|   | 
Details
   web
Records
Author Dixit, H.; Lamoen, D.; Partoens, B.
Title Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions Type A1 Journal article
Year (up) 2013 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 25 Issue 3 Pages 035501-35505
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000313100500010 Publication Date 2012-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 7 Open Access
Notes Fwo Approved Most recent IF: 2.649; 2013 IF: 2.223
Call Number UA @ lucian @ c:irua:105296 Serial 2801
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M., Jr.; Peeters, F.M.; Farias, G.A.
Title Snake states in graphene quantum dots in the presence of a p-n junction Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 3 Pages 035426
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the magnetic interface states of graphene quantum dots that contain p-n junctions. Within a tight-binding approach, we consider rectangular quantum dots in the presence of a perpendicular magnetic field containing p-n as well as p-n-p and n-p-n junctions. The results show the interplay between the edge states associated with the zigzag terminations of the sample and the snake states that arise at the p-n junction due to the overlap between electron and hole states at the potential interface. Remarkable localized states are found at the crossing of the p-n junction with the zigzag edge having a dumb-bell-shaped electron distribution. The results are presented as a function of the junction parameters and the applied magnetic flux. DOI: 10.1103/PhysRevB.87.035426
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000313941000003 Publication Date 2013-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), the Brazilian agency CNPq (Pronex), and the bilateral projects between Flanders and Brazil and the collaboration project FWO-CNPq. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:110087 Serial 3048
Permanent link to this record
 

 
Author Komendová, L.; Milošević, M.V.; Peeters, F.M.
Title Soft vortex matter in a type-I/type-II superconducting bilayer Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 9 Pages 094515
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetic flux patterns are known to strongly differ in the intermediate state of type-I and type-II superconductors. Using a type-I/type-II bilayer we demonstrate hybridization of these flux phases into a plethora of unique new ones. Owing to a complicated multibody interaction between individual fluxoids, many different intriguing patterns are possible under applied magnetic field, such as few-vortex clusters, vortex chains, mazes, or labyrinthal structures resembling the phenomena readily encountered in soft-matter physics. However, in our system the patterns are tunable by sample parameters, magnetic field, current, and temperature, which reveals transitions from short-range clustering to long-range ordered phases such as parallel chains, gels, glasses, and crystalline vortex lattices, or phases where lamellar type-I flux domains in one layer serve as a bedding potential for type-II vortices in the other, configurations clearly beyond the soft-matter analogy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000324689900008 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Insightful discussions with Arkady Shanenko and Edith Cristina Euan Diaz are gratefully acknowledged. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111167 Serial 3050
Permanent link to this record
 

 
Author Badalyan, S.M.; Matos-Abiague, A.; Fabian, J.; Vignale, G.; Peeters, F.M.
Title Spin-orbit-interaction induced singularity of the charge density relaxation propagator Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 19 Pages 195402-195405
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The charge density relaxation propagator of a two-dimensional electron system, which is the slope of the imaginary part of the polarization function, exhibits singularities for bosonic momenta having the order of the spin-orbit momentum and depending on the momentum orientation. We have provided an intuitive understanding for this nonanalytic behavior in terms of the interchirality subband electronic transitions, induced by the combined action of Bychkov-Rashba (BR) and Dresselhaus (D) spin-orbit coupling. It is shown that the regular behavior of the relaxation propagator is recovered in the presence of only one BR or D spin-orbit field or for spin-orbit interaction with equal BR and D coupling strengths. This creates a new possibility to influence carrier relaxation properties by means of an applied electric field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326820200005 Publication Date 2013-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; We acknowledge support from the Methusalem program of the Flemish government and the Flemish Science Foundation (FWO-Vl), DFG SFB Grant 689, and NSF Grant DMR-1104788 (G.V.). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:112711 Serial 3093
Permanent link to this record
 

 
Author Neek-Amal, M.; Beheshtian, J.; Shayeganfar, F.; Singh, S.K.; Los, J.H.; Peeters, F.M.
Title Spiral graphone and one-sided fluorographene nanoribbons Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 7 Pages 075448-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The instability of a free-standing one-sided hydrogenated/fluorinated graphene nanoribbon, i.e., graphone/fluorographene, is studied using ab initio, semiempirical, and large-scale molecular dynamics simulations. Free-standing semi-infinite armchairlike hydrogenated/fluorinated graphene (AC-GH/AC-GF) and boatlike hydrogenated/fluorinated graphene (B-GH/B-GF) (nanoribbons which are periodic along the zigzag direction) are unstable and spontaneously transform into spiral structures. We find that rolled, spiral B-GH and B-GF are energetically more favorable than spiral AC-GH and AC-GF which is opposite to the double-sided flat hydrogenated/fluorinated graphene, i.e., graphane/fluorographene. We found that the packed, spiral structures exhibit an unexpected localized highest occupied molecular orbital and lowest occupied molecular orbital at the edges with increasing energy gap during rolling. These rolled hydrocarbon structures are stable beyond room temperature up to at least T = 1000 K within our simulation time of 1 ns. DOI: 10.1103/PhysRevB.87.075448
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315481800005 Publication Date 2013-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; We thank A. Sadeghi, M. R. Ejtehadi, and J. Amini for their useful comments. This work is supported by the ESF EuroGRAPHENE project CONGRAN and the Flemish Science Foundation (FWO-Vl). M.N.-A. is supported by a EU-Marie Curie IIF fellowship program Grant No. 299855. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107654 Serial 3106
Permanent link to this record
 

 
Author Sahin, H.; Sivek, J.; Li, S.; Partoens, B.; Peeters, F.M.
Title Stone-Wales defects in silicene : formation, stability, and reactivity of defect sites Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 4 Pages 045434-45436
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract During the synthesis of ultrathin materials with hexagonal lattice structure Stone-Wales (SW) type of defects are quite likely to be formed and the existence of such topological defects in the graphenelike structures results in dramatic changes of their electronic and mechanical properties. Here we investigate the formation and reactivity of such SW defects in silicene. We report the energy barrier for the formation of SW defects in freestanding (similar to 2.4 eV) and Ag(111)-supported (similar to 2.8 eV) silicene and found it to be significantly lower than in graphene (similar to 9.2 eV). Moreover, the buckled nature of silicene provides a large energy barrier for the healing of the SW defect and therefore defective silicene is stable even at high temperatures. Silicene with SW defects is semiconducting with a direct band gap of 0.02 eV and this value depends on the concentration of defects. Furthermore, nitrogen substitution in SW-defected silicene shows that the defect lattice sites are the least preferable substitution locations for the N atoms. Our findings show the easy formation of SW defects in silicene and also provide a guideline for band gap engineering in silicene-based materials through such defects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322113300007 Publication Date 2013-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 93 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109805 Serial 3162
Permanent link to this record
 

 
Author Arsoski, V.V.; Tadić, M.Z.; Peeters, F.M.
Title Strain and band-mixing effects on the excitonic Aharonov-Bohm effect in In(Ga)As/GaAs ringlike quantum dots Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 8 Pages 085314-14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Neutral excitons in strained axially symmetric In(Ga)As/GaAs quantum dots with a ringlike shape are investigated. Similar to experimental self-assembled quantum rings, the analyzed quantum dots have volcano-like shapes. The continuum mechanical model is employed to determine the strain distribution, and the single-band envelope function approach is adopted to compute the electron states. The hole states are determined by the axially symmetric multiband Luttinger-Kohn Hamiltonian, and the exciton states are obtained from an exact diagonalization. We found that the presence of the inner layer covering the ring opening enhances the excitonic Aharonov-Bohm (AB) oscillations. The reason is that the hole becomes mainly localized in the inner part of the quantum dot due to strain, whereas the electron resides mainly inside the ring-shaped rim. Interestingly, larger AB oscillations are found in the analyzed quantum dot than in a fully opened quantum ring of the same width. Comparison with the unstrained ringlike quantum dot shows that the amplitude of the excitonic Aharonov-Bohm oscillations are almost doubled in the presence of strain. The computed oscillations of the exciton energy levels are comparable in magnitude to the oscillations measured in recent experiments. DOI: 10.1103/PhysRevB.87.085314
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315278000003 Publication Date 2013-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported by the EU NoE: SANDiE, the Ministry of Education, Science, and Technological Development of Serbia, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107656 Serial 3165
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Verbeeck, J.; Gehrke, K.; Moshnyaga, V.; Van Tendeloo, G.
Title Structural phase transition and spontaneous interface reconstruction in La2/3Ca1/3MnO3/BaTiO3 superlattices Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 3 Pages 035418-8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (La2/3Ca1/3MnO3)n/(BaTiO3)m (LCMOn/BTOm) superlattices on MgO and SrTiO3 substrates with different layer thicknesses (n = 10, 38, 40 and m = 5, 18, 20) have been grown by metal organic aerosol deposition (MAD) and have been fully characterized down to the atomic scale to study the interface characteristics. Scanning transmission electron microscopy combined with spatially resolved electron energy-loss spectroscopy provides clear evidence for the existence of atomically sharp interfaces in MAD grown films, which exhibit epitaxial growth conditions, a uniform normal strain, and a fully oxidized state. Below a critical layer thickness the LCMO structure is found to change from the bulk Pnma symmetry to a pseudocubic R3̅ c symmetry. An atomically flat interface reconstruction consisting of a single Ca-rich atomic layer is observed on the compressively strained BTO on LCMO interface, which is thought to partially neutralize the total charge from the alternating polar atomic layers in LCMO as well as relieving strain at the interface. No interface reconstruction is observed at the tensile strained LCMO on BTO interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000313940400008 Publication Date 2013-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes FWO; Hercules; Countatoms Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:106180 Serial 3245
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.E.; Milošević, M.V.; Kusmartsev, F.V.; Peeters, F.M.
Title Synchronized dynamics of Josephson vortices in artificial stacks of SNS Josephson junctions under both dc and ac bias currents Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 18 Pages 184510-184519
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nonlinear dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions under simultaneously applied time-periodic ac and constant biasing dc currents is studied using the time dependent Ginzburg-Landau formalism with a Lawrence-Doniach extension. At zero external magnetic field and dc biasing current the resistive state of the system is characterized by periodic nucleation and annihilation of fluxon-antifluxon pairs, relative positions of which are determined by the state of neighboring junctions. Due to the mutual repulsive interaction, fluxons in different junctions move out of phase. Their collective motion can be synchronized by adding a small ac component to the biasing dc current. Coherent motion of fluxons is observed for a broad frequency range of the applied drive. In the coherent state the maximal output voltage, which is proportional to the number of junctions in the stack, is observed near the characteristic frequency of the system determined by the crossing of the fluxons across the sample. However, in this frequency range the dynamically synchronized state has an alternative-a less ordered state with smaller amplitude of the output voltage. Collective behavior of the junctions is strongly affected by the sloped sidewalls of the stack. Synchronization is observed only for weakly trapezoidal cross sections, whereas irregular motion of fluxons is observed for larger slopes of the sample edge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319653400007 Publication Date 2013-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109643 Serial 3406
Permanent link to this record
 

 
Author Singh, S.K.; Srinivasan, S.G.; Neek-Amal, M.; Costamagna, S.; van Duin, A.C.T.; Peeters, F.M.
Title Thermal properties of fluorinated graphene Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 10 Pages 104114-104116
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Large-scale atomistic simulations using the reactive force field approach are implemented to investigate the thermomechanical properties of fluorinated graphene (FG). A set of parameters for the reactive force field potential optimized to reproduce key quantum mechanical properties of relevant carbon-fluorine cluster systems are presented. Molecular dynamics simulations are used to investigate the thermal rippling behavior of FG and its mechanical properties and compare them with graphene, graphane and a sheet of boron nitride. The mean square value of the height fluctuations < h(2)> and the height-height correlation function H(q) for different system sizes and temperatures show that FG is an unrippled system in contrast to the thermal rippling behavior of graphene. The effective Young's modulus of a flake of fluorinated graphene is obtained to be 273 N/m and 250 N/m for a flake of FG under uniaxial strain along armchair and zigzag directions, respectively. DOI: 10.1103/PhysRevB.87.104114
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316933500002 Publication Date 2013-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 80 Open Access
Notes ; M.N.-A. is supported by the EU-Marie Curie IIF postdoc Fellowship/299855. This work is supported by the ESF-Eurographene project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. S. G. S. and A.C.T.vD. acknowledge support by the Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-10-1-0563. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108495 Serial 3629
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
Title Thermodynamic properties of the electron gas in multilayer graphene in the presence of a perpendicular magnetic field Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 24 Pages 245429-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The thermodynamic properties of the electron gas in multilayer graphene depend strongly on the number of layers and the type of stacking. Here we analyze how those properties change when we vary the number of layers for rhombohedral stacked multilayer graphene and compare our results with those from a conventional two-dimensional electron gas. We show that the highly degenerate zero-energy Landau level which is partly filled with electrons and partly with holes has a strong influence on the values of the different thermodynamic quantities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328686900006 Publication Date 2014-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; The authors would like to thank C. De Beule for enlightening discussions. This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B.V.D., and the Methusalem Program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:113700 Serial 3635
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Costamagna, S.; Peeters, F.M.
Title Thermomechanical properties of a single hexagonal boron nitride sheet Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 18 Pages 184106-184107
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using atomistic simulations we investigate the thermodynamical properties of a single atomic layer of hexagonal boron nitride (h-BN). The thermal induced ripples, heat capacity, and thermal lattice expansion of large scale h-BN sheets are determined and compared to those found for graphene (GE) for temperatures up to 1000 K. By analyzing the mean-square height fluctuations < h(2)> and the height-height correlation function H(q) we found that the h-BN sheet is a less stiff material as compared to graphene. The bending rigidity of h-BN (i) is about 16% smaller than the one of GE at room temperature (300 K), and (ii) increases with temperature as in GE. The difference in stiffness between h-BN and GE results in unequal responses to external uniaxial and shear stress and different buckling transitions. In contrast to a GE sheet, the buckling transition of a h-BN sheet depends strongly on the direction of the applied compression. The molar heat capacity, thermal-expansion coefficient, and Gruneisen parameter are estimated to be 25.2 J mol(-1) K-1, 7.2 x 10(-6) K-1, and 0.89, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000318653800001 Publication Date 2013-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 80 Open Access
Notes ; We thank K. H. Michel and D. A. Kirilenko for their useful comments on the manuscript. M. N.-A. was supported by EU-Marie Curie IIF Postdoctorate Fellowship No. 299855. S. Costamagna was supported by the Belgian Science Foundation (BELSPO). This work was supported by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109010 Serial 3638
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M.
Title Tight-binding description of intrinsic superconducting correlations in multilayer graphene Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 13 Pages 134509-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using highly efficient GPU-based simulations of the tight-binding Bogoliubov-de Gennes equations we solve self-consistently for the pair correlation in rhombohedral (ABC) and Bernal (ABA) multilayer graphene by considering a finite intrinsic s-wave pairing potential. We find that the two different stacking configurations have opposite bulk/surface behavior for the order parameter. Surface superconductivity is robust for ABC stacked multilayer graphene even at very low pairing potentials for which the bulk order parameter vanishes, in agreement with a recent analytical approach. In contrast, for Bernal stacked multilayer graphene, we find that the order parameter is always suppressed at the surface and that there exists a critical value for the pairing potential below which no superconducting order is achieved. We considered different doping scenarios and find that homogeneous doping strongly suppresses surface superconductivity while nonhomogeneous field-induced doping has a much weaker effect on the superconducting order parameter. For multilayer structures with hybrid stacking (ABC and ABA) we find that when the thickness of each region is small (few layers), high-temperature surface superconductivity survives throughout the bulk due to the proximity effect between ABC/ABA interfaces where the order parameter is enhanced. DOI: 10.1103/PhysRevB.87.134509
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317390000006 Publication Date 2013-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 37 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108469 Serial 3660
Permanent link to this record
 

 
Author Lucena, D.; Ferreira, W.P.; Munarin, F.F.; Farias, G.A.; Peeters, F.M.
Title Tunable diffusion of magnetic particles in a quasi-one-dimensional channel Type A1 Journal article
Year (up) 2013 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 87 Issue 1 Pages 012307-12309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The diffusion of a system of ferromagnetic dipoles confined in a quasi-one-dimensional parabolic trap is studied using Brownian dynamics simulations. We show that the dynamics of the system is tunable by an in-plane external homogeneous magnetic field. For a strong applied magnetic field, we find that the mobility of the system, the exponent of diffusion, and the crossover time among different diffusion regimes can be tuned by the orientation of the magnetic field. For weak magnetic fields, the exponent of diffusion in the subdiffusive regime is independent of the orientation of the external field. DOI: 10.1103/PhysRevE.87.012307
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000314152300005 Publication Date 2013-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 11 Open Access
Notes ; This work was supported by CNPq, CAPES, FUNCAP (Pronex grant), the Flemish Science Foundation (FWO-Vl), the bilateral program between Flanders and Brazil, the collaborative program CNPq – FWO-Vl, and the Brazilian program Science Without Borders (CsF). Discussions with V. R. Misko are gratefully acknowledged. ; Approved Most recent IF: 2.366; 2013 IF: 2.326
Call Number UA @ lucian @ c:irua:110089 Serial 3739
Permanent link to this record
 

 
Author Govaerts, K.; Saniz, R.; Partoens, B.; Lamoen, D.
Title van der Waals bonding and the quasiparticle band structure of SnO from first principles Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 23 Pages 235210-235217
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract In this work we have investigated the structural and electronic properties of SnO, which is built up from layers kept together by van der Waals (vdW) forces. The combination of a vdW functional within density functional theory (DFT) and quasiparticle band structure calculations within the GW approximation provides accurate values for the lattice parameters, atomic positions, and the electronic band structure including the fundamental (indirect) and the optical (direct) band gap without the need of experimental or empirical input. A systematic comparison is made between different levels of self-consistency within the GW approach {following the scheme of Shishkin et al. [Phys. Rev. B 75, 235102 (2007)]} and the results are compared with DFT and hybrid functional results. Furthermore, the effect of the vdW-corrected functional as a starting point for the GW calculation of the band gap has been investigated. Finally, we studied the effect of the vdW functional on the electron charge density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000321061000003 Publication Date 2013-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes IWT; FWO; Hercules Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109596 Serial 3835
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Vortex states in nanoscale superconducting squares : the influence of quantum confinement Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 14 Pages 144501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bogoliubov-de Gennes theory is used to investigate the effect of the size of a superconducting square on the vortex states in the quantum confinement regime. When the superconducting coherence length is comparable to the Fermi wavelength, the shape resonances of the superconducting order parameter have strong influence on the vortex configuration. Several unconventional vortex states, including asymmetric ones, giant-multivortex combinations, and states comprising giant antivortices, were found as ground states and their stability was found to be very sensitive on the value of k(F)xi(0), the size of the sample W, and the magnetic flux Phi. By increasing the temperature and/or enlarging the size of the sample, quantum confinement is suppressed and the conventional mesoscopic vortex states as predicted by the Ginzburg-Laudau (GL) theory are recovered. However, contrary to the GL results we found that the states containing symmetry-induced vortex-antivortex pairs are stable over the whole temperature range. It turns out that the inhomogeneous order parameter induced by quantum confinement favors vortex-antivortex molecules, as well as giant vortices with a rich structure in the vortex core-unattainable in the GL domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000325498300004 Publication Date 2013-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111145 Serial 3891
Permanent link to this record
 

 
Author Krstajić, P.M.; Van Duppen, B.; Peeters, F.M.
Title Plasmons and their interaction with electrons in trilayer graphene Type A1 Journal article
Year (up) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 19 Pages 195423
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interaction between electrons and plasmons in trilayer graphene is investigated within the Overhauser approach resulting in the “plasmaron” quasiparticle. This interaction is cast into a field theoretical problem, and its effect on the energy spectrum is calculated using improved Wigner-Brillouin perturbation theory. The plasmaron spectrum is shifted with respect to the bare electron spectrum by ΔE(k)∼150−200meV for ABC stacked trilayer graphene and for ABA trilayer graphene by ΔE(k)∼30−150 meV[ ΔE(k) ∼1 −5meV] for the hyperbolic (linear) part of the spectrum. The shift in general increases with the electron concentration and electron momentum. The dispersion of plasmarons is more pronounced in ABC stacked than in ABA stacked trilayer graphene, because of the different energy band structure and their different plasmon dispersion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000327239200003 Publication Date 2013-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), by the ESF-EuroGRAPHENE project CON-GRAN, and by the Serbian Ministry of Education and Science, within the Project No. TR 32008. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number CMT @ cmt @ c:irua:112702 Serial 4489
Permanent link to this record
 

 
Author García, J.H.; Uchoa, B.; Covaci, L.; Rappoport, T.G.
Title Adatoms and Anderson localization in graphene Type A1 Journal article
Year (up) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 8 Pages 085425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We address the nature of the disordered state that results from the adsorption of adatoms in graphene. For adatoms that sit at the center of the honeycomb plaquette, as in the case of most transition metals, we show that the ones that form a zero-energy resonant state lead to Anderson localization in the vicinity of the Dirac point. Among those, we show that there is a symmetry class of adatoms where Anderson localization is suppressed, leading to an exotic metallic state with large and rare charge droplets, that localizes only at the Dirac point. We identify the experimental conditions for the observation of the Anderson transition for adatoms in graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341238600004 Publication Date 2014-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes ; We acknowledge F. Guinea, K. Mullen, A. H. Castro Neto, and E. Mucciolo for discussions. B. U. acknowledges the University of Oklahoma for financial support and NSF Grant No. DMR-1352604 for partial support. T.G.R. and J.H.G acknowledge Brazilian agencies CNPq, FAPERJ, and “INCT de nanoestruturas de carbono” for financial support. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119258 Serial 57
Permanent link to this record
 

 
Author Oncel, N.; Çakir, D.; Dil, J.H.; Slomski, B.; Landolt, G.
Title Angle-resolved synchrotron photoemission and density functional theory on the iridium modified Si(111) surface Type A1 Journal article
Year (up) 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 26 Issue 28 Pages 285501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The physical and electronic properties of the Ir modified Si(1 1 1) surface have been investigated with the help of angle resolved photoemission spectroscopy and density functional theory. The surface consists of Ir-ring clusters that form a root 7 x root 7 -R19.1 degrees reconstruction. A comparison between the measured and calculated band structure of the system reveals that the dispersions of the projected bulk states and the states originating from '1x1' domains are heavily modified due to Umklapp scattering from the surface Brillouin zone. Density of states calculations show that Ir-ring clusters contribute to the states in the vicinity of the Fermi level.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000338830300019 Publication Date 2014-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 4 Open Access
Notes ; This work was partially supported by the National Science Foundation (DMR-1306101), North Dakota EPSCoR office (NSF grant #EPS-814442), the University of North Dakota and the Swiss National Science Foundation. Computer resources used in this work partially provided by Computational Research Center (HPC-Linux cluster) at UND and TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved Most recent IF: 2.649; 2014 IF: 2.346
Call Number UA @ lucian @ c:irua:118636 Serial 114
Permanent link to this record
 

 
Author Apolinario, S.W.S.; Aguiar, J.A.; Peeters, F.M.
Title Angular melting scenarios in binary dusty-plasma Coulomb balls : magic versus normal clusters Type A1 Journal article
Year (up) 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 90 Issue 6 Pages 063113
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Molecular-dynamic simulations were performed in order to investigate the melting processes of isotropically confined binary systems. We considered two species of particles, which differ by their amount of electric charge. A Lindemann type of criterion was used to determine the angular melting temperature. We demonstrate that the magic-to-normal cluster transition can evolve in two distinct ways, that is, through a structural phase transition of the first order or via a smooth transition where an increase of the shells' width leads to a continuous decreasing mechanical stability of the system. Moreover, for large systems, we demonstrate that the internal cluster exerts a minor effect on the mechanical stability of the external shell. Furthermore, we show that highly symmetric configurations, such as those found for multiple ring structures, have large mechanical stability, i.e., high angular melting temperature.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000347207000027 Publication Date 2014-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 1 Open Access
Notes ; This work was supported by FACEPE (Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco) Grant No. APQ-1800-1.05/ 12, the bilatera project between CNPq and FWO-VL, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:122828 Serial 116
Permanent link to this record
 

 
Author Prodi, A.; Daoud-Aladine, A.; Gozzo, F.; Schmitt, B.; Lebedev, O.; Van Tendeloo, G.; Gilioli, E.; Bolzoni, F.; Aruga-Katori, H.; Takagi, H.; Marezio, M.; Gauzzi, A.;
Title Commensurate structural modulation in the charge- and orbitally ordered phase of the quadruple perovskite (NaMn3)Mn4O12 Type A1 Journal article
Year (up) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 18 Pages 180101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract By means of synchrotron x-ray and electron diffraction, we studied the structural changes at the charge order transition T-CO = 176 K in the mixed-valence quadruple perovskite (NaMn3)Mn4O12. Below T-CO we find satellite peaks indicating a commensurate structural modulation with the same propagation vector q = ( 1/2,0,-1/2) of the CE magnetic structure that orders at low temperatures, similarly to the case of simple perovskites such as La0.5Ca0.5MnO3. In the present case, the modulated structure, together with the observation of a large entropy change at T-CO, gives evidence of a rare case of full Mn3+/Mn4+ charge and orbital order, consistent with the Goodenough-Kanamori model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344915100001 Publication Date 2014-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:122097 Serial 406
Permanent link to this record
 

 
Author Vagov, A.; Glaessl, M.; Croitoru, M.D.; Axt, V.M.; Kuhn, T.
Title Competition between pure dephasing and photon losses in the dynamics of a dot-cavity system Type A1 Journal article
Year (up) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 7 Pages 075309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We demonstrate that in quantum-dot cavity systems, the interplay between acoustic phonons and photon losses introduces novel features and characteristic dependencies in the system dynamics. In particular, the combined action of both dephasing mechanisms strongly affects the transition from the weak-to the strong-coupling regime as well as the shape of the spectral triplet that represents the quantum-dot occupation in Fourier space. The width of the central peak in the triplet is expected to decrease with rising temperature, while the widths and heights of the side peaks depend nonmonotonically on the dot-cavity coupling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341258700002 Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes ; We acknowledge fruitful discussions with A. Nazir which helped us to more clearly formulate the relation between our phenomenological approach and the microscopic theory. M.D.C. further acknowledges Alexander von Humboldt and BELSPO grants for support. Financial support from the Deutsche Forschungsgemeinschaft (Grant No. AX 17/7-1) is also gratefully acknowledged. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119257 Serial 437
Permanent link to this record
 

 
Author Çakir, D.; Peeters, F.M.
Title Dependence of the electronic and transport properties of metal-MoSe2 interfaces on contact structures Type A1 Journal article
Year (up) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 24 Pages 245403
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Transition metal dichalcogenides (TMDs) are considered as promising candidates for next generation of electronic and optoelectronic devices. To make use of these materials, for instance in field effect transistor applications, it is mandatory to know the detailed properties of contacts of such TMDs with metal electrodes. Here, we investigate the role of the contact structure on the electronic and transport properties of metal-MoSe2 interfaces. Two different contact types, namely face and edge contacts, are studied. We consider both low (Sc) and high (Au) work function metals in order to thoroughly elucidate the role of the metal work function and the type of metal. First principles plane wave calculations and transport calculations based on nonequilibrium Green's function formalism reveal that the contact type has a large impact on the electronic and transport properties of metal-MoSe2 interfaces. For the Sc electrode, the Schottky barrier heights are around 0.25 eV for face contact and bigger than 0.6 eV for edge contact. For the Au case, we calculate very similar barrier heights for both contact types with an average value of 0.5 eV. Furthermore, while the face contact is found to be highly advantageous as compared to the edge contact for the Sc electrode, the latter contact becomes a better choice for the Au electrode. Our findings provide guidelines for the fabrication of TMD-based devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336917700004 Publication Date 2014-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 39 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. D. C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:117750 Serial 644
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
Title Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties Type A1 Journal article
Year (up) 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 90 Issue 5 Pages 052139
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013)]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self-and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self-and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1/L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000345251500004 Publication Date 2014-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 8 Open Access
Notes ; This work was supported by the Flemish Science Foundation (Fonds Wetenschappelijk Onderzoek), Project No. G.0388.11. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government, Department EWI. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:122134 Serial 700
Permanent link to this record
 

 
Author Ramos, I.R.O.; Ferreira, W.P.; Munarin, F.F.; Peeters, F.M.
Title Dynamical properties and melting of binary two-dimensional colloidal alloys Type A1 Journal article
Year (up) 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 90 Issue 6 Pages 062311
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A two-dimensional (2D) binary colloidal system consisting of interacting dipoles is investigated using an analytical approach. Within the harmonic approximation we obtain the phonon spectrum of the system as a function of the composition, dipole-moment ratio, and mass ratio between the small and big particles. Through a systematic analysis of the phonon spectra we are able to determine the stability region of the different lattice structures of the colloidal alloys. The gaps in the phonon frequency spectrum, the optical frequencies in the long-wavelength limit, and the sound velocity are discussed as well. Using the modified Lindemann criterion and within the harmonic approximation we estimate the melting temperature of the sublattice generated by the big particles.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000346833500007 Publication Date 2014-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 4 Open Access
Notes ; This work was supported by the Brazilian agencies CNPq (Program Science Without Border), CAPES, and FUNCAP (International cooperation program); the Flemish Science Foundation (FWO-Vl); the bilateral program between Flanders and Brazil (CNPq-FWO collaborating project); and the VLIR-UOS (University Development Cooperation). I.R.O.R. is grateful to Professor E. B. Barros for fruitful discussions. W. P. F. thanks Professor D. Martin A. Buzza for his illuminating comments on this manuscript. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:122797 Serial 771
Permanent link to this record
 

 
Author Berdiyorov, G.; Harrabi, K.; Oktasendra, F.; Gasmi, K.; Mansour, A.I.; Maneval, J.P.; Peeters, F.M.
Title Dynamics of current-driven phase-slip centers in superconducting strips Type A1 Journal article
Year (up) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 5 Pages 054506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Phase-slip centers/lines and hot spots are the main mechanisms for dissipation in current-carrying superconducting thin films. The pulsed-current method has recently been shown to be an effective tool in studying the dynamics of phase-slip centers and their evolution to hot spots. We use the time-dependent Ginzburg-Landau theory in the study of the dynamics of the superconducting condensate in superconducting strips under external current and zero external magnetic field. We show that both the flux-flow state (i.e., slow-moving vortices) and the phase-slip line state (i.e., fast-moving vortices) are dynamically stable dissipative units with temperature smaller than the critical one, whereas hot spots, which are localized normal regions where the local temperature exceeds the critical value, expand in time, resulting ultimately in a complete destruction of the condensate. The response time of the system to abrupt switching on of the overcritical current decreases with increasing both the value of the current (at all temperatures) and temperature (for a given value of the applied current). Our results are in good qualitative agreement with experiments we have conducted on Nb thin strips.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344656700003 Publication Date 2014-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 42 Open Access
Notes ; This work was supported by EU Marie Curie Project No. 253057, the Flemish Science Foundation (FWO-Vl), and King Fahd University of Petroleum and Minerals, Saudi Arabia, under the IN131034 DSR project. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:121229 Serial 775
Permanent link to this record
 

 
Author Govaerts, K.; Park, K.; De Beule, C.; Partoens, B.; Lamoen, D.
Title Effect of Bi bilayers on the topological states of Bi2Se3 : a first-principles study Type A1 Journal article
Year (up) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 15 Pages 155124
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Bi2Se3 is a three-dimensional topological insulator which has been extensively studied because it has a single Dirac cone on the surface, inside a relatively large bulk band gap. However, the effect of two-dimensional topological insulator Bi bilayers on the properties of Bi2Se3 and vice versa, has not been explored much. Bi bilayers are often present between the quintuple layers of Bi2Se3, since (Bi2)n(Bi2Se3)m form stable ground-state structures. Moreover, Bi2Se3 is a good substrate for growing ultrathin Bi bilayers. By first-principles techniques, we first show that there is no preferable surface termination by either Bi or Se. Next, we investigate the electronic structure of Bi bilayers on top of, or inside a Bi2Se3 slab. If the Bi bilayers are on top, we observe a charge transfer to the quintuple layers that increases the binding energy of the surface Dirac cones. The extra states, originating from the Bi bilayers, were declared to form a topological Dirac cone, but here we show that these are ordinary Rashba-split states. This result, together with the appearance of a new Dirac cone that is localized slightly deeper, might necessitate the reinterpretation of several experimental results. When the Bi bilayers are located inside the Bi2Se3 slab, they tend to split the slab into two topological insulators with clear surface states. Interface states can also be observed, but an energy gap persists because of strong coupling between the neighboring quintuple layers and the Bi bilayers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000343773200001 Publication Date 2014-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 30 Open Access
Notes ; We gratefully acknowledge financial support from the Research Foundation – Flanders (FWO-Vlaanderen). K.G. thanks the University of Antwerp for a Ph.D. fellowship. C.D.B. is an aspirant of the Flemish Science Foundation. This work was carried out using the HPC infrastructure at the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the Hercules Foundation and the Flemish Government (EWI Department). K.P. was supported by U.S. National Science Foundation Grant No. DMR-1206354. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119527 Serial 800
Permanent link to this record
 

 
Author Zhang, S.H.; Xu, W.; Peeters, F.M.; Badalyan, S.M.
Title Electron energy and temperature relaxation in graphene on a piezoelectric substrate Type A1 Journal article
Year (up) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 19 Pages 195409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the energy and temperature relaxation of electrons in graphene on a piezoelectric substrate. Scattering from the combined potential of extrinsic piezoelectric surface acoustical (PA) phonons of the substrate and intrinsic deformation acoustical phonons of graphene is considered for a (non) degenerate gas of Dirac fermions. It is shown that in the regime of low energies or temperatures the PA phonons dominate the relaxation and change qualitatively its character. This prediction is relevant for quantum metrology and electronic applications using graphene devices and suggests an experimental setup for probing electron-phonon coupling in graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336000400008 Publication Date 2014-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:117675 Serial 928
Permanent link to this record
 

 
Author Ravi Kishore, V.V.; Partoens, B.; Peeters, F.M.
Title Electronic and optical properties of core-shell nanowires in a magnetic field Type A1 Journal article
Year (up) 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 26 Issue 9 Pages 095501-95512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and optical properties of zincblende nanowires are investigated in the presence of a uniform magnetic field directed along the [001] growth direction within the k . p method. We focus our numerical study on core-shell nanowires consisting of the III-V materials GaAs, AlxGa1-xAs and AlyGa1-y/0.51In0.49P. Nanowires with electrons confined in the core exhibit a Fock-Darwin-like spectrum, whereas nanowires with electrons confined in the shell show Aharonov-Bohm oscillations. Thus, by properly choosing the core and the shell materials of the nanowire, the optical properties in a magnetic field can be tuned in very different ways.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000331954500006 Publication Date 2014-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. ; Approved Most recent IF: 2.649; 2014 IF: 2.346
Call Number UA @ lucian @ c:irua:115845 Serial 998
Permanent link to this record
 

 
Author Horzum, S.; Çakir, D.; Suh, J.; Tongay, S.; Huang, Y.-S.; Ho, C.-H.; Wu, J.; Sahin, H.; Peeters, F.M.
Title Formation and stability of point defects in monolayer rhenium disulfide Type A1 Journal article
Year (up) 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 15 Pages 155433
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, rhenium disulfide (ReS2) monolayers were experimentally extracted by conventional mechanical exfoliation technique from as-grown ReS2 crystals. Unlike the well-known members of transition metal dichalcogenides (TMDs), ReS2 crystallizes in a stable distorted-1T structure and lacks an indirect to direct gap crossover. Here we present an experimental and theoretical study of the formation, energetics, and stability of the most prominent lattice defects in monolayer ReS2. Experimentally, irradiation with 3-MeV He+2 ions was used to break the strong covalent bonds in ReS2 flakes. Photoluminescence measurements showed that the luminescence from monolayers is mostly unchanged after highly energetic a particle irradiation. In order to understand the energetics of possible vacancies in ReS2 we performed systematic first-principles calculations. Our calculations revealed that the formation of a single sulfur vacancy has the lowest formation energy in both Re and S rich conditions and a random distribution of such defects are energetically more preferable. Sulfur point defects do not result in any spin polarization whereas the creation of Re-containing point defects induce magnetization with a net magnetic moment of 1-3 mu B. Experimentally observed easy formation of sulfur vacancies is in good agreement with first-principles calculations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000337301200009 Publication Date 2014-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 130 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the bilateral project FWO-TUBITAK, and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAK-BIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. was supported by a FWO Pegasus Long Marie Curie Fellowship. D. C. was supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:118410 Serial 1250
Permanent link to this record