absorption spectroscopy, are completely disordered over the B-sites and the BO(6) octahedra are slightly distorted. LaAMnSnO(6) are ferromagnetic semiconductors with a T(C) = 83 K for the Sr- and 66 K for the Ba-compound. The title compounds, together with the previously reported LaCaMnSnO(6) provide an interesting example of progression from Pnma to Imma as the tolerance factor increases. An analysis of the relationship between space group and tolerance factor for the series LaAMnMO(6) (A = Ca, Sr, Ba; M = Sn, Ru) provides a better understanding of the symmetry determination for double perovskites.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000285067300025 Publication Date 2010-10-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 3 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:95527 Serial 3440
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Lebedev, O.I.; Parfenova, A.; Turner, S.; Tondello, E.; Van Tendeloo, G.
  Title Tailored vapor-phase growth of CuxO-TiO2(x=1,2) nanomaterials decorated with Au particles Type A1 Journal article
  Year (up) 2011 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir
  Volume 27 Issue 10 Pages 6409-6417
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We report on the fabrication of CuxOTiO2 (x = 1, 2) nanomaterials by an unprecedented vapor-phase approach. The adopted strategy involves the growth of porous CuxO matrices by means of chemical vapor deposition (CVD), followed by the controlled dispersion of TiO2 nanoparticles. The syntheses are performed on Si(100) substrates at temperatures of 400550 °C under wet oxygen atmospheres, adopting Cu(hfa)2·TMEDA (hfa =1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) and Ti(O-iPr)2(dpm)2 (O-iPr = isopropoxy; dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) as copper and titanium precursors, respectively. Subsequently, finely dispersed gold nanoparticles are introduced in the as-prepared systems via radio frequency (RF)-sputtering under mild conditions. The synthesis process results in the formation of systems with chemical composition and nano-organization strongly dependent on the nature of the initial CuxO matrix and on the deposited TiO2 amount. The decoration with low-size gold clusters paves the way to the engineering of hierarchically organized nanomaterials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000290292900082 Publication Date 2011-04-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.833 Times cited 36 Open Access
  Notes Fwo Approved Most recent IF: 3.833; 2011 IF: 4.186
  Call Number UA @ lucian @ c:irua:88940 Serial 3467
Permanent link to this record
 

 
Author Paul, M.; Kufer, D.; Müller, A.; Brück, S.; Goering, E.; Kamp, M.; Verbeeck, J.; Tian, H.; Van Tendeloo, G.; Ingle, N.J.C.; Sing, M.; Claessen, R.
  Title Fe3O4/ZnO : a high-quality magnetic oxide-semiconductor heterostructure by reactive deposition Type A1 Journal article
  Year (up) 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 98 Issue 1 Pages 012512,1-012512,3
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We demonstrate the epitaxial growth of Fe<sub>3</sub>O<sub>4</sub> films on ZnO by a simple reactive deposition procedure using molecular oxygen as an oxidizing agent. X-ray photoelectron spectroscopy results evidence that the iron-oxide surface is nearly stoichiometric magnetite. X-ray diffraction results indicate monocrystalline epitaxy and almost complete structural relaxation. Scanning transmission electron micrographs reveal that the microstructure consists of domains which are separated by antiphase boundaries or twin boundaries. The magnetite films show rather slow magnetization behavior in comparison with bulk crystals probably due to reduced magnetization at antiphase boundaries in small applied fields.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000286009800055 Publication Date 2011-01-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 27 Open Access
  Notes The authors acknowledge financial support by DFG through Forschergruppe FOR 1162. Approved Most recent IF: 3.411; 2011 IF: 3.844
  Call Number UA @ lucian @ c:irua:88653 Serial 3532
Permanent link to this record
 

 
Author Bals, S.; Casavola, M.; van Huis, M.A.; Van Aert, S.; Batenburg, K.J.; Van Tendeloo, G.; Vanmaekelbergh, D.
  Title Three-dimensional atomic imaging of colloidal core-shell nanocrystals Type A1 Journal article
  Year (up) 2011 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 11 Issue 8 Pages 3420-3424
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract Colloidal coreshell semiconductor nanocrystals form an important class of optoelectronic materials, in which the exciton wave functions can be tailored by the atomic configuration of the core, the interfacial layers, and the shell. Here, we provide a trustful 3D characterization at the atomic scale of a free-standing PbSe(core)CdSe(shell) nanocrystal by combining electron microscopy and discrete tomography. Our results yield unique insights for understanding the process of cation exchange, which is widely employed in the synthesis of coreshell nanocrystals. The study that we present is generally applicable to the broad range of colloidal heteronanocrystals that currently emerge as a new class of materials with technological importance.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos 000293665600062 Publication Date 2011-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 121 Open Access
  Notes Esteem 026019; Fwo Approved Most recent IF: 12.712; 2011 IF: 13.198
  Call Number UA @ lucian @ c:irua:91263 Serial 3643
Permanent link to this record
 

 
Author Van Aert, S.; Batenburg, K.J.; Rossell, M.D.; Erni, R.; Van Tendeloo, G.
  Title Three-dimensional atomic imaging of crystalline nanoparticles Type A1 Journal article
  Year (up) 2011 Publication Nature Abbreviated Journal Nature
  Volume 470 Issue 7334 Pages 374-377
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract Determining the three-dimensional (3D) arrangement of atoms in crystalline nanoparticles is important for nanometre-scale device engineering and also for applications involving nanoparticles, such as optoelectronics or catalysis. A nanoparticles physical and chemical properties are controlled by its exact 3D morphology, structure and composition1. Electron tomography enables the recovery of the shape of a nanoparticle from a series of projection images2, 3, 4. Although atomic-resolution electron microscopy has been feasible for nearly four decades, neither electron tomography nor any other experimental technique has yet demonstrated atomic resolution in three dimensions. Here we report the 3D reconstruction of a complex crystalline nanoparticle at atomic resolution. To achieve this, we combined aberration-corrected scanning transmission electron microscopy5, 6, 7, statistical parameter estimation theory8, 9 and discrete tomography10, 11. Unlike conventional electron tomography, only two images of the targeta silver nanoparticle embedded in an aluminium matrixare sufficient for the reconstruction when combined with available knowledge about the particles crystallographic structure. Additional projections confirm the reliability of the result. The results we present help close the gap between the atomic resolution achievable in two-dimensional electron micrographs and the coarser resolution that has hitherto been obtained by conventional electron tomography.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000287409100037 Publication Date 2011-02-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0028-0836;1476-4687; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 40.137 Times cited 341 Open Access
  Notes Esteem 026019 Approved Most recent IF: 40.137; 2011 IF: 36.280
  Call Number UA @ lucian @ c:irua:86745 Serial 3644
Permanent link to this record
 

 
Author Lin, K.; Lebedev, O.I.; Van Tendeloo, G.; Jacobs, P.A.; Pescarmona, P.P.
  Title Titanosilicate beads with hierarchical porosity : synthesis and application as epoxidation catalysts Type A1 Journal article
  Year (up) 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
  Volume 16 Issue 45 Pages 13509-13518
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Porous titanosilicate beads with a diameter of 0.51.5 mm (TiSil-HPB-60) were synthesized from a preformed titanosilicate solution with a porous anion-exchange resin as template. The bead format of this material enables its straightforward separation from the reaction mixture in its application as a liquid-phase heterogeneous catalyst. The material displays hierarchical porosity (micro/mesopores) and incipient TS-1 structure building units. The titanium species are predominantly located in tetrahedral framework positions. TiSil-HPB-60 is a highly active catalyst for the epoxidation of cyclohexene with t-butyl hydroperoxide (TBHP) and aqueous H2O2. With both oxidants, TiSil-HPB-60 gave higher epoxide yields than Ti-MCM-41 and TS-1. The improved catalytic performance of TiSil-HPB-60 is mainly ascribed to the large mesopores favoring the diffusion of reagents and products to and from the titanium active sites. The epoxide yield and selectivity could be further improved by silylation of the titanosilicate beads. Importantly, TiSil-HPB-60 is a stable catalyst immune to titanium leaching, and can be easily recovered and reused in successive catalytic cycles without significant loss of activity. Moreover, TiSil-HPB-60 is active and selective in the epoxidation of a wide range of bulky alkenes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000285398400029 Publication Date 2010-10-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.317 Times cited 38 Open Access
  Notes Iap; Goa Approved Most recent IF: 5.317; 2011 IF: 5.925
  Call Number UA @ lucian @ c:irua:88153 Serial 3668
Permanent link to this record
 

 
Author Guttmann, P.; Bittencourt, C.; Ke, X.; Van Tendeloo, G.; Umek, P.; Arcon, D.; Ewels, C.P.; Rehbein, S.; Heim, S.; Schneider, G.
  Title TXM-NEXAFS of TiO2-based nanostructures Type P1 Proceeding
  Year (up) 2011 Publication AIP conference proceedings Abbreviated Journal
  Volume 1365 Issue Pages 437-440
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
  Abstract In this work, electronic properties of individual TiOx-pristine nanoribbons (NR) prepared by hydrothermal treatment of anatase TiO(2) micro-particles were studied using the HZB transmission x-ray microscope (TXM) at the BESSY II undulator beamline U41-FSGM. NEXAFS is ideally suited to study TiO(2)-based materials because both the O K-edge and Ti L-edge features are very sensitive to the local bonding environment, providing diagnostic information about the crystal structures and oxidation states of various forms of titanium oxides and sub-oxides. TXM-NEXAFS combines full-field x-ray microscopy with spectroscopy, allowing the study of the electronic structure of individual nanostructures with spatial resolution better than 25 nm and a spectral resolution of up to E/Delta E = 10000. The typical image field in TXM-NEXAFS measurements is about 10 mu m. 10 mu m, which is large compared to the individual nanoparticle. Therefore, one image stack already contains statistically significant data. In addition, the directional electric field vector ((E) over bar) of the x-rays can be used as a “search tool” for the direction of chemical bonds of the atom selected by its absorption edge.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York Editor
  Language Wos 000298672400103 Publication Date 2011-09-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 2 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:113071 Serial 3789
Permanent link to this record
 

 
Author Kazakov, S.M.; Abakumov, A.M.; Perz-Mato, J.M.; Ovchinnikov, A.V.; Roslova, M.V.; Boltalin, A.I.; Morozov, I.V.; Antipov, E.V.; Van Tendeloo, G.
  Title Uniform patterns of Fe-vacancy ordering in the Kx(Fe,Co)2-ySe2 superconductors Type A1 Journal article
  Year (up) 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 23 Issue 19 Pages 4311-4316
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The Fe-vacancy ordering patterns in the superconducting KxFe2ySe2 and nonsuperconducting Kx(Fe,Co)2ySe2 samples have been investigated by electron diffraction and high angle annular dark field scanning transmission electron microscopy. The Fe-vacancy ordering occurs in the ab plane of the parent ThCr2Si2-type structure, demonstrating two types of patterns. Superstructure I retains the tetragonal symmetry and can be described with the aI = bI = as√5 (as is the unit cell parameter of the parent ThCr2Si2-type structure) supercell and I4/m space group. Superstructure II reduces the symmetry to orthorhombic with the aII = as√2, bII = 2as√2 supercell and the Ibam space group. This type of superstructure is observed for the first time in KxFe2ySe2. The Fe-vacancy ordering is inhomogeneous: the disordered areas interleave with the superstructures I and II in the same crystallite. The observed superstructures represent the compositionally dependent uniform ordering patterns of two species (the Fe atoms and vacancies) on a square lattice. More complex uniform ordered configurations, including compositional stripes, can be predicted for different chemical compositions of the KxFe2ySe2 (0 < y < 0.5) solid solutions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000295487800005 Publication Date 2011-09-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 20 Open Access
  Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
  Call Number UA @ lucian @ c:irua:92805 Serial 3810
Permanent link to this record
 

 
Author Philippaerts, A.; Paulussen, S.; Breesch, A.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Sels, B.; Jacobs, P.
  Title Unprecedented shape selectivity in hydrogenation of triacylglycerol molecules with Pt/ZSM-5 zeolite Type A1 Journal article
  Year (up) 2011 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
  Volume 50 Issue 17 Pages 3947-3949
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Well tuned: ZSM-5 with platinum nanoparticles preferably hydrogenates trans fatty acids over cis isomers in model triacylglycerols for geometric reasons. The central fatty acid chain reacts faster, pointing to pore mouth adsorption in a tuning fork conformation (see picture). This conformation induces stepwise hydrogenation, resulting in fast removal of the unstable central triene, while formation of saturated chains is limited.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000289514100025 Publication Date 2011-03-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited 31 Open Access
  Notes Approved Most recent IF: 11.994; 2011 IF: 13.455
  Call Number UA @ lucian @ c:irua:88381 Serial 3814
Permanent link to this record
 

 
Author Yang, X.-Y.; Tian, G.; Chen, L.-H.; Li, Y.; Rooke, J.C.; Wei, Y.-X.; Liu, Z.-M.; Deng, Z.; Van Tendeloo, G.; Su, B.-L.
  Title Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance Type A1 Journal article
  Year (up) 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
  Volume 17 Issue 52 Pages 14987-14995
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Preparation and characterization of well-organized zeolitic nanocrystal aggregates with an interconnected hierarchically micromesomacro porous system are described. Amorphous nanoparticles in bimodal aluminosilicates were directly transformed into highly crystalline nanosized zeolites, as well as acting as scaffold template. All pores on three length scales incorporated in one solid body are interconnected with each other. These zeolitic nanocrystal aggregates with hierarchically micromesomacroporous structure were thoroughly characterized. TEM images and 29Si NMR spectra showed that the amorphous phase of the initial material had been completely replaced by nanocrystals to give a micromesomacroporous crystalline zeolitic structure. Catalytic testing demonstrated their superiority due to the highly active sites and the presence of interconnected micromesomacroporosity in the cracking of bulky 1,3,5-triisopropylbenzene (TIPB) compared to traditional zeolite catalysts. This synthesis strategy was extended to prepare various zeolitic nanocrystal aggregates (ZSM-5, Beta, TS-1, etc.) with well-organized hierarchical micromesomacroporous structures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000298547300035 Publication Date 2011-11-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.317 Times cited 61 Open Access
  Notes Approved Most recent IF: 5.317; 2011 IF: 5.925
  Call Number UA @ lucian @ c:irua:96274 Serial 3913
Permanent link to this record
 

 
Author Li, Y.; Tan, H.; Yang, X.-Y.; Goris, B.; Verbeeck, J.; Bals, S.; Colson, P.; Cloots, R.; Van Tendeloo, G.; Su, B.-L.
  Title Well shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties Type A1 Journal article
  Year (up) 2011 Publication Small Abbreviated Journal Small
  Volume 7 Issue 4 Pages 475-483
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Very uniform and well shaped Mn3O4 nano-octahedra are synthesized using a simple hydrothermal method under the help of polyethylene glycol (PEG200) as a reductant and shape-directing agent. The nano-octahedra formation mechanism is monitored. The shape and crystal orientation of the nanoparticles is reconstructed by scanning electron microscopy and electron tomography, which reveals that the nano-octahedra only selectively expose {101} facets at the external surfaces. The magnetic testing demonstrates that the Mn3O4 nano-octahedra exhibit anomalous magnetic properties: the Mn3O4 nano-octahedra around 150 nm show a similar Curie temperature and blocking temperature to Mn3O4 nanoparticles with 10 nm size because of the vertical axis of [001] plane and the exposed {101} facets. With these Mn3O4 nano-octahedra as a catalyst, the photodecomposition of rhodamine B is evaluated and it is found that the photodecomposition activity of Mn3O4 nano-octahedra is much superior to that of commercial Mn3O4 powders. The anomalous magnetic properties and high superior photodecomposition activity of well shaped Mn3O4 nano-octahedra should be related to the special shape of the nanoparticles and the abundantly exposed {101} facets at the external surfaces. Therefore, the shape preference can largely broaden the application of the Mn3O4 nano-octahedra.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000288080400008 Publication Date 2011-01-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.643 Times cited 131 Open Access
  Notes This work was realized in the frame of an Interuniversity Attraction Poles Program (Inanomat-P6/17)-Belgian State-Belgian Science Policy and the project “Redugaz”, financially supported by the European community and the Wallon government in the frame of Interreg IV (France-Wallonie). B. L. S. acknowledges the Chinese Central Government for an “Expert of the State” position in the program of “Thousand talents” and the Chinese Ministry of Education for a Changjiang Scholar position at the Wuhan University of Technology. H. T. acknowledges the financial support from FWO-Vlaanderen (Project nr. G.0147.06). J.V. thanks the financial support from the European Union under Framework 6 program for Integrated Infrastructure Initiative, Reference 026019 ESTEEM. Approved Most recent IF: 8.643; 2011 IF: 8.349
  Call Number UA @ lucian @ c:irua:87908 Serial 3914
Permanent link to this record
 

 
Author Afanasov, I.M.; Van Tendeloo, G.
  Title Zirconia-modified exfoliated graphite Type A1 Journal article
  Year (up) 2011 Publication Inorganic materials Abbreviated Journal Inorg Mater+
  Volume 47 Issue 6 Pages 603-608
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Zirconia has been incorporated into exfoliated graphite (EG) through the anodic polarization in the natural graphite-ZrO(NO3)2-HNO3-H2O system, followed by flash heating. The thermal properties of the oxidized graphites employed as precursors to EG have been studied by thermogravimetry in combination with differential scanning calorimetry, and the distribution of ZrO2 particles in the EG has been assessed by scanning and transmission electron microscopy. Conditions are described for the preparation of EG with bulk densities in the range 1.34.7 g/l and ZrO2 contents in the range 434 wt %.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000291698100008 Publication Date 2011-05-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1685;1608-3172; ISBN Additional Links UA library record; WoS full record
  Impact Factor 0.62 Times cited Open Access
  Notes Approved Most recent IF: 0.62; 2011 IF: 0.414
  Call Number UA @ lucian @ c:irua:90447 Serial 3933
Permanent link to this record
 

 
Author Esken, D.; Noei, H.; Wang, Y.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A.
  Title ZnO@ZIF-8 : stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption Type A1 Journal article
  Year (up) 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
  Volume 21 Issue 16 Pages 5907-5915
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The microporous and activated zeolitic imidazolate framework (Zn(MeIM)2; MeIM = imidazolate-2-methyl; ZIF-8) was loaded with the MOCVD precursor diethyl zinc [Zn(C2H5)2]. Exposure of ZIF-8 to the vapour of the volatile organometallic molecule resulted in the formation of the inclusion compound [Zn(C2H5)2]0.38@ZIF-8 revealing two precursor molecules per cavity. In a second step the obtained material was treated with oxygen (5 vol% in argon) at various temperatures (oxidative annealing) to achieve the composite material ZnO0.35@ZIF-8. The new material was characterized with powder XRD, FT-IR, UV-vis, solid state NMR, elemental analysis, N2 sorption measurements, and transmission electron microscopy. The data give evidence for the presence of nano-sized ZnO particles stabilized by ZIF-8 showing a blue-shift of the UV-vis absorption caused by quantum size effect (QSE). The surface structure and reactivity of embedded ZnO nanoparticles were characterized via carbon dioxide adsorption at different temperatures monitored by ultra-high vacuum FTIR techniques. It was found that the surface of ZnO nanoparticles is dominated by polar OZnO and ZnZnO facets as well as by defect sites, which all exhibit high reactivity towards CO2 activation forming various adsorbed carbonate and chemisorbed CO2δ− species.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000289260000012 Publication Date 2011-03-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 76 Open Access
  Notes Esteem 026019 Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:88641 Serial 3936
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yucelen, E.; Verbeeck, J.; Van Tendeloo, G.
  Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy : reply Type Editorial
  Year (up) 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 108 Issue 25 Pages 259702
  Keywords Editorial; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000305568700038 Publication Date 2012-06-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record
  Impact Factor 8.462 Times cited Open Access
  Notes Approved Most recent IF: 8.462; 2012 IF: 7.943
  Call Number UA @ admin @ c:irua:100293 Serial 5370
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D.
  Title Advanced electron microscopy for advanced materials Type A1 Journal article
  Year (up) 2012 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume 24 Issue 42 Pages 5655-5675
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
  Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000310602200001 Publication Date 2012-08-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 107 Open Access
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved Most recent IF: 19.791; 2012 IF: 14.829
  Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70
Permanent link to this record
 

 
Author Lu, Y.-G.; Verbeeck, J.; Turner, S.; Hardy, A.; Janssens, S.D.; De Dobbelaere, C.; Wagner, P.; Van Bael, M.K.; Van Tendeloo, G.
  Title Analytical TEM study of CVD diamond growth on TiO2 sol-gel layers Type A1 Journal article
  Year (up) 2012 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
  Volume 23 Issue Pages 93-99
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The early growth stages of chemical vapor deposition (CVD) diamond on a solgel TiO2 film with buried ultra dispersed diamond seeds (UDD) have been studied. In order to investigate the diamond growth mechanism and understand the role of the TiO2 layer in the growth process, high resolution transmission electron microscopy (HRTEM), energy-filtered TEM and electron energy loss spectroscopy (EELS) techniques were applied to cross sectional diamond film samples. We find evidence for the formation of TiC crystallites inside the TiO2 layer at different diamond growth stages. However, there is no evidence that diamond nucleation starts from these crystallites. Carbon diffusion into the TiO2 layer and the chemical bonding state of carbon (sp2/sp3) were both extensively investigated. We provide evidence that carbon diffuses through the TiO2 layer and that the diamond seeds partially convert to amorphous carbon during growth. This carbon diffusion and diamond to amorphous carbon conversion make the seed areas below the TiO2 layer grow and bend the TiO2 layer upwards to form the nucleation center of the diamond film. In some of the protuberances a core of diamond seed remains, covered by amorphous carbon. It is however unlikely that the remaining seeds are still active during the growth process.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000302887600017 Publication Date 2012-01-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.561 Times cited 16 Open Access
  Notes Iap; Esteem 026019; Fwo Approved Most recent IF: 2.561; 2012 IF: 1.709
  Call Number UA @ lucian @ c:irua:95037UA @ admin @ c:irua:95037 Serial 111
Permanent link to this record
 

 
Author Narayanan, V.; Lommens, P.; De Buysser, K.; Vanpoucke, D.E.P.; Huehne, R.; Molina, L.; Van Tendeloo, G.; van der Voort, P.; Van Driessche, I.
  Title Aqueous CSD approach for the growth of novel, lattice-tuned LaxCe1-xO\delta epitaxial layers Type A1 Journal article
  Year (up) 2012 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
  Volume 22 Issue 17 Pages 8476-8483
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Lanthanumcerium oxide (LCO) films were deposited on Ni-5%W substrates by chemical solution deposition (CSD) from water-based precursors. LCO films containing different ratios of lanthanum and cerium ions (from CeO2 to La2Ce2O7) were prepared. The composition of the layers was optimized towards the formation of LCO buffer layers, lattice-matched with the superconducting YBa2Cu3Oy layer, useful for the development of coated conductors. Single, crack-free LCO layers with a thickness of up to 140 nm could be obtained in a single deposition step. The crystallinity and microstructure of these lattice-matched LCO layers were studied by X-ray diffraction techniques, RHEED and SEM. We find that only layers with thickness below 100 nm show a crystalline top surface although both thick and thin layers show good biaxial texture in XRD. On the most promising layers, AFM and (S)TEM were performed to further evaluate their morphology. The overall surface roughness varies between 3.9 and 7.5 nm, while the layers appear much more dense than the frequently used La2Zr2O7 (LZO) systems, showing much smaller nanovoids (12 nm) than the latter system. Their effective buffer layer action was studied using XPS. The thin LCO layers supported the growth of superconducting YBCO deposited using PLD methods.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000302367500044 Publication Date 2012-03-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 24 Open Access
  Notes Iap Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:96960 Serial 148
Permanent link to this record
 

 
Author Turner, S.; Verbeeck, J.; Ramezanipour, F.; Greedan, J.E.; Van Tendeloo, G.; Botton, G.A.
  Title Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
  Year (up) 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 24 Issue 10 Pages 1904-1909
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Using a combination of high-angle annular dark field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy at high energy resolution in an aberration-corrected electron microscope, we demonstrate the capability of coordination mapping in complex oxides. Brownmillerite compound Ca2FeCoO5, consisting of repetitive octahedral and tetrahedral coordination layers with Fe and Co in a fixed 3+ valency, is selected to demonstrate the principle of atomic resolution coordination mapping. Analysis of the Co-L2,3 and the Fe-L2,3 edges shows small variations in the fine structure that can be specifically attributed to Co/Fe in tetrahedral or in octahedral coordination. Using internal reference spectra, we show that the coordination of the Fe and Co atoms in the compound can be mapped at atomic resolution.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000304237500024 Publication Date 2012-04-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 33 Open Access
  Notes A.M. Abakumov is thanked for fruitful discussions. S.T. gratefully acknowledges the Fund for Scientific Research Flanders (FWO). J.E.G. and GAB. acknowledge the support of the NSERC of Canada through Discovery Grants. The Canadian Centre for Electron Microscopy is a National Facility supported by NSERC and McMaster University and was funded by the Canada Foundation for Innovation and the Ontario Government. Part of this work was supported by funding from the European Research Council under the FP7, ERC Grant N 246791 COUNTATOMS and ERC Starting Grant N 278510 VORTEX. The EMAT microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 9.466; 2012 IF: 8.238
  Call Number UA @ lucian @ c:irua:98379UA @ admin @ c:irua:98379 Serial 175
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: