|   | 
Details
   web
Records
Author Razzokov, J.; Yusupov, M.; Cordeiro, R.M.; Bogaerts, A.
Title Atomic scale understanding of the permeation of plasma species across native and oxidized membranes Type A1 Journal article
Year (up) 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 51 Issue 36 Pages 365203
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasmas (CAPs) have attracted significant interest for their potential benefits in medical applications, including cancer therapy. The therapeutic effects of CAPs are related to reactive oxygen and nitrogen species (ROS and RNS) present in the plasma. The impact of ROS has been extensively studied, but the role of RNS in CAP-treatment remains poorly understood at the molecular level. Here, we investigate the permeation of RNS and ROS across native and oxidized phospholipid bilayers (PLBs) by means of computer simulations. The results reveal significantly lower free energy barriers for RNS (i.e. NO, NO2, N2O4) and O3 compared to hydrophilic ROS, such as OH, HO2 and H2O2. This suggests that the investigated RNS and O3 can permeate more easily through both native and oxidized PLBs in comparison to hydrophilic ROS, indicating their potentially important role in plasma medicine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441182400002 Publication Date 2018-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 10 Open Access OpenAccess
Notes M Y gratefully acknowledges financial support from the Research Foundation—Flanders (FWO), grant 1200216N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. RMC thanks FAPESP and CNPq for financial support (grants 2012/50680-5 and 459270/2014-1, respectively). Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:152824 Serial 5005
Permanent link to this record
 

 
Author Gröger, S.; Ramakers, M.; Hamme, M.; Medrano, J.A.; Bibinov, N.; Gallucci, F.; Bogaerts, A.; Awakowicz, P.
Title Characterization of a nitrogen gliding arc plasmatron using optical emission spectroscopy and high-speed camera Type A1 Journal article
Year (up) 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 6 Pages 065201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A gliding arc plasmatron (GAP), which is very promising for purification and gas conversion,

is characterized in nitrogen using optical emission spectroscopy and high-speed photography,

because the cross sections of electron impact excitation of N 2 are well known. The gas

temperature (of about 5500 K), the electron density (up to 1.5 × 10 15 cm −3 ) and the reduced

electric field (of about 37 Td) are determined using an absolutely calibrated intensified charge-

coupled device (ICCD) camera, equipped with an in-house made optical arrangement for

simultaneous two-wavelength diagnostics, adapted to the transient behavior of a GA channel

in turbulent gas flow. The intensities of nitrogen molecular emission bands, N 2 (C–B,0–0) as

well as N +

2 (B–X,0–0), are measured simultaneously. The electron density and the reduced

electric field are determined at a spatial resolution of 30 µm, using numerical simulation and

measured emission intensities, applying the Abel inversion of the ICCD images. The temporal

behavior of the GA plasma channel and the formation of plasma plumes are studied using a

high-speed camera. Based on the determined plasma parameters, we suggest that the plasma

plume formation is due to the magnetization of electrons in the plasma channel of the GAP by

an axial magnetic field in the plasma vortex.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451745900001 Publication Date 2018-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 7 Open Access Not_Open_Access: Available from 30.11.2019
Notes The authors are very grateful to Professor Kurt Behringer for the development of the program code for simulation of emis- sion spectra of nitrogen. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:155974 Serial 5141
Permanent link to this record
 

 
Author Leliaert, J.; Gypens, P.; Milošević, M.V.; Van Waeyenberge, B.; Mulkers, J.
Title Coupling of the skyrmion velocity to its breathing mode in periodically notched nanotracks Type A1 Journal article
Year (up) 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 2 Pages 024003
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A thorough understanding of the skyrmion motion through nanotracks is a prerequisite to realize the full potential of spintronic applications like the skyrmion racetrack memory. One of the challenges is to place the data, i.e. skyrmions, on discrete fixed positions, e.g. below a read or write head. In the domain-wall racetrack memory, one proposed solution to this problem was patterning the nanotrack with notches. Following this approach, this paper reports on the skyrmion mobility through a nanotrack with periodic notches (constrictions) made using variations in the chiral Dzyaloshinskii-Moriya interaction. We observe that such notches induce a coupling between the mobility and the skyrmion breathing mode, which manifests itself as velocity-dependent oscillations of the skyrmion diameter and plateaus in which the velocity is independent of the driving force. Despite the fact that domain walls are far more rigid objects than skyrmions, we were able to perform an analogous study and, surprisingly, found even larger plateaus of constant velocity. For both systems it is straightforward to tune the velocity at these plateaus by changing the design of the notched nanotrack geometry, e.g. by varying the distance between the notches. Therefore, the notch-induced coupling between the excited modes and the mobility could offer a strategy to stabilize the velocity against unwanted perturbations in racetrack-like applications. In the last part of the paper we focus on the low-current mobility regimes, whose very rich dynamics at nonzero temperatures are very similar to the operating principle of recently developed probabilistic logic devices. This proves that the mobility of nanomagnetic structures through a periodically modulated track is not only interesting from a fundamental point of view, but has a future in many spintronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000449169100001 Publication Date 2018-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 10 Open Access
Notes ; This work is supported by Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N. JL acknowledges his postdoctoral fellowships by the Ghent University special research fund (BOF) and FWO-Vlaanderen. The authors gratefully acknowledge the support of NVIDIA Corporation through donation of Titan Xp and Titan V GPU cards used for this research. ; Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:155359 Serial 5202
Permanent link to this record
 

 
Author O'Donnell, D.; Hassan, S.; Du, Y.; Gauquelin, N.; Krishnan, D.; Verbeeck, J.; Fan, R.; Steadman, P.; Bencok, P.; Dobrynin, A.N.
Title Etching induced formation of interfacial FeMn in IrMn/CoFe bilayers Type A1 Journal article
Year (up) 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 16 Pages 165002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The effect of ion etching on exchange bias in IrMn3/Co70Fe30 bilayers is investigated. In spite of the reduction of saturation magnetization caused by the embedding of Tr from the capping layer into the Co70Fe30 layer during the etching process, the exchange bias in samples with the same thickness of the Co70Fe30 layer is reducing in proportion to the etching power. X-ray magnetic circular dichroism measurements revealed the emergence of an uncompensated Mn magnetization after etching, which is antiferromagnetically coupled to the ferromagnetic layer. This suggests etching induced formation of small interfacial FeMn regions which leads to the decrease of effective exchange coupling between ferromagnetic and antiferromagnetic layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458524800001 Publication Date 2019-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.588 Times cited Open Access OpenAccess
Notes ; This work was supported by Seagate Technology (Ireland). Beamline I10, Diamond Light Source, is acknowledged for provided beamtime. ; Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:157458 Serial 5247
Permanent link to this record
 

 
Author Jia, W.-Z.; Zhang, Q.-Z.; Wang, X.-F.; Song, Y.-H.; Zhang, Y.-Y.; Wang, Y.-N.
Title Effect of dust particle size on the plasma characteristics in a radio frequency capacitively coupled silane plasma Type A1 Journal article
Year (up) 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 1 Pages 015206
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Compared with dust-free plasmas, the existence of dust particles in plasmas may greatly influence the plasma properties. such as the plasma density, electron temperature, sheath properties, electron energy distribution function (EEDF) as well as the heating mechanism. In this work, a 1D hybrid fluid/MC model has been developed to investigate the interaction between dust and plasma in a low-pressure silane discharge sustained in a radio frequency capacitively coupled plasma, in which we assume spherical dust particles with a given radius are generated by taking the sum of the production rate of Si2H4- and Si2H5- as the nucleation rate. From our simulation, the plasma may experience definite perturbation by dust particles with a certain radius (more than 50nm) with an increase in electron temperature first, which further induces a rapid rise in the positive and negative ion densities. Then, the densities begin to decline due to the gradual lack of sufficient seed electrons. In addition, as the dust radius increases, the high energy tails of the EEDFs will be enhanced for discharge maintenance, accompanied by a decline in the population of low-energy electrons in comparison with those of pristine plasma. Furthermore, an obvious bulk heating is observed apart from the a-mode and local field reversal heating. This may contribute to the enhanced bulk electric field (also called the drift field) as a result of electron depletion via the dust. In addition, large-sized dust particles that accumulate near the sheaths tend to form two stable density peaks with their positions largely influenced by the time-averaged sheath thickness. A detailed study of the effects of the external parameters, including pressure, voltage and frequency, on the spatial distribution of dust particles is also conducted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000448423800002 Publication Date 2018-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:155361 Serial 5271
Permanent link to this record
 

 
Author Khalili, M.; Daniels, L.; Lin, A.; Krebs, F.C.; Snook, A.E.; Bekeschus, S.; Bownel, W.B.; Miller, V.
Title Non-thermal plasma-induced immunogenic cell death in cancer Type A1 Journal article
Year (up) 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 42 Pages 423001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Recent advances in biomedical research in cancer immunotherapy have identified the use of an oxidative stress-based approach to treat cancers, which works by inducing immunogenic cell death (ICD) in cancer cells. Since the anti-cancer effects of non-thermal plasma (NTP) are largely attributed to the reactive oxygen and nitrogen species that are delivered to and generated inside the target cancer cells, it is reasonable to postulate that NTP would be an effective modality for ICD induction. NTP treatment of tumors has been shown to destroy cancer cells rapidly and, under specific treatment regimens, this leads to systemic tumorspecific immunity. The translational benefit of NTP for treatment of cancer relies on its ability to enhance the interactions between NTP-exposed minor cells and local immune cells which initiates subsequent protective immune responses. This review discusses results from recent investigations of NTP application to induce ICD in cancer cells. With further optimization of clinical devices and treatment protocols, NTP can become an essential part of the therapeutic armament against cancer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000479103100001 Publication Date 2019-07-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 6 Open Access
Notes Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:161774 Serial 6313
Permanent link to this record
 

 
Author Bogaerts, A.; Tu, X.; Whitehead, J.C.; Centi, G.; Lefferts, L.; Guaitella, O.; Azzolina-Jury, F.; Kim, H.-H.; Murphy, A.B.; Schneider, W.F.; Nozaki, T.; Hicks, J.C.; Rousseau, A.; Thevenet, F.; Khacef, A.; Carreon, M.
Title The 2020 plasma catalysis roadmap Type A1 Journal article
Year (up) 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 53 Issue 44 Pages 443001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, CH4 activation into hydrogen, higher hydrocarbons or oxygenates, and NH3 synthesis. Other applications are already more established, such as for air pollution control, e.g. volatile organic compound remediation, particulate matter and NOx removal. In addition, plasma is also very promising for catalyst synthesis and treatment. Plasma catalysis clearly has benefits over ‘conventional’ catalysis, as outlined in the Introduction. However, a better insight into the underlying physical and chemical processes is crucial. This can be obtained by experiments applying diagnostics, studying both the chemical processes at the catalyst surface and the physicochemical mechanisms of plasma-catalyst interactions, as well as by computer modeling. The key challenge is to design cost-effective, highly active and stable catalysts tailored to the plasma environment. Therefore, insight from thermal catalysis as well as electro- and photocatalysis is crucial. All these aspects are covered in this Roadmap paper, written by specialists in their field, presenting the state-of-the-art, the current and future challenges, as well as the advances in science and technology needed to meet these challenges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000563194400001 Publication Date 2020-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes U.S. Department of Energy, DE-FE0031862 DE-FG02-06ER15830 ; U.S. Air Force Office of Scientific Research, FA9550-18-1-0157 ; University of Antwerp, 32249 ; JSPS KAKENSHI, JP18H01208 ; UK EPSRC Impact Acceleration Account; National Science Foundation, EEC-1647722 ; H2020 Marie Skłodowska-Curie Actions, 823745 ; Horizon 2020 Framework Programme, 810182 – SCOPE ERC Synergy pr ; This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182—SCOPE ERC Synergy project). Approved Most recent IF: 3.4; 2020 IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:171915 Serial 6408
Permanent link to this record
 

 
Author Vanderveken, F.; Ahmad, H.; Heyns, M.; Sorée, B.; Adelmann, C.; Ciubotaru, F.
Title Excitation and propagation of spin waves in non-uniformly magnetized waveguides Type A1 Journal article
Year (up) 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 53 Issue 49 Pages 495006
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The characteristics of spin waves in ferromagnetic waveguides with non-uniform magnetization have been investigated for situations where the shape anisotropy field of the waveguide is comparable to the external bias field. Spin-wave generation was realized by the magnetoelastic effect by applying normal and shear strain components, as well as by the Oersted field emitted by an inductive antenna. The magnetoelastic excitation field has a non-uniform profile over the width of the waveguide because of the non-uniform magnetization orientation, whereas the Oersted field remains uniform. Using micromagnetic simulations, we indicate that both types of excitation fields generate quantised width modes with both odd and even mode numbers as well as tilted phase fronts. We demonstrate that these effects originate from the average magnetization orientation with respect to the main axes of the magnetic waveguide. Furthermore, it is indicated that the excitation efficiency of the second-order mode generally surpasses that of the first-order mode due to their symmetry. The relative intensity of the excited modes can be controlled by the strain state as well as by tuning the dimensions of the excitation area. Finally, we demonstrate that the nonreciprocity of spin-wave radiation due to the chirality of an Oersted field generated by an inductive antenna is absent for magnetoelastic spin-wave excitation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000575331600001 Publication Date 2020-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 1 Open Access
Notes ; This work has been supported by imec's industrial affiliate program on beyond-CMOS logic. It has also received funding from the European Union's Horizon 2020 research and innovation program within the FET-OPEN project CHIRON under grant agreement No. 801055. F V acknowledges financial support from the Research Foundation -Flanders (FWO) through grant No. 1S05719N. ; Approved Most recent IF: 3.4; 2020 IF: 2.588
Call Number UA @ admin @ c:irua:172641 Serial 6515
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Akgenc, B.; Ghergherehchi, M.; Nguyen, C.
Title Van der Waals heterostructures of MoS₂ and Janus MoSSe monolayers on graphitic boron-carbon-nitride (BC₃, C₃N, C₃N₄ and C₄N₃) nanosheets: a first-principles study Type A1 Journal article
Year (up) 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume Issue Pages 1-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this work, we extensively investigate the structural and electronic properties of van der Waals heterostructures (HTs) constructed by MoS${2}$/$BC3$, MoS${2}$/$C3N$, MoS${2}$/$C3N4$, MoS${2}$/$C4N3$ and those using Janus MoSSe instead of MoS$2$ by performing density functional theory calculations. The electronic band structure calculations and the corresponding partial density of states reveal that the significant changes are driven by quite strong layer-layer interaction between the constitutive layers. Our results show that although all monolayers are semiconductors as free-standing layers, the MoS${2}$/$C3N$ and MoS${2}$/$C4N3$ bilayer HTs display metallic behavior as a consequence of transfer of charge carriers between two constituent layers. In addition, it is found that in MoSSe/$C3N$ bilayer HT, the degree of metallicity is affected by the interface chalcogen atom type when Se atoms are facing to $C3N$ layer, the overlap of the bands around the Fermi level is smaller. Moreover, the half-metallic magnetic $C4N3$ is shown to form magnetic half-metallic trilayer HT with MoS$2$ independent of the stacking sequence, i.e. whether it is sandwiched or two $C4N3$ layer encapsulate MoS$2$ layer. We further analyze the trilayer HTs in which MoS$2$ is encapsulated by two different monolayers and it is revealed that at least with one magnetic monolayer, it is possible to construct a magnetic trilayer. While the trilayer of $C4N3$/MoS${2}$/$BC3$ and $C4N3$/MoS${2}$/$C3N4$ exhibit half-metallic characteristics, $C4N3$/MoS${_2}$/$C3$N possesses a magnetic metallic ground state. Overall, our results reveal that holly structures of BCN crystals are suitable for heterostructure formation even over van der Waals type interaction which significantly changes electronic nature of the constituent layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000543344800001 Publication Date 2020-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2020 IF: 2.588
Call Number UA @ admin @ c:irua:169754 Serial 6651
Permanent link to this record
 

 
Author van ‘t Veer, K.; van Alphen, S.; Remy, A.; Gorbanev, Y.; De Geyter, N.; Snyders, R.; Reniers, F.; Bogaerts, A.
Title Spatially and temporally non-uniform plasmas: microdischarges from the perspective of molecules in a packed bed plasma reactor Type A1 Journal article
Year (up) 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 54 Issue 17 Pages 174002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Dielectric barrier discharges (DBDs) typically operate in the filamentary regime and thus exhibit great spatial and temporal non-uniformity. In order to optimize DBDs for various applications, such as in plasma catalysis, more fundamental insight is needed. Here, we consider how the millions of microdischarges, characteristic for a DBD, influence individual gas molecules. We use a Monte Carlo approach to determine the number of microdischarges to which a single molecule would be exposed, by means of particle tracing simulations through a full-scale packed bed DBD reactor, as well as an empty DBD reactor. We find that the fraction of microdischarges to which the molecules are exposed can be approximated as the microdischarge volume over the entire reactor gas volume. The use of this concept provides good agreement between a plasma-catalytic kinetics model and experiments for plasma-catalytic NH3 synthesis. We also show that the concept of the fraction of microdischarges indicates the efficiency by which the plasma power is transferred to the gas molecules. This generalised concept is also applicable for other spatially and temporally non-uniform plasmas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000618776000001 Publication Date 2021-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access OpenAccess
Notes Excellence of Science FWO-FNRS project, FWO grant ID GoF9618n ; Flemish Government, project P2C (HBC.2019.0108) ; H2020 European Research Council, grant agreement No 810182 – SCOPE ERC Synergy pr ; This research was supported by the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 810182—SCOPE ERC Synergy project) and by the Flemish Government through the Moonshot cSBO project P2C (HBC. 2019.0108). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Hamid Ahmadi Eshtehardi for discussions on the plasma-kinetic DBD model and Yannick Engelmann for discussions on the surface kinetics model. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:175878 Serial 6674
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Hoat, D.M.; Shahrokhi, M.; Fadlallah, M.M.; Shojaei, F.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D.
Title MoSi₂N₄ single-layer : a novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties Type A1 Journal article
Year (up) 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 54 Issue 15 Pages 155303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Very recently, the 2D form of MoSi2N4 has been successfully fabricated (Hong et al 2020 Science 369 670). Motivated by these recent experimental results, we investigate the structural, mechanical, thermal, electronic and optical properties of the MoSi2N4 monolayer. The mechanical study confirms the stability of the MoSi2N4 monolayer. The Young's modulus decreases by similar to 30%, while the Poisson's ratio increases by similar to 30% compared to the corresponding values of graphene. In addition, the MoSi2N4 monolayer's work function is very similar to that of phosphorene and MoS2 monolayers. The electronic structure shows that the MoSi2N4 monolayer is an indirect semiconductor with a band gaps of 1.79 (2.35) eV using the GGA (HSE06) functional. The thermoelectric performance of the MoSi2N4 monolayer has been revealed and a figure of merit slightly larger than unity at high temperatures is calculated. The optical analysis shows that the first absorption peak for in-plane polarization is located in the visible range of the spectrum, therefore, the MoSi2N4 monolayer is a promising candidate for advanced optoelectronic nanodevices. In summary, the fascinating MoSi2N4 monoloayer is a promising 2D material for many applications due to its unique physical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000613849300001 Publication Date 2021-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access Not_Open_Access
Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2015M2B2A4033123). Computational resources were provided by the Flemish Supercomputer Center (VSC) and TUBITAK ULAKBIM, High Performance and Grid Computing Center (Tr-Grid e-Infrastructure). ; Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:176167 Serial 6693
Permanent link to this record
 

 
Author Song, C.-H.; Attri, P.; Ku, S.-K.; Han, I.; Bogaerts, A.; Choi, E.H.
Title Cocktail of reactive species generated by cold atmospheric plasma: oral administration induces non-small cell lung cancer cell death Type A1 Journal article
Year (up) 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 54 Issue 18 Pages 185202
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with 85% of all lung cancer reported as NSCLC. Moreover, there are no effective treatments in advanced NSCLC. This study shows for the first time that oral administration of plasma-treated water (PTW) can cure advanced NSCLC. The cold plasma in water generates a cocktail of reactive species, and oral administration of this cocktail to mice showed no toxicities even at the highest dose of PTW, after a single dose and repeated doses for 28 d in mice. In vivo studies reveal that PTW showed favorable anticancer effects on chemo-resistant lung cancer, similarly to gefitinib treatment as a reference drug in a chemo-resistant NSCLC model. The anticancer activities of PTW seem to be involved in inhibiting proliferation and angiogenesis and enhancing apoptosis in the cancer cells. Interestingly, the PTW contributes to enhanced immune response and improved cachexia in the model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000621503200001 Publication Date 2021-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access OpenAccess
Notes National Research Foundation (NRF) of Korea, NRF-2016K1A4A3914113 ; We gratefully acknowledge financial support from the Leading Foreign Research Institute Recruitment program (Grant # NRF-2016K1A4A3914113) through the Basic Science Research Program of the National Research Foundation (NRF) of Korea and in part by Kwangwoon University. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:176649 Serial 6747
Permanent link to this record
 

 
Author Wang, W.; Butterworth, T.; Bogaerts, A.
Title Plasma propagation in a single bead DBD reactor at different dielectric constants : insights from fluid modelling Type A1 Journal article
Year (up) 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 54 Issue 21 Pages 214004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Packed bed dielectric barrier discharge (PB-DBD) plasma reactors are very promising for various plasma catalysis applications, but the exact mechanisms of plasma-catalyst interaction are far from understood, because the plasma discharge and catalyst/packing properties are mutually dependent. To better understand the effect of packing dielectric material on the electrical plasma properties, we study here a single bead DBD plasma reactor operating in dry air, with beads of different dielectric constant and for different applied voltages, by means of fluid modelling validated by optical imaging experiments. Our study reveals that the plasma in the single bead DBD reactor can manifest itself in two different modalities, i.e. (a) polar discharges at the bead poles in contact with the electrodes, and (b) a streamer discharge caused by surface ionization waves, which bridges the gas gap. Beads with high dielectric constant result in localised electric field enhancement and hence yield a reduction of the applied voltage required for plasma production. At low applied voltage, the discharge appears as polar discharges between the bead and the electrodes, and upon higher voltage it undergoes a transition into a bridging streamer discharge. The transition voltage to the streamer mode rises for beads with higher dielectric constant. These observations are important for plasma catalysis applications. A higher dielectric constant yields a higher electric field and thus higher average electron energy and density, giving rise to more reactive species, but it also yields a confined discharge near the contact points of packing beads, limiting the interaction area between the catalyst and the active plasma species. In addition, our model reveals that the dielectric bead behaves as a capacitor and traps charges, which can explain the significant occurrence of partial discharging in PB-DBDs and non-parallelogram shaped Lissajous plots. Hence, equivalent circuit modelling of PB-DBDs should take into account the role of packing beads in charge trapping as a capacitor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000626451000001 Publication Date 2021-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:177571 Serial 6772
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Quantifying the impact of vibrational nonequilibrium in plasma catalysis: insights from a molecular dynamics model of dissociative chemisorption Type A1 Journal Article;plasma catalysis
Year (up) 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 54 Issue 39 Pages 394004
Keywords A1 Journal Article;plasma catalysis; vibrational nonequilibrium; dissociative chemisorption; free energy barriers; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The rate, selectivity and efficiency of plasma-based conversion processes is strongly affected by nonequilibrium phenomena. High concentrations of vibrationally excited molecules are such a plasma-induced effect. It is frequently assumed that vibrationally excited molecules are important in plasma catalysis because their presence lowers the apparent activation energy of dissociative chemisorption reactions and thus increases the conversion rate. A detailed atomic-level understanding of vibrationally stimulated catalytic reactions in the context of plasma catalysis is however lacking. Here, we couple a recently developed statistical model of a plasma-induced vibrational nonequilibrium to molecular dynamics simulations, enhanced sampling methods, and machine learning techniques. We quantify the impact of a vibrational nonequilibrium on the dissociative chemisorption barrier of H2 and CH4 on nickel catalysts over a wide range of vibrational temperatures. We investigate the effect of surface structure and compare the role of different vibrational modes of methane in the dissociation process. For low vibrational temperatures, very high vibrational efficacies are found, and energy in bend vibrations appears to dominate the dissociation of methane. The relative impact of vibrational nonequilibrium is much higher on terrace sites than on surface steps. We then show how our simulations can help to interpret recent experimental results, and suggest new paths to a better understanding of plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000674464100001 Publication Date 2021-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 12ZI420N ; K M B was funded as a junior postdoctoral fellow of the FWO (Research Foundation—Flanders), Grant 12ZI420N. The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. HLDA calculations were performed with a script provided by G Piccini. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:179830 Serial 6808
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Hieu, N.N.; Ghergherehchi, M.; Feghhi, S.A.H.; Gogova, D.
Title Prediction of two-dimensional bismuth-based chalcogenides Bi₂X₃(X = S, Se, Te) monolayers with orthorhombic structure : a first-principles study Type A1 Journal article
Year (up) 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 54 Issue 39 Pages 395103
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract First-principles calculation is a very powerful tool for discovery and design of novel two-dimensional materials with unique properties needed for the next generation technology. Motivated by the successful preparation of Bi2S3 nanosheets with orthorhombic structure in the last year, herein we gain a deep theoretical insight into the crystal structure, stability, electronic and optical properties of Bi2X3 (X = S, Se, Te) monolayers of orthorhombic phase employing the first-principles calculations. The Molecular dynamics study, phonon spectra, criteria for elastic stability, and cohesive energy results confirm the desired stability of the Bi2X3 monolayers. From S, to Se and Te, the work function value as well as stability of the systems decrease due to the decline in electronegativity. Mechanical properties study reveals that Bi2X3 monolayers have brittle nature. The electronic bandgap values of Bi2S3, Bi2Se3 and Bi2Te3 monolayers are predicted by the HSE06 functional to be 2.05, 1.20 and 1.16 eV, respectively. By assessing the optical properties, it has been found that Bi2X3 monolayers can absorb ultraviolet light. The high in-plane optical anisotropy offers an additional degree of freedom in the design of optical devices. The properties revealed in our survey will stimulate and inspire the search for new approaches of orthorhombic Bi2X3 (X = S, Se, Te) monolayers synthesis and properties manipulation for fabrication of novel nanoelectronic and optoelectronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000674464700001 Publication Date 2021-07-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:179863 Serial 7014
Permanent link to this record
 

 
Author Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.J.; Canal, C.; Choi, E.H.; Coulombe, S.; Donkó, Z.; Graves, D.B.; Hamaguchi, S.; Hegemann, D.; Hori, M.; Kim, H.-h; Kroesen, G.M.W.; Kushner, M.J.; Laricchiuta, A.; Li, X.; Magin, T.E.; Mededovic Thagard, S.; Miller, V.; Murphy, A.B.; Oehrlein, G.S.; Puac, N.; Sankaran, R.M.; Samukawa, S.; Shiratani, M.; Šimek, M.; Tarasenko, N.; Terashima, K.; Thomas Jr, E.; Trieschmann, J.; Tsikata, S.; Turner, M.M.; van der Walt, I.J.; van de Sanden, M.C.M.; von Woedtke, T.
Title The 2022 Plasma Roadmap: low temperature plasma science and technology Type A1 Journal article
Year (up) 2022 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 55 Issue 37 Pages 373001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The 2022 Roadmap is the next update in the series of Plasma Roadmaps published by<italic>Journal of Physics</italic>D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics, data-driven plasma science and technology and the contribution of LTP to combat COVID-19. In the last few decades, LTP science and technology has made a tremendously positive impact on our society. It is our hope that this roadmap will help continue this excellent track record over the next 5–10 years.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000821410400001 Publication Date 2022-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited Open Access OpenAccess
Notes Grants-in-Aid for Scientific Research, 15H05736 ; FCT-Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Russian Foundation for Basic Research, 20-02-00320 ; Lam Research Corporation; National Office for Research, Development, and Innovation of Hungary, K-134462 ; Czech Science Foundation, GA 18-04676S ; Japan Society for the Promotion of Science, 20H00142 ; MESTD of Republic of Serbia, 451-03-68/2021-14/200024 ; NASA; Dutch Foundation for Scientific Research; U.S. National Science Foundation, CBET 1703439 ; U.S. Department of Energy, DE-SC-0001234 ; Grantová Agentura České Republiky, GA 18-04676S ; Army Research Office, W911NF-20-1-0105 ; National Natural Science Foundation of China, 51825702 ; European Research Council, Starting Grant #259354 ; European Space Agency, GSTP ; U.S. Air Force Office of Scientific Research, FA9550-17-1-0370 ; Safran Aircraft Engines, POSEIDON ; Agence Nationale de la Recherche, ANR-16-CHIN-003–01 ; H2020 European Research Council, ERC Synergy Grant 810182 SCOPE ; JST CREST, JPMJCR19R3 ; Federal German Ministry of Education and Research, 03Z22DN11 ; National Research Foundation of Korea, 2016K1A4A3914113 ; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021_169180 ; Departament d’Innovació, Universitats i Empresa, Generalitat de Catalunya, SGR2017-1165 ; Ministerio de Economía, Industria y Competitividad, Gobierno de España, PID2019-103892RB-I00/AEI/10.13039/501100011033 ; Deutsche Forschungsgemeinschaft, 138690629 – TRR 87 ; Grant-in-Aid for Exploratory Research, 18K18753 ; Approved Most recent IF: 3.4
Call Number PLASMANT @ plasmant @c:irua:189203 Serial 7075
Permanent link to this record