toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Neyts, E.C.; van Duin, A.C.T.; Bogaerts, A. pdf  doi
openurl 
  Title Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations : effect of electric field Type A1 Journal article
  Year (down) 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 2 Pages 1256-1260  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Carbon nanotubes (CNTs) are nowadays routinely grown in a thermal CVD setup. State-of-the-art plasma-enhanced CVD (PECVD) growth, however, offers advantages over thermal CVD. A lower growth temperature and the growth of aligned freestanding single-walled CNTs (SWNTs) makes the technique very attractive. The atomic scale growth mechanisms of PECVD CNT growth, however, remain currently entirely unexplored. In this contribution, we employed molecular dynamics simulations to focus on the effect of applying an electric field on the SWNT growth process, as one of the effects coming into play in PECVD. Using sufficiently strong fields results in (a) alignment of the growing SWNTs, (b) a better ordering of the carbon network, and (c) a higher growth rate relative to thermal growth rate. We suggest that these effects are due to the small charge transfer occurring in the Ni/C system. These simulations constitute the first study of PECVD growth of SWNTs on the atomic level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000301084300086 Publication Date 2011-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 56 Open Access  
  Notes Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:97163 Serial 1673  
Permanent link to this record
 

 
Author Aerts, R.; Tu, X.; De Bie, C.; Whitehead, J.C.; Bogaerts, A. doi  openurl
  Title An investigation into the dominant reactions for ethylene destruction in non-thermal atmospheric plasmas Type A1 Journal article
  Year (down) 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 9 Issue 10 Pages 994-1000  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A crucial step, which is still not well understood in the destruction of volatile organic compounds (VOCs) with low temperature plasmas, is the initiation of the process. Here, we present a kinetic model for the destruction of ethylene in low temperature plasmas that allows us to calculate the relative importance of all plasma species and their related reactions. Modifying the ethylene concentration and/or the SED had a major impact on the relative importance of the radicals (i.e., mainly atomic oxygen) and the metastable nitrogen (i.e., more specifically N2(equation image)) in the destruction process. Our results show that the direct destruction by electron impact reactions for ethylene can be neglected; however, we can certainly not neglect the influence of N2(equation image)).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000309750300008 Publication Date 2012-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 46 Open Access  
  Notes Approved Most recent IF: 2.846; 2012 IF: 3.730  
  Call Number UA @ lucian @ c:irua:101765 Serial 1727  
Permanent link to this record
 

 
Author Neyts, E.; Mao, M.; Eckert, M.; Bogaerts, A. isbn  openurl
  Title Modeling aspects of plasma-enhanced chemical vapor deposition of carbon-based materials Type H1 Book chapter
  Year (down) 2012 Publication Abbreviated Journal  
  Volume Issue Pages 245-290  
  Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher CRC Press Place of Publication Boca Raton, Fla Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4398-6676-4 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:107843 Serial 2109  
Permanent link to this record
 

 
Author Bogaerts, A.; Aerts, R.; Snoeckx, R.; Somers, W.; Van Gaens, W.; Yusupov, M.; Neyts, E. url  doi
openurl 
  Title Modeling of plasma and plasma-surface interactions for medical, environmental and nano applications Type A1 Journal article
  Year (down) 2012 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 399 Issue Pages 012011  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, an overview is given of modeling investigations carried out in our research group for a better understanding of plasmas used for medical, environmental and nano applications. The focus is both on modeling the plasma chemistry and the plasma-surface interactions. The plasma chemistry provides the densities and fluxes of the important plasma species. This information can be used as input when modeling the plasma-surface interactions. The combination of plasma simulations and plasma – surface interaction simulations provides a more comprehensive understanding of the underlying processes for these applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000312261700011 Publication Date 2012-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:104727 Serial 2130  
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A. pdf  doi
openurl 
  Title Modeling SiH4/O2/Ar inductively coupled plasmas used for filling of microtrenches in shallow trench isolation (STI) Type A1 Journal article
  Year (down) 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 9 Issue 5 Pages 522-539  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Modeling results are presented to gain a better insight in the properties of a SiH4/O2/Ar inductively coupled plasma (ICP) and how it interacts with a silicon substrate (wafer), as applied in the microelectronics industry for the fabrication of electronic devices. The SiH4/O2/Ar ICP is used for the filling of microtrenches with isolating material (SiO2), as applied in shallow trench isolation (STI). In this article, a detailed reaction set that describes the plasma chemistry of SiH4/O2/Ar discharges as well as surface processes, such as sputtering, oxidation, and deposition, is presented. Results are presented on the plasma properties during the plasma enhanced chemical vapor deposition process (PECVD) for different gas ratios, as well as on the shape of the filled trenches and the surface compositions of the deposited layers. For the operating conditions under study it is found that the most important species accounting for deposition are SiH2, SiH3O, SiH3 and SiH2O, while SiH+2, SiH+3, O+2 and Ar+ are the dominant species for sputtering of the surface. By diluting the precursor gas (SiH4) in the mixture, the deposition rate versus sputtering rate can be controlled for a desired trench filling process. From the calculation results it is clear that a high deposition rate will result in undesired void formation during the trench filling, while a small deposition rate will result in undesired trench bottom and mask damage by sputtering. By varying the SiH4/O2 ratio, the chemical composition of the deposited layer will be influenced. However, even at the highest SiH4/O2 ratio investigated (i.e., 3.2:1; low oxygen content), the bulk deposited layer consists mainly of SiO2, suggesting that low-volatile silane species deposit first and subsequently become oxidized instead of being oxidized first in the plasma before deposition. Finally, it was found that the top surface of the deposited layer contained less oxygen due to preferential sputtering of O atoms, making the top layer more Si-rich. However, this effect is negligible at a SiH4/O2 ratio of 2:1 or lower.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000303858100010 Publication Date 2012-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.846; 2012 IF: 3.730  
  Call Number UA @ lucian @ c:irua:99127 Serial 2142  
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A. doi  openurl
  Title Modeling the growth of SWNTs and graphene on the atomic scale Type A1 Journal article
  Year (down) 2012 Publication ECS transactions Abbreviated Journal  
  Volume 45 Issue 4 Pages 73-78  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The possibility of application of nanomaterials is determined by our ability to control the properties of the materials, which are ultimately determined by their structure and hence their growth processes. We employ hybrid molecular dynamics / Monte Carlo (MD/MC) simulations to explore the growth of SWNTs and graphene on nickel as a catalyst, with the specific goal of unraveling the growth mechanisms. While the general observations are in agreement with the literature, we find a number of interesting phenomena to be operative which are crucial for the growth, and which are not accessible by MD simulations alone due to the associated time scale. Specifically, we observe metal mediated healing and restructuring processes to take place, reorganizing the carbon network during the initial nucleation step. In the case of carbon nanotube growth, this leads to the growth of tubes with a determinable chirality. In the case of graphene formation, we find that graphene is only formed at temperatures above 700 K. These results are of importance for understanding the growth mechanisms of these carbon nanomaterials on the fundamental level.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical Society Place of Publication Pennington Editor  
  Language Wos 000316890000008 Publication Date 2012-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1938-6737;1938-5862; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:108535 Serial 2144  
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A. pdf  doi
openurl 
  Title Optimization of operating parameters for inductively coupled plasma mass spectrometry : a computational study Type A1 Journal article
  Year (down) 2012 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 76 Issue Pages 56-64  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An inductively coupled plasma, connected to a mass spectrometer interface, is computationally investigated. The effect of pressure behind the sampler, injector gas flow rate, auxiliary gas flow rate, and applied power is studied. There seems to be an optimum range of injector gas flow rate for each setup which guaranties the presence and also a proper length of the central channel in the torch. Moreover, our modeling results show that for any specific purpose, it is possible to control that either only the central gas flow passes through the sampler orifice or that it is accompanied by the auxiliary gas flow. It was also found that depending on geometry, the variation of outgoing gas flow rate is much less than the variation of the injector gas flow rate and this causes a slightly higher pressure inside the torch. The general effect of increasing the applied power is a rise in the plasma temperature, which results in a higher ionization in the coil region. However, the negative effect is reducing the length of the cool central channel which is important to transfer the sample substances to the sampler. Using a proper applied power can enhance the efficiency of the system. Indeed, by changing the gas path lines, the power can control which flow (i.e., only from injector gas or also from the auxiliary gas) goes to the sampler orifice. Finally, as also reported from experiments in literature, the pressure behind the sampler has no dramatic effect on the plasma characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000311008600008 Publication Date 2012-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 18 Open Access  
  Notes Approved Most recent IF: 3.241; 2012 IF: 3.141  
  Call Number UA @ lucian @ c:irua:101356 Serial 2488  
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C. pdf  doi
openurl 
  Title Plasma species interacting with nickel surfaces : toward an atomic scale understanding of plasma-catalysis Type A1 Journal article
  Year (down) 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue 39 Pages 20958-20965  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The adsorption probability and reaction behavior of CHx plasma species on various nickel catalyst surfaces is investigated by means of reactive molecular dynamics (MD) simulations using the ReaxFF potential. Such catalysts are used in the reforming of hydrocarbons and in the growth of carbon nanotubes, and further insight in the underlying mechanisms of these processes is needed to increase their applicability. Single and consecutive impacts of CHx radicals (x={1,2,3}) were performed on four different Ni surfaces, at a temperature of 400 K. The adsorption probability is shown to be related to the number of free electrons, i.e. a higher number leads to more adsorptions, and the steric hindrance caused by the hydrogen atoms bonded to the impacting CHx species. Furthermore, some of the CH bonds break after adsorption, which generally leads to diffusion of the hydrogen atom over the surface. Additionally, these adsorbed H-atoms can be used in reactions to form new molecules, such as CH4 and C2Hx, although this is dependent on the precise morphology of the surface. New molecules are also formed by subtraction of H-atoms from adsorbed radicals, leading to occasional formation of H2 and C2Hx molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000309375700040 Publication Date 2012-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 37 Open Access  
  Notes Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:101522 Serial 2640  
Permanent link to this record
 

 
Author Wendelen, W.; Mueller, B.Y.; Autrique, D.; Rethfeld, B.; Bogaerts, A. pdf  doi
openurl 
  Title Space charge corrected electron emission from an aluminum surface under non-equilibrium conditions Type A1 Journal article
  Year (down) 2012 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 111 Issue 11 Pages 113110  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A theoretical study has been conducted of ultrashort pulsed laser induced electron emission from an aluminum surface. Electron emission fluxes retrieved from the commonly employed Fowler-DuBridge theory were compared to fluxes based on a laser-induced non-equilibrium electron distribution. As a result, the two-and three-photon photoelectron emission parameters for the Fowler-DuBridge theory have been approximated. We observe that at regimes where photoemission is important, laser-induced electron emission evolves in a more smooth manner than predicted by the Fowler-DuBridge theory. The importance of the actual electron distribution decreases at higher laser fluences, whereas the contribution of thermionic emission increases. Furthermore, the influence of a space charge effect on electron emission was evaluated by a one dimensional particle-in-cell model. Depending on the fluences, the space charge reduces the electron emission by several orders of magnitude. The influence of the electron emission flux profiles on the effective electron emission was found to be negligible. However, a non-equilibrium electron velocity distribution increases the effective electron emission significantly. Our results show that it is essential to consider the non-equilibrium electron distribution as well as the space charge effect for the description of laser-induced photoemission. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729071]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000305401400043 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 30 Open Access  
  Notes Approved Most recent IF: 2.068; 2012 IF: 2.210  
  Call Number UA @ lucian @ c:irua:100300 Serial 3057  
Permanent link to this record
 

 
Author Yusupov, M.; Saraiva, M.; Depla, D.; Bogaerts, A. url  doi
openurl 
  Title Sputter deposition of MgxAlyOz thin films in a dual-magnetron device : a multi-species Monte Carlo model Type A1 Journal article
  Year (down) 2012 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 14 Issue 7 Pages 073043  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A multi-species Monte Carlo (MC) model, combined with an analytical surface model, has been developed in order to investigate the general plasma processes occurring during the sputter deposition of complex oxide films in a dual-magnetron sputter deposition system. The important plasma species, such as electrons, Ar+ ions, fast Ar atoms and sputtered metal atoms (i.e. Mg and Al atoms) are described with the so-called multi-species MC model, whereas the deposition of MgxAlyOz films is treated by an analytical surface model. Targetsubstrate distances for both magnetrons in the dual-magnetron setup are varied for the purpose of growing stoichiometric complex oxide thin films. The metal atoms are sputtered from pure metallic targets, whereas the oxygen flux is only directed toward the substrate and is high enough to obtain fully oxidized thin films but low enough to avoid target poisoning. The calculations correspond to typical experimental conditions applied to grow these complex oxide films. In this paper, some calculation results are shown, such as the densities of various plasma species, their fluxes toward the targets and substrate, the deposition rates, as well as the film stoichiometry. Moreover, some results of the combined model are compared with experimental observations. Note that this is the first complete model, which can be applied for large and complicated magnetron reactor geometries, such as dual-magnetron configurations. With this model, we are able to describe all important plasma species as well as the deposition process. It can also be used to predict film stoichiometries of complex oxide films on the substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000307072500003 Publication Date 2012-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 2 Open Access  
  Notes Approved Most recent IF: 3.786; 2012 IF: 4.063  
  Call Number UA @ lucian @ c:irua:100100 Serial 3111  
Permanent link to this record
 

 
Author Yusupov, M.; Bultinck, E.; Depla, D.; Bogaerts, A. url  doi
openurl 
  Title Behavior of electrons in a dual-magnetron sputter deposition system : a Monte Carlo model Type A1 Journal article
  Year (down) 2011 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 13 Issue Pages 033018-033018,17  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A Monte Carlo model has been developed for investigating the electron behavior in a dual-magnetron sputter deposition system. To describe the three-dimensional (3D) geometry, different reference frames, i.e. a local and a global coordinate system, were used. In this study, the influence of both closed and mirror magnetic field configurations on the plasma properties is investigated. In the case of a closed magnetic field configuration, the calculated electron trajectories show that if an electron is emitted in (or near) the center of the cathode, where the influence of the magnetic field is low, it is able to travel from one magnetron to the other. On the other hand, when an electron is created at the race track area, it is more or less trapped in the strong magnetic field and cannot easily escape to the second magnetron region. In the case of a mirror magnetic field configuration, irrespective of where the electron is emitted from the cathode, it cannot travel from one magnetron to the other because the magnetic field lines guide the electron to the substrate. Moreover, the electron density and electron impact ionization rate have been calculated and studied in detail for both configurations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000289064600001 Publication Date 2011-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.786; 2011 IF: 4.177  
  Call Number UA @ lucian @ c:irua:87544 Serial 224  
Permanent link to this record
 

 
Author Martens, J.A.; Thybaut, J.W.; Denayer, J.F.M.; Sree, S.P.; Aerts, A.; Reyniers, M.-F.; van Speybroeck, V.; Waroquier, M.; Buekenhoudt, A.; Vankelecom, I.; Buijs, W.; Persoons, J.; Baron, G.V.; Bals, S.; Van Tendeloo, G.; Marin, G.B.; Jacobs, P.A.; Kirschhock, C.E.A. pdf  doi
openurl 
  Title Catalytic and molecular separation properties of Zeogrids and Zeotiles Type A1 Journal article
  Year (down) 2011 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 168 Issue 1 Pages 17-27  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Zeogrids and Zeotiles are hierarchical materials built from assembled MFI zeolite precursor units. Permanent secondary porosity in these materials is obtained through self assembly of nanoparticles encountered in MFI zeolite synthesis in the presence of supramolecular templates. Hereon, the aggregated species are termed nanoslabs. Zeogrids are layered materials with lateral spacings between nanoslabs creating galleries qualifying as supermicropores. Zeotiles present a diversity of tridimensional nanoslab assemblies with mesopores. Zeotile-1, -4 and -6 are hexagonal mesostructures. Zeotile-1 has triangular and hexagonal channels; Zeotile-4 has hexagonal channels interconnected via slits. Zeotile-2 has a cubic structure with gyroid type mesoporosity. The behavior of Zeogrids and Zeotiles in adsorption, membrane and chromatographic separation and catalysis has been characterized and compared with zeolites and mesoporous materials derived from unstructured silica sources. Shape selectivity was detected via adsorption of n- and iso-alkanes. The mesoporosity of Zeotiles can be exploited in chromatographic separation of biomolecules. Zeotiles present attractive separation properties relevant to CO2 sequestration. Because of its facile synthesis procedure without hydrothermal steps Zeogrid is convenient for membrane synthesis. The performance of Zeogrid membrane in gas separation, nanofiltration and pervaporation is reported. In the Beckmann rearrangement of cyclohexanone oxime Zeogrids and Zeotiles display a catalytic activity characteristic of silicalite-1 zeolites. Introduction of acidity and redox catalytic activity can be achieved via incorporation of Al and Ti atoms in the nanoslabs during synthesis. Zeogrids are active in hydrocracking, catalytic cracking, alkylation and epoxidation reactions. Zeogrids and Zeotiles often behave differently from ordered mesoporous materials as well as from zeolites and present a valuable extension of the family of hierarchical silicate based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000291033300003 Publication Date 2011-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 13 Open Access  
  Notes Fwo; Iap Sbo Approved Most recent IF: 4.636; 2011 IF: 3.407  
  Call Number UA @ lucian @ c:irua:88647 Serial 290  
Permanent link to this record
 

 
Author Neyts, E.C.; van Duin, A.C.T.; Bogaerts, A. pdf  doi
openurl 
  Title Changing chirality during single-walled carbon nanotube growth : a reactive molecular dynamics/Monte Carlo study Type A1 Journal article
  Year (down) 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 133 Issue 43 Pages 17225-17231  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The growth mechanism and chirality formation of a single-walled carbon nanotube (SWNT) on a surface-bound nickel nanocluster are investigated by hybrid reactive molecular dynamics/force-biased Monte Carlo simulations. The validity of the interatomic potential used, the so-called ReaxFF potential, for simulating catalytic SWNT growth is demonstrated. The SWNT growth process was found to be in agreement with previous studies and observed to proceed through a number of distinct steps, viz., the dissolution of carbon in the metallic particle, the surface segregation of carbon with the formation of aggregated carbon clusters on the surface, the formation of graphitic islands that grow into SWNT caps, and finally continued growth of the SWNT. Moreover, it is clearly illustrated in the present study that during the growth process, the carbon network is continuously restructured by a metal-mediated process, thereby healing many topological defects. It is also found that a cap can nucleate and disappear again, which was not observed in previous simulations. Encapsulation of the nanoparticle is observed to be prevented by the carbon network migrating as a whole over the cluster surface. Finally, for the first time, the chirality of the growing SWNT cap is observed to change from (11,0) over (9,3) to (7,7). It is demonstrated that this change in chirality is due to the metal-mediated restructuring process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000297380900026 Publication Date 2011-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 116 Open Access  
  Notes Approved Most recent IF: 13.858; 2011 IF: 9.907  
  Call Number UA @ lucian @ c:irua:92043 Serial 309  
Permanent link to this record
 

 
Author Bultinck, E.; Bogaerts, A. pdf  doi
openurl 
  Title Characterization of an Ar/O2 magnetron plasma by a multi-species Monte Carlo model Type A1 Journal article
  Year (down) 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 20 Issue 4 Pages 045013-045013,12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A combined Monte Carlo (MC)/analytical surface model is developed to study the plasma processes occurring during the reactive sputter deposition of TiOx thin films. This model describes the important plasma species with a MC approach (i.e. electrons, Ar+ ions, {\rm O}_2  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000295829800015 Publication Date 2011-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 7 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:89732 Serial 316  
Permanent link to this record
 

 
Author Bogaerts, A.; Eckert, M.; Mao, M.; Neyts, E. doi  openurl
  Title Computer modelling of the plasma chemistry and plasma-based growth mechanisms for nanostructured materials Type A1 Journal article
  Year (down) 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 44 Issue 17 Pages 174030-174030,16  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this review paper, an overview is given of different modelling efforts for plasmas used for the formation and growth of nanostructured materials. This includes both the plasma chemistry, providing information on the precursors for nanostructure formation, as well as the growth processes itself. We limit ourselves to carbon (and silicon) nanostructures. Examples of the plasma modelling comprise nanoparticle formation in silane and hydrocarbon plasmas, as well as the plasma chemistry giving rise to carbon nanostructure formation, such as (ultra)nanocrystalline diamond ((U)NCD) and carbon nanotubes (CNTs). The second part of the paper deals with the simulation of the (plasma-based) growth mechanisms of the same carbon nanostructures, i.e. (U)NCD and CNTs, both by mechanistic modelling and detailed atomistic simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000289512700030 Publication Date 2011-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.588; 2011 IF: 2.544  
  Call Number UA @ lucian @ c:irua:88364 Serial 463  
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A. doi  openurl
  Title Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition Type A1 Journal article
  Year (down) 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 20 Issue 1 Pages 015008-015008,10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, an O2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al2O3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O2, while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000286592200009 Publication Date 2011-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:85285 Serial 467  
Permanent link to this record
 

 
Author Bogaerts, A.; Aghaei, M.; Autrique, D.; Lindner, H.; Chen, Z.; Wendelen, W. doi  isbn
openurl 
  Title Computer simulations of laser ablation, plume expansion and plasma formation Type H1 Book chapter
  Year (down) 2011 Publication Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Trans Tech Place of Publication Aedermannsdorf Editor  
  Language Wos 000292658900001 Publication Date 2011-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1662-8985; ISBN 978-3-03785-081-7 Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 8 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:88340 Serial 470  
Permanent link to this record
 

 
Author Neyts, E.; Maeyens, A.; Pourtois, G.; Bogaerts, A. doi  openurl
  Title A density-functional theory simulation of the formation of Ni-doped fullerenes by ion implantation Type A1 Journal article
  Year (down) 2011 Publication Carbon Abbreviated Journal Carbon  
  Volume 49 Issue 3 Pages 1013-1017  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Using self-consistent KohnSham density-functional theory molecular dynamics simulations, we demonstrate the theoretical possibility to synthesize NiC60, the incarfullerene Ni@C60 and the heterofullerene C59Ni in an ion implantation setup. The corresponding formation mechanisms of all three complexes are elucidated as a function of the ion implantation energy and impact location, suggesting possible routes for selectively synthesizing these complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000286683500032 Publication Date 2010-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 13 Open Access  
  Notes Approved Most recent IF: 6.337; 2011 IF: 5.378  
  Call Number UA @ lucian @ c:irua:85139 Serial 639  
Permanent link to this record
 

 
Author Philippaerts, A.; Goossens, S.; Vermandel, W.; Tromp, M.; Turner, S.; Geboers, J.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F. pdf  doi
openurl 
  Title Design of Ru-zeolites for hydrogen-free production of conjugated linoleic acid Type A1 Journal article
  Year (down) 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 4 Issue 6 Pages 757-767  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract While conjugated vegetable oils are currently used as additives in the drying agents of oils and paints, they are also attractive molecules for making bio-plastics. Moreover, conjugated oils will soon be accepted as nutritional additives for functional food products. While current manufacture of conjugated vegetable oils or conjugated linoleic acids (CLAs) uses a homogeneous base as isomerisation catalyst, a heterogeneous alternative is not available today. This contribution presents the direct production of CLAs over Ru supported on different zeolites, varying in topology (ZSM-5, BETA, Y), Si/Al ratio and countercation (H+, Na+, Cs+). Ru/Cs-USY, with a Si/Al ratio of 40, was identified as the most active and selective catalyst for isomerisation of methyl linoleate (cis-9,cis-12 (C18:2)) to CLA at 165 °C. Interestingly, no hydrogen pre-treatment of the catalyst or addition of hydrogen donors is required to achieve industrially relevant isomerisation productivities, namely, 0.7 g of CLA per litre of solvent per minute. Moreover, the biologically most active CLA isomers, namely, cis-9,trans-11, trans-10,cis-12 and trans-9,trans-11, were the main products, especially at low catalyst concentrations. Ex situ physicochemical characterisation with CO chemisorption, extended X-ray absorption fine structure measurements, transmission electron microscopy analysis, and temperature-programmed oxidation reveals the presence of highly dispersed RuO2 species in Ru/Cs-USY(40).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000292214000009 Publication Date 2011-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 24 Open Access  
  Notes Fwo Approved Most recent IF: 7.226; 2011 IF: 6.827  
  Call Number UA @ lucian @ c:irua:90352 Serial 660  
Permanent link to this record
 

 
Author De Bie, C.; Martens, T.; van Dijk, J.; Paulussen, S.; Verheyde, B.; Corthals, S.; Bogaerts, A. pdf  doi
openurl 
  Title Dielectric barrier discharges used for the conversion of greenhouse gases: modeling the plasma chemistry by fluid simulations Type A1 Journal article
  Year (down) 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 20 Issue 2 Pages 024008,1-024008,11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The conversion of methane to value-added chemicals and fuels is considered to be one of the challenges of the 21st century. In this paper we study, by means of fluid modeling, the conversion of methane to higher hydrocarbons or oxygenates by partial oxidation with CO2 or O2 in a dielectric barrier discharge. Sixty-nine different plasma species (electrons, ions, molecules, radicals) are included in the model, as well as a comprehensive set of chemical reactions. The calculation results presented in this paper include the conversion of the reactants and the yields of the reaction products as a function of residence time in the reactor, for different gas mixing ratios. Syngas (i.e. H2 + CO) and higher hydrocarbons (C2Hx) are typically found to be important reaction products.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000290719900009 Publication Date 2011-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 38 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:87868 Serial 689  
Permanent link to this record
 

 
Author Yusupov, M.; Bultinck, E.; Depla, D.; Bogaerts, A. doi  openurl
  Title Elucidating the asymmetric behavior of the discharge in a dual magnetron sputter deposition system Type A1 Journal article
  Year (down) 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue 13 Pages 131502-131502,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A magnetron discharge is characterized by drifts of the charged particles guiding center, caused by the magnetic field, in contrast to unmagnetized discharges. Because of these drifts, a pronounced asymmetry of the discharge can be observed in a dual magnetron setup. In this work, it is found that the shape of the discharge in a dual magnetron configuration depends on the magnetic field configuration. In a closed configuration, strong drifts were observed in one preferential direction, whereas in a mirror configuration the deflection of the discharge was not so pronounced. Our calculations confirm experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000289153600017 Publication Date 2011-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:87867 Serial 1026  
Permanent link to this record
 

 
Author De Bie, C.; Verheyde, B.; Martens, T.; van Dijk, J.; Paulussen, S.; Bogaerts, A. pdf  doi
openurl 
  Title Fluid modeling of the conversion of methane into higher hydrocarbons in an atmospheric pressure dielectric barrier discharge Type A1 Journal article
  Year (down) 2011 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 8 Issue 11 Pages 1033-1058  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A one-dimensional fluid model for a dielectric barrier discharge in methane, used as a chemical reactor for gas conversion, is developed. The model describes the gas phase chemistry governing the conversion process of methane to higher hydrocarbons. The spatially averaged densities of the various plasma species as a function of time are discussed. Besides, the conversion of methane and the yields of the reaction products as a function of the residence time in the reactor are shown and compared with experimental data. Higher hydrocarbons (C2Hy and C3Hy) and hydrogen gas are typically found to be important reaction products. Furthermore, the main underlying reaction pathways are determined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000297745500005 Publication Date 2011-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 70 Open Access  
  Notes Approved Most recent IF: 2.846; 2011 IF: 2.468  
  Call Number UA @ lucian @ c:irua:92443 Serial 1227  
Permanent link to this record
 

 
Author Si, X.-J.; Zhao, S.-X.; Xu, X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma Type A1 Journal article
  Year (down) 2011 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 18 Issue 3 Pages 033504-033504,9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A fluid model is self-consistently established to investigate the harmonic effects in an inductively coupled plasma, where the electromagnetic field is solved by the finite difference time domain technique. The spatiotemporal distribution of harmonic current density, harmonic potential, and other plasma quantities, such as radio frequency power deposition, plasma density, and electron temperature, have been investigated. Distinct differences in current density have been observed when calculated with and without Lorentz force, which indicates that the nonlinear Lorentz force plays an important role in the harmonic effects, especially at low frequencies. Moreover, the even harmonics are larger than the odd harmonics both in the current density and the potential. Finally, the dependence of various plasma quantities with and without the Lorentz force on various driving frequencies is also examined. It is shown that the deposited power density decreases and the depth of penetration increases slightly because of the Lorentz force. The electron density increases distinctly while the electron temperature remains almost the same when the Lorentz force is taken into account.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000289151900073 Publication Date 2011-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.115; 2011 IF: 2.147  
  Call Number UA @ lucian @ c:irua:87876 Serial 1233  
Permanent link to this record
 

 
Author Jehanathan, N.; Georgieva, V.; Saraiva, M.; Depla, D.; Bogaerts, A.; Van Tendeloo, G. pdf  doi
openurl 
  Title The influence of Cr and Y on the micro structural evolution of Mg―Cr―O and Mg―Y―O thin films Type A1 Journal article
  Year (down) 2011 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 519 Issue 16 Pages 5388-5396  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Electron microscopy for materials research (EMAT)  
  Abstract The compositional influence of Cr and Y on the microstructure of Mg―Cr―O, and Mg―Y―O films synthesized by reactive magnetron sputtering has been investigated by transmission electron microscopy, X-ray diffraction and molecular dynamics simulations. A decrease in crystallinity is observed in these films as the M (Cr or Y) content is increased. It is found that M forms a solid solution with MgO for metal ratios up to ~ 70% and ~ 50% for Cr and Y respectively. Above ~ 70% Cr metal ratio the Mg―Cr―O films are found to be completely amorphous. The Mg―Y―O films are composed of Mg(Y)O and Y2O3 nano crystallites, up to ~ 50% Y metal ratio. Above this ratio, only Y2O3 nano crystallites are found. The preferential < 111> MgO grain alignment is strongly affected by the increase in M content. For M metal ratios up to ~ 50%, there is a selective promotion of the < 100> MgO grain alignments and a decline in the < 111> grain alignments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000292573500013 Publication Date 2011-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 4 Open Access  
  Notes Iwt Approved Most recent IF: 1.879; 2011 IF: 1.890  
  Call Number UA @ lucian @ c:irua:89516 Serial 1618  
Permanent link to this record
 

 
Author Tinck, S.; Boullart, W.; Bogaerts, A. pdf  doi
openurl 
  Title Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching : effects of SiO2 chamber wall coating Type A1 Journal article
  Year (down) 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 20 Issue 4 Pages 045012-045012,19  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, simulations are performed to gain a better insight into the properties of a Cl2/Ar plasma, with and without O2, during plasma etching of Si. Both plasma and surface properties are calculated in a self-consistent manner. Special attention is paid to the behavior of etch products coming from the wafer or the walls, and how the chamber walls can affect the plasma and the resulting etch process. Two modeling cases are considered. In the first case, the reactor walls are defined as clean (Al2O3), whereas in the second case a SiO2 coating is introduced on the reactor walls before the etching process, so that oxygen will be sputtered from the walls and introduced into the plasma. For this reason, a detailed reaction set is presented for a Cl2/O2/Ar plasma containing etched species, as well as an extensive reaction set for surface processes, including physical and chemical sputtering, chemical etching and deposition processes. Density and flux profiles of various species are presented for a better understanding of the bulk plasma during the etching process. Detailed information is also given on the composition of the surfaces at various locations of the reactor, on the etch products in the plasma and on the surface loss probabilities of the plasma species at the walls, with different compositions. It is found that in the clean chamber, walls are mostly chlorinated (Al2Cl3), with a thin layer of etch products residing on the wall. In the coated chamber, an oxy-chloride layer is grown on the walls for a few nanometers during the etching process. The Cl atom wall loss probability is found to decrease significantly in the coated chamber, hence increasing the etch rate. SiCl2, SiCl4 and SiCl3 are found to be the main etch products in the plasma, with the fraction of SiCl2 being always slightly higher. The simulation results compare well with experimental data available from the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000295829800014 Publication Date 2011-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:91045 Serial 2141  
Permanent link to this record
 

 
Author Aerts, A.; Follens, L.R.A.; Biermans, E.; Bals, S.; Van Tendeloo, G.; Loppinet, B.; Kirschhock, C.E.A.; Martens, J.A. pdf  doi
openurl 
  Title Modelling of synchrotron SAXS patterns of silicalite-1 zeolite during crystallization Type A1 Journal article
  Year (down) 2011 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 13 Issue 10 Pages 4318-4325  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synchrotron small angle X-ray scattering (SAXS) was used to characterize silicalite-1 zeolite crystallization from TEOS/TPAOH/water clear sol. SAXS patterns were recorded over a broad range of length scales, enabling the simultaneous monitoring of nanoparticles and crystals occurring at various stages of the synthesis. A simple two-population model accurately described the patterns. Nanoparticles were modeled by polydisperse coreshell spheres and crystals by monodisperse oblate ellipsoids. These models were consistent with TEM images. The SAXS results, in conjunction with in situ light scattering, showed that nucleation of crystals occurred in a short period of time. Crystals were uniform in size and shape and became increasingly anisotropic during growth. In the presence of nanoparticles, crystal growth was fast. During crystal growth, the number of nanoparticles decreased gradually but their size was constant. These observations suggested that the nanoparticles were growth units in an aggregative crystal growth mechanism. Crystals grown in the presence of nanoparticles developed a faceted habit and intergrowths. In the final stages of growth, nanoparticles were depleted. Concurrently, the crystal growth rate decreased significantly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000287584700017 Publication Date 2011-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 22 Open Access  
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 4.123; 2011 IF: 3.573  
  Call Number UA @ lucian @ c:irua:87602 Serial 2155  
Permanent link to this record
 

 
Author Lindner, H.; Bogaerts, A. doi  openurl
  Title Multi-element model for the simulation of inductively coupled plasmas : effects of helium addition to the central gas stream Type A1 Journal article
  Year (down) 2011 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 66 Issue 6 Pages 421-431  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A model for an atmospheric pressure inductively coupled plasma (ICP) is developed which allows rather easy extension to a variable number of species and ionisation degrees. This encompasses an easy calculation of transport parameters for mixtures, ionisation and heat capacity. The ICP is modeled in an axisymmetric geometry, taking into account the gas streaming into a flowing ambient gas. A mixture of argon and helium is applied in the injector gas stream as it is often done in laser ablation ICP spectrometry. The results show a strong influence of the added helium on the center of the ICP, which is important for chemical analysis. The length of the central channel is significantly increased and the temperature inside is significantly higher than in the case of pure argon. This means that higher gas volume flow rates can be applied by addition of helium compared to the use of pure argon. This has the advantage that the gas velocity in the transport system towards the ICP can be increased, which allows shorter washout-times. Consequently, shorter measurement times can be achieved, e.g. for spatial mapping analyses in laser ablation ICP spectrometry. Furthermore, the higher temperature and the longer effective plasma length will increase the maximum size of droplets or particles injected into the ICP that are completely evaporated at the detection site. Thus, we expect an increase of the analytical performance of the ICP by helium addition to the injector gas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000293488700003 Publication Date 2011-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 28 Open Access  
  Notes Approved Most recent IF: 3.241; 2011 IF: 2.876  
  Call Number UA @ lucian @ c:irua:90190 Serial 2209  
Permanent link to this record
 

 
Author Mao, M.; Wang, Y.N.; Bogaerts, A. pdf  doi
openurl 
  Title Numerical study of the plasma chemistry in inductively coupled SF6 and SF6/AR plasmas used for deep silicon etching applications Type A1 Journal article
  Year (down) 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 44 Issue 43 Pages 435202,1-435202,15  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A hybrid model, called the hybrid plasma equipment model, was used to study inductively coupled SF6 plasmas used for Si etching applications. The plasma properties such as number densities of electrons, positive and negative ions, and neutrals are calculated under typical etching conditions. The electron kinetics is analysed by means of the electron energy probability function. The plasma chemistry taking place in pure SF6 and in an Ar/SF6 mixture is also discussed, and finally the effect of the argon fraction on the plasma properties is investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000296591100004 Publication Date 2011-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 20 Open Access  
  Notes Approved Most recent IF: 2.588; 2011 IF: 2.544  
  Call Number UA @ lucian @ c:irua:91754 Serial 2409  
Permanent link to this record
 

 
Author Mao, M.; Bogaerts, A. url  doi
openurl 
  Title Plasma chemistry modeling for an inductively coupled plasma used for the growth of carbon nanotubes Type A1 Journal article
  Year (down) 2011 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 275 Issue 1 Pages 012021,1-012021,9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A hybrid model, called the hybrid plasma equipment model (HPEM), is used to describe the plasma chemistry in an inductively coupled plasma, operating in a gas mixture of C2H2 with either H2 or NH3, as typically used for carbon nanotube (CNT) growth. Two-dimensional profiles of power density, electron temperature and density, gas temperature, and densities of some plasma species are plotted and analyzed. Besides, the fluxes of the various plasma species towards the substrate (where the CNTs can be grown), as well as the decomposition rates of the feedstock gases (C2H2, NH3 and H2), are calculated as a function of the C2H2 fraction in both gas mixtures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2011-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:85859 Serial 2631  
Permanent link to this record
 

 
Author Lindner, H.; Murtazin, A.; Groh, S.; Niemax, K.; Bogaerts, A. pdf  doi
openurl 
  Title Simulation and experimental studies on plasma temperature, flow velocity, and injector diameter effects for an inductively coupled plasma Type A1 Journal article
  Year (down) 2011 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 83 Issue 24 Pages 9260-9266  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An inductively coupled plasma (ICP) is analyzed by means of experiments and numerical simulation. Important plasma properties are analyzed, namely, the effective temperature inside the central channel and the mean flow velocity inside the plasma. Furthermore, the effect of torches with different injector diameters is studied by the model. The temperature inside the central channel is determined from the end-on collected line-to-background ratio in dependence of the injector gas flow rates. Within the limits of 3% deviation, the results of the simulation and the experiments are in good agreement in the range of flow rates relevant for the analysis of relatively large droplets, i.e., 50 μm. The deviation increases for higher gas flow rates but stays below 6% for all flow rates studied. The velocity of the gas inside the coil region was determined by side-on analyte emission measurements with single monodisperse droplet introduction and by the analysis of the injector gas path lines in the simulation. In the downstream region significantly higher velocities were found than in the upstream region in both the simulation and the experiment. The quantitative values show good agreement in the downstream region. In the upstream region, deviations were found in the absolute values which can be attributed to the flow conditions in that region and because the methods used for velocity determination are not fully consistent. Eddy structures are found in the simulated flow lines. These affect strongly the way taken by the path lines of the injector gas and they can explain the very long analytical signals found in the experiments at low flow rates. Simulations were performed for different injector diameters in order to find conditions where good analyte transport and optimum signals can be expected. The results clearly show the existence of a transition flow rate which marks the lower limit for effective analyte transport conditions through the plasma. A rule-of-thumb equation was extracted from the results from which the transition flow rate can be estimated for different injector diameters and different injector gas compositions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000297946900013 Publication Date 2011-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 34 Open Access  
  Notes Approved Most recent IF: 6.32; 2011 IF: 5.856  
  Call Number UA @ lucian @ c:irua:94001 Serial 3009  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: