toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zha, G.-Q.; Chen, Y.; Peeters, F.M.; Zhou, S.-P. url  doi
openurl 
  Title Impurity-induced modulations of orders in d-wave superconductors Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 6 Pages 064518,1-064518,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using a model Hamiltonian with competing antiferromagnetic (AFM) and d-wave superconductivity orders, the impurity-induced structures of orders in d-wave superconductors is investigated. We find that the transition between one-dimensional stripe and two-dimensional checkerboardlike modulation around a single nonmagnetic impurity can take place as the strength of the AFM interaction U or the impurity scattering strength V0 is varied. It is also found that the impurity-induced stripe can first transit to checkerboardlike modulation and then disappears with increasing the next-nearest-neighbor hopping strength |t|. Phase diagrams of V0 versus U and |t| for various modulations of the spin order are presented. In addition, the quantum interference effect on the modulations of orders due to two strong nonmagnetic impurities is briefly examined, and the checkerboardlike and quasistripe patterns can occur depending on the sites where two impurities are placed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000269638800074 Publication Date 2009-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:78293 Serial 1572  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Kinematic vortex-antivortex lines in strongly driven superconducting stripes Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 19 Issue 18 Pages 184506,1-184506,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the framework of the time-dependent Ginzburg-Landau formalism, we study the resistive state of a submicron superconducting stripe in the presence of a longitudinal current. Sufficiently strong current leads to phase slippage between the leads, which is manifested as oppositely charged kinematic vortices moving in opposite directions perpendicular to applied drive. Depending on the distribution of superconducting current density the vortex-antivortex either nucleate in the middle of the stripe and are expelled laterally or enter on opposite sides of the sample and are driven together to annihilation. We distinguish between the two scenarios as a function of relevant parameters and show how the creation/annihilation point of the vortex-antivortex and their individual velocity can be manipulated by applied magnetic field and current.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000266501200091 Publication Date 2009-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 75 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77400 Serial 1756  
Permanent link to this record
 

 
Author Pereira, J.M.; Peeters, F.M.; Vasilopoulos, P.; Costa Filho, R.N.; Farias, G.A. url  doi
openurl 
  Title Landau levels in graphene bilayer quantum dots Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 19 Pages 195403,1-195403,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate localized electron and hole states in parabolic quantum dots of biased graphene bilayers in the presence of a perpendicular magnetic field. These quantum dots can be created by means of nanostructured gates or by position-dependent doping, which can create a gap in the otherwise gapless dispersion of a graphene bilayer. Numerical results show the energy levels of confined electrons and holes as a function of the dot parameters and the magnetic field. Remarkable crossings of energy levels are found.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000266501300102 Publication Date 2009-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77401 Serial 1774  
Permanent link to this record
 

 
Author Milošević, M.V.; Kanda, A.; Hatsumi, S.; Peeters, F.M.; Ootuka, Y. url  doi
openurl 
  Title Local current injection into mesoscopic superconductors for the manipulation of quantum states Type A1 Journal article
  Year (down) 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 103 Issue 21 Pages 217003-217003,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We perform strategic current injection in a small mesoscopic superconductor and control the (non)equilibrium quantum states in an applied homogeneous magnetic field. In doing so, we realize a current-driven splitting of multiquanta vortices, current-induced transitions between states with different angular momenta, and current-controlled switching between otherwise degenerate quantum states. These fundamental phenomena form the basis for the electronic and logic applications discussed, and are confirmed in both theoretical simulations and multiple-small-tunnel-junction transport measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000272054300044 Publication Date 2009-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 48 Open Access  
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328  
  Call Number UA @ lucian @ c:irua:94498 Serial 1826  
Permanent link to this record
 

 
Author Kalina, R.; Szafran, B.; Bednarek, S.; Peeters, F.M. doi  openurl
  Title Magnetic-field asymmetry of electron wave packet transmission in bent channels capacitively coupled to a metal gate Type A1 Journal article
  Year (down) 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 102 Issue 6 Pages 066807,1-066807,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the electron wave packet moving through a bent channel. We demonstrate that the packet transmission probability becomes an asymmetric function of the magnetic field when the electron packet is capacitively coupled to a metal plate. The coupling occurs through a nonlinear potential which translates a different kinetics of the transport for opposite magnetic-field orientations into a different potential felt by the scattered electron.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000263389500056 Publication Date 2009-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 14 Open Access  
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328  
  Call Number UA @ lucian @ c:irua:76315 Serial 1867  
Permanent link to this record
 

 
Author Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P.; Peeters, F.M. url  doi
openurl 
  Title Magnetic flux periodicity in mesoscopic d-wave symmetric and asymmetric superconducting loops Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 14 Pages 144501,1-144501,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetic flux dependence of energy and supercurrent in mesoscopic d-wave symmetric and asymmetric superconducting loops is investigated by numerically solving the Bogoliubov-de Gennes equations self-consistently. For square loops, we find an hc/e-flux periodicity in energy and supercurrent and demonstrate that the flux periodicity is sensitive to the hole size and the superconducting pairing strength as well as temperature. The hc/2e-periodic behavior can be restored almost entirely when we displace the central hole sufficiently out of the center of the sample. In rectangular loops, the discrete current-carrying low-energy spectrum can exist for an odd winding number of the order parameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000271351500085 Publication Date 2009-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79994 Serial 1879  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Magnetic Kronig-Penney model for Dirac electrons in single-layer graphene Type A1 Journal article
  Year (down) 2009 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 11 Issue Pages 095009,1-095009,21  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract he properties of Dirac electrons in a magnetic superlattice (SL) on graphene consisting of very high and thin (δ-function) barriers are investigated. We obtain the energy spectrum analytically and study the transmission through a finite number of barriers. The results are contrasted with those for electrons described by the Schrödinger equation. In addition, a collimation of an incident beam of electrons is obtained along the direction perpendicular to that of the SL. We also highlight an analogy with optical media in which the refractive index varies in space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000270513500008 Publication Date 2009-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 89 Open Access  
  Notes Approved Most recent IF: 3.786; 2009 IF: 3.312  
  Call Number UA @ lucian @ c:irua:79241 Serial 1884  
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M. doi  openurl
  Title Magneto-ballistic transport through micro-structured junctions on a curved two-dimensional electron gas Type A1 Journal article
  Year (down) 2009 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 149 Issue 19/20 Pages 778-780  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate theoretically the ballistic transport in a two-dimensional electron gas, which is rolled up as a tube and is micro-structured into a Hall bar. A uniform magnetic field applied to such a curved surface results in a non-uniform perpendicular magnetic field. The bend resistances become asymmetric with respect to the orientation of the magnetic field due to the varying magnetic field along the junction. The resistance asymmetry is strongly affected by corrugation due to the varying mobility along different crystallographic directions. We compare our results with a recent transport measurement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000266149900011 Publication Date 2009-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.554; 2009 IF: 1.837  
  Call Number UA @ lucian @ c:irua:77580 Serial 1897  
Permanent link to this record
 

 
Author Nguten, N.T.T.; Peeters, F.M. url  doi
openurl 
  Title Many-body effects in the cyclotron resonance of a magnetic dot Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 11 Pages 115335,1-115335,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Intraband cyclotron resonance (CR) transitions of a two-electron quantum dot containing a single magnetic ion is investigated for different Coulomb interaction strengths and different positions of the magnetic ion. In contrast to the usual parabolic quantum dots where CR is independent of the number of electrons, we found here that due to the presence of the magnetic ion Kohn's theorem no longer holds and CR is different for systems with different number of electrons and different effective electron-electron Coulomb interaction strength. Many-body effects result in shifts in the transition energies and change the number of CR lines. The position of the magnetic ion inside the quantum dot affects the structure of the CR spectrum by changing the position and the number of crossings and anticrossings in the transition energies and oscillator strengths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000270383200110 Publication Date 2009-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79228 Serial 1941  
Permanent link to this record
 

 
Author Magnus, W.; Brosens, F.; Sorée, B. doi  openurl
  Title Modeling drive currents and leakage currents : a dynamic approach Type A1 Journal article
  Year (down) 2009 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 8 Issue 3/4 Pages 307-323  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract The dynamics of electrons and holes propagating through the nano-scaled channels of modern semiconductor devices can be seen as a widespread manifestation of non-equilibrium statistical physics and its ruling principles. In this respect both the devices that are pushing conventional CMOS technology towards the final frontiers of Moores law and the upcoming set of alternative, novel nanostructures grounded on entirely new concepts and working principles, provide an almost unlimited playground for assessing physical models and numerical techniques emerging from classical and quantum mechanical non-equilibrium theory. In this paper we revisit the Boltzmann as well as the WignerBoltzmann equation which offers a valuable platform to study transport of charge carriers taking part in drive currents. We focus on a numerical procedure that regained attention recently as an alternative tool to solve the time-dependent Boltzmann equation for inhomogeneous systems, such as the channel regions of field-effect transistors, and we discuss its extension to the WignerBoltzmann equation. Furthermore, we pay attention to the calculation of tunneling leakage currents. The latter typically occurs in nano-scaled transistors when part of the carrier distribution sustaining the drive current is found to tunnel into the gate due the presence of an ultra-thin insulating barrier separating the gate from the channel region. In particular, we discuss the paradox related to the very existence of leakage currents established by electrons occupying quasi-bound states, while the (real) wave functions of the latter cannot carry net currents. Finally, we describe a simple model to resolve the paradox as well as to estimate gate currents provided the local carrier generation rates largely exceed the tunneling rates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000208236100009 Publication Date 2009-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.526; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:89503 Serial 2110  
Permanent link to this record
 

 
Author Ariskin, D.A.; Schweigert, I.V.; Alexandrov, A.L.; Bogaerts, A.; Peeters, F.M. doi  openurl
  Title Modeling of chemical processes in the low pressure capacitive radio frequency discharges in a mixture of Ar/C2H2 Type A1 Journal article
  Year (down) 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 105 Issue 6 Pages 063305,1-063305,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We study the properties of a capacitive 13.56 MHz discharge with a mixture of Ar/C<sub>2</sub>H<sub>2</sub> taking into account the plasmochemistry and growth of heavy hydrocarbons. A hybrid model was developed to combine the kinetic description for electron motion and the fluid approach for negative and positive ion transports and plasmochemical processes. A significant change in plasma parameters related to injection of 5.8% portion of acetylene in argon was observed and analyzed. We found that the electronegativity of the mixture is about 30%. The densities of negatively and positively charged heavy hydrocarbons are sufficiently large to be precursors for the formation of nanoparticles in the discharge volume.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000264774000059 Publication Date 2009-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 21 Open Access  
  Notes Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:74496 Serial 2121  
Permanent link to this record
 

 
Author Payette, C.; Partoens, B.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Amaha, S.; Tarucha, S. doi  openurl
  Title Modeling single-particle energy levels and resonance currents in a coherent electronic quantum dot mixer Type A1 Journal article
  Year (down) 2009 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 94 Issue 22 Pages 222101,1-22101,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present model calculations based on a coherent tunneling picture, which reproduce well both the single-particle energy level position and the resonant current strength at two typical anticrossings, one involving two levels and the other three levels in a coherent mixer composed of two weakly coupled vertical quantum dots. An essential ingredient is the inclusion of higher degree terms to account for deviations from an ideal elliptical parabolic confining potential in realistic dots. We also calculate density plots of the mixed states for the modified potential.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000266674300024 Publication Date 2009-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.411; 2009 IF: 3.554  
  Call Number UA @ lucian @ c:irua:77380 Serial 2139  
Permanent link to this record
 

 
Author Slachmuylders, A.F.; Partoens, B.; Magnus, W.; Peeters, F.M. doi  openurl
  Title Neutral shallow donors near a metallic interface Type A1 Journal article
  Year (down) 2009 Publication Microelectronics journal Abbreviated Journal Microelectron J  
  Volume 40 Issue 4/5 Pages 753-755  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of a metallic gate on the bound states of a shallow donor located near the gate is studied. We calculate the energy spectrum as a function of the distance between the metallic gate and the donor and find an anti-crossing behavior in the energy levels for certain distances. We show how a transverse electric field can tune the average position of the electron with respect to the metallic gate and the impurity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Luton Editor  
  Language Wos 000265870200024 Publication Date 2009-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.163 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.163; 2009 IF: 0.778  
  Call Number UA @ lucian @ c:irua:77029 Serial 2296  
Permanent link to this record
 

 
Author Dhong, H.M.; Zhang, J.; Peeters, F.M.; Xu, W. doi  openurl
  Title Optical conductance and transmission in bilayer graphene Type A1 Journal article
  Year (down) 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 106 Issue 4 Pages 043103,1-043103,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical study of the optoelectronic properties of bilayer graphene. The optical conductance and transmission coefficient are calculated using the energy-balance equation derived from a Boltzmann equation for an air/graphene/dielectric-wafer system. For short wavelengths (<0.2 µm), we obtain the universal optical conductance =e2/(2). Interestingly, there exists an optical absorption window in the wavelength range 10100 µm, which is induced by different transition energies required for inter- and intra-band optical absorptions in the presence of the MossBurstein effect. As a result, the position and width of this absorption window depend sensitively on temperature, carrier density, and sample mobility of the system. These results are relevant for applications of recently developed graphene devices in advanced optoelectronics such as the infrared photodetectors.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000270083800004 Publication Date 2009-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:79315 Serial 2472  
Permanent link to this record
 

 
Author Verberck, B.; Vliegenthart, G.A.; Gompper, G. doi  openurl
  Title Orientational ordering in solid C60 fullerene-cubane Type A1 Journal article
  Year (down) 2009 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 130 Issue 15 Pages 154510,1-154510,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the structure and phase behavior of fullerene-cubane C60·C8H8 by Monte Carlo simulation. Using a simple potential model capturing the icosahedral and cubic symmetries of its molecular constituents, we reproduce the experimentally observed phase transition from a cubic to an orthorhombic crystal lattice and the accompanying rotational freezing of the C60 molecules. We elaborate a scheme to identify the low-temperature orientations of individual molecules and to detect a pattern of orientational ordering similar to the arrangement of C60 molecules in solid C60. Our configuration of orientations supports a doubled periodicity along one of the crystal axes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000265486300036 Publication Date 2009-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.965; 2009 IF: 3.093  
  Call Number UA @ lucian @ c:irua:77258 Serial 2519  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Phonon band structure of Si nanowires: a stability analysis Type A1 Journal article
  Year (down) 2009 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 9 Issue 1 Pages 107-111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present full ab initio calculations of the phonon band structure of thin Si nanowires oriented along the [110] direction. Using these phonon dispersion relations, we investigate the structural stability of these wires. We found that all studied wires were stable also when doped with either B or P, if the unit cell was taken sufficiently large along the wire axis. The evolution of the phonon dispersion relations and of the sound velocities with respect to the wire diameters is discussed. Softening is observed for acoustic modes and hardening for optical phonon modes with increasing wire diameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000262519100020 Publication Date 2008-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 51 Open Access  
  Notes Approved Most recent IF: 12.712; 2009 IF: 9.991  
  Call Number UA @ lucian @ c:irua:76022 Serial 2601  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Phonon band structures of Si nanowires Type A1 Journal article
  Year (down) 2009 Publication AIP conference proceedings Abbreviated Journal  
  Volume 1199 Issue Pages 323-324  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present full ab initio calculations of the phonon band structure of thin Si nanowires oriented along the [110] direction. Using these phonon dispersion relations we investigate the structural stability of these wires. We found that all studied wires were stable also when doped with either B or P, if the unit cell was taken sufficiently large along the wire axis. The evolution of the phonon dispersion relations and of the sound velocities with respect to the wire diameters is discussed. Softening is observed for acoustic modes and hardening for optical phonon modes with increasing wire diameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000281590800153 Publication Date 2010-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:84891 Serial 2602  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Phonons in Ge nanowires Type A1 Journal article
  Year (down) 2009 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 95 Issue 12 Pages 122110,1-122110,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The phonon spectra of thin freestanding, hydrogen passivated, Ge nanowires are calculated by ab initio techniques. The effect of confinement on the phonon modes as caused by the small diameters of the wires is investigated. Confinement causes a hardening of the optical modes and a softening of the longitudinal acoustic modes. The stability of the nanowires, undoped or doped with B or P atoms, is investigated using the obtained phonon spectra. All considered wires were stable, except for highly doped, very thin nanowires.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000270243800035 Publication Date 2009-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.411; 2009 IF: 3.554  
  Call Number UA @ lucian @ c:irua:79307 Serial 2606  
Permanent link to this record
 

 
Author Zhang, Y.; Fischetti, M.V.; Sorée, B.; Magnus, W.; Heyns, M.; Meuris, M. doi  openurl
  Title Physical modeling of strain-dependent hole mobility in Ge p-channel inversion layers Type A1 Journal article
  Year (down) 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 106 Issue 8 Pages 083704,1-083704,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present comprehensive calculations of the low-field hole mobility in Ge p-channel inversion layers with SiO2 insulator using a six-band k·p band-structure model. The cases of relaxed, biaxially, and uniaxially (both tensily and compressively) strained Ge are studied employing an efficient self-consistent methodmaking use of a nonuniform spatial mesh and of the Broyden second methodto solve the coupled envelope-wave function k·p and Poisson equations. The hole mobility is computed using the KuboGreenwood formalism accounting for nonpolar hole-phonon scattering and scattering with interfacial roughness. Different approximations to handle dielectric screening are also investigated. As our main result, we find a large enhancement (up to a factor of 10 with respect to Si) of the mobility in the case of uniaxial compressive stress similarly to the well-known case of Si. Comparison with experimental data shows overall qualitative agreement but with significant deviations due mainly to the unknown morphology of the rough Ge-insulator interface, to additional scattering with surface optical phonon from the high- insulator, to Coulomb scattering interface traps or oxide chargesignored in our calculationsand to different channel structures employed.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000271358100050 Publication Date 2009-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 29 Open Access  
  Notes Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:80137 Serial 2617  
Permanent link to this record
 

 
Author Földi, P.; Benedict, M.G.; Kalman, O.; Peeters, F.M. url  doi
openurl 
  Title Quantum rings with time-dependent spin-orbit coupling: Spintronic Rabi oscillations and conductance properties Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 16 Pages 165303,1-165303,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The strength of the (Rashba-type) spin-orbit coupling in mesoscopic semiconductor rings can be tuned with external gate voltages. Here we consider the case of a periodically changing spin-orbit interaction strength in time as induced by sinusoidal voltages. In a closed one dimensional quantum ring with weak spin-orbit coupling, Rabi oscillations are shown to appear. We find that the time evolution of initially localized wave packets exhibits a series of collapse and revival phenomena. Partial revivalsthat are typical in nonlinear systemsare shown to correspond to superpositions of states localized at different spatial positions along the ring. These spintronic Schrödinger-cat states appear periodically, and similarly to their counterparts in other physical systems, they are found to be sensitive to disturbances caused by the environment. The time-dependent spin transport problem, when leads are attached to the ring, is also solved. We show that the sideband currents induced by the oscillating spin-orbit interaction strength can become the dominant output channel, even in the presence of moderate thermal fluctuations and random scattering events.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000271352100078 Publication Date 2009-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80002 Serial 2784  
Permanent link to this record
 

 
Author Masir, M.R.; Matulis, A.; Peeters, F.M. url  doi
openurl 
  Title Quasibound states of Schrödinger and Dirac electrons in a magnetic quantum dot Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 15 Pages 155451,1-155451,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The properties of a two-dimensional electron are investigated in the presence of a circular step magnetic-field profile. Both electrons with parabolic dispersion as well as Dirac electrons with linear dispersion are studied. We found that in such a magnetic quantum dot no electrons can be confined. Nevertheless close to the Landau levels quasibound states can exist with a rather long lifetime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000265944200140 Publication Date 2009-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 55 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77026 Serial 2800  
Permanent link to this record
 

 
Author Zhang, Z.Z.; Wu, Z.H.; Chang, K.; Peeters, F.M. doi  openurl
  Title Resonant tunneling through S- and U-shaped graphene nanoribbons Type A1 Journal article
  Year (down) 2009 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 20 Issue 41 Pages 415203,1-415203,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000269930100007 Publication Date 2009-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 32 Open Access  
  Notes Approved Most recent IF: 3.44; 2009 IF: 3.137  
  Call Number UA @ lucian @ c:irua:79311 Serial 2893  
Permanent link to this record
 

 
Author Austing, D.G.; Payette, C.; Nair, S.V.; Yu, G.; Gupta, J.A.; Partoens, B.; Amaha, S.; Tarucha, S. doi  openurl
  Title Scheme for coherently quenching resonant current in a three-level quantum dot energy level mixer Type A1 Journal article
  Year (down) 2009 Publication Physica status solidi: C: conferences and critical reviews Abbreviated Journal  
  Volume 6 Issue 4 Pages 940-943  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We outline a scheme to create a dark state by three-level mixing that is potentially a useful tool for quantum coherent transport. Magnetic-field-induced intra-dot level mixing can lead to rich quantum superposition phenomena between three approaching single-particle states in a quantum dot when probed by the ground state of an adjacent weakly coupled quantum dot in the single-electron resonant tunnelling regime. The mixing relies on non-negligible anharmonicity and anisotropy in confining potentials of realistic quantum dots. Anti-crossing and transfer of strengths between resonances can be understood with a simple coherent level mixing model. Superposition can lead to the formation of a dark state by complete cancellation of an otherwise strong resonance. This is an all-electrical analogue of coherent population trapping seen in three-level-systems from quantum and atom optics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000266597600040 Publication Date 2008-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6351;1610-1642; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:86927 Serial 2953  
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Second generation of vortex-antivortex states in mesoscopic superconductors: stabilization by artificial pinning Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 17 Pages 174508,1-174508,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Antagonistic symmetries of superconducting polygons and their induced multivortex states in a homogeneous magnetic field may lead to the appearance of antivortices in the vicinity of the superconducting/normal-state boundary (where mesoscopic confinement is particularly strong). Resulting vortex-antivortex (V-Av) molecules match the sample symmetry but are extremely sensitive to defects and fluctuations and remain undetected experimentally. Here we show that V-Av states can reappear deep in the superconducting state due to an array of perforations in a polygonal setting, surrounding a central hole. Such states are no longer caused by the symmetry of the sample but rather by pinning itself, which prevents the vortex-antivortex annihilation. As a result, even micron size, clearly spaced V-Av molecules can be stabilized in large mesoscopic samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000266501100098 Publication Date 2009-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77399 Serial 2956  
Permanent link to this record
 

 
Author Szafran, B.; Nowak, M.P.; Bednarek, S.; Chwiej, T.; Peeters, F.M. url  doi
openurl 
  Title Selective suppression of Dresselhaus or Rashba spin-orbit coupling effects by the Zeeman interaction in quantum dots Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 23 Pages 235303,1-235303,13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study single- and two-electron parabolic quantum dots in the presence of linear Dresselhaus and Rashba spin-orbit interactions. Contributions of both types of spin-orbit coupling are investigated in the context of the spin polarization of the system at high magnetic fields. We demonstrate that for negative Landé factors the effect of the Dresselhaus coupling is suppressed at high magnetic field, which for structures without inversion asymmetry leads to a completely spin-polarized system and a strict antisymmetry of the wave functions with respect to the interchange of spatial-electron coordinates. For negative Landé factor the Rashba coupling is preserved at high field and consequently the spin polarization of the systems as well as the spatial antisymmetry of the two-electron wave function remain approximate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000267699500073 Publication Date 2009-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77691 Serial 2969  
Permanent link to this record
 

 
Author Hao, Y.L.; Djotyan, A.P.; Avetisyan, A.A.; Peeters, F.M. url  doi
openurl 
  Title Shallow donor states near a semiconductor-insulator-metal interface Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 3 Pages 035329,1-035329,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The lowest energy electronic states of a donor located near a semiconductor-insulator-metal interface are investigated within the effective mass approach. The effect of the finite thickness of the insulator between the semiconductor and the metallic gate on the energy levels is studied. The lowest energy states are obtained through a variational approach, which takes into account the influence of all image charges that arise due to the presence of the metallic and the dielectric interfaces. We compare our results with a numerical exact calculation using the finite element technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000268617800101 Publication Date 2009-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77950 Serial 2989  
Permanent link to this record
 

 
Author Földi, P.; Kálmán, O.; Peeters, F.M. url  doi
openurl 
  Title Stability of spintronic devices based on quantum ring networks Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 12 Pages 125324,1-125324,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transport properties in mesoscopic networks are investigated, where the strength of the (Rashba-type) spin-orbit coupling is tuned with external gate voltages. We analyze in detail to what extent the ideal behavior and functionality of some promising network-based devices are modified by random (spin-dependent) scattering events and by thermal fluctuations. It is found that although the functionality of these devices is obviously based on the quantum coherence of the transmitted electrons, there is a certain stability: moderate level of errors can be tolerated. For mesoscopic networks made of typical semiconductor materials, we found that when the energy distribution of the input carriers is narrow enough, the devices can operate close to their ideal limits even at relatively high temperature. As an example, we present results for two different networks: one that realizes a Stern-Gerlach device and another that simulates a spin quantum walker. Finally we propose a simple network that can act as a narrow band energy filter even in the presence of random scatterers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000270383300091 Publication Date 2009-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 41 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:79230 Serial 3131  
Permanent link to this record
 

 
Author Yang, W.; Nelissen, K.; Kong, M.; Zeng, Z.; Peeters, F.M. url  doi
openurl 
  Title Structure of binary colloidal systems confined in a quasi-one-dimensional channel Type A1 Journal article
  Year (down) 2009 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 79 Issue 4 Pages 041406,1-041406,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural properties of a binary colloidal quasi-one-dimensional system confined in a narrow channel are investigated through modified Monte Carlo simulations. Two species of particles with different magnetic moment interact through a repulsive dipole-dipole force are confined in a quasi-one-dimensional channel. The impact of three decisive parameters (the density of particles, the magnetic-moment ratio, and the fraction between the two species) on the transition from disordered phase to crystal-like phases and the transitions among the different mixed phases are summarized in a phase diagram.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000265941300077 Publication Date 2009-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.366; 2009 IF: 2.400  
  Call Number UA @ lucian @ c:irua:77021 Serial 3308  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Burnell, P.; Verhulst, S.L.; Salmon, P.; de Clerck, N.; de Backer, W. doi  openurl
  Title Study of the variability in upper and lower airway morphology in Sprague-Dawley rats using modern micro-CT scan-based segmentation techniques Type A1 Journal article
  Year (down) 2009 Publication The anatomical record: advances in integrative anatomy and evolutionary biology Abbreviated Journal Anat Rec  
  Volume 292 Issue 5 Pages 720-727  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Animal models are being used extensively in pre-clinical and safety assessment studies to assess the effectiveness and safety of new chemical entities and delivery systems. Although never entirely replacing the need for animal testing, the use of computer simulations could eventually reduce the amount of animals needed for research purposes and refine the data acquired from the animal studies. Computational fluid dynamics is a powerful tool that makes it possible to simulate flow and particle behavior in animal or patient-specific respiratory models, for purposes of inhaled delivery. This tool requires an accurate representation of the respiratory system, respiration and dose delivery attributes. The aim of this study is to develop a representative airway model of the Sprague-Dawley rat using static and dynamic micro-CT scans. The entire respiratory tract was modeled, from the snout and nares down to the central airways at the point where no distinction could be made between intraluminal air and the surrounding tissue. For the selection of the representative model, variables such as upper airway movement, segmentation length, airway volume and size are taken into account. Dynamic scans of the nostril region were used to illustrate the characteristic morphology of this region in anaesthetized animals. It could be concluded from this study that it was possible to construct a highly detailed representative model of a Sprague-Dawley rat based on imaging modalities such as micro-CT scans  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000265766000010 Publication Date 2009-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-8486;1932-8494; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.431 Times cited 16 Open Access  
  Notes Approved Most recent IF: 1.431; 2009 IF: 1.490  
  Call Number UA @ lucian @ c:irua:76455 Serial 3342  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M. url  doi
openurl 
  Title Superconducting nanowires: interplay of discrete transverse modes with supercurrent Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 2 Pages 024513,1-024513,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract From a numerical solution of the Bogoliubov-de Gennes equations, we investigate an interplay of the transverse discrete modes with a longitudinal supercurrent in a metallic cylindrical superconducting nanowire. The superconductor-to-normal transition induced by a longitudinal superflow of electrons is found to occur as a cascade of jumps in the order parameter (supercurrent and superfluid density) as a function of the superfluid velocity for diameters d<1015 nm (for Al parameters) and sufficiently low temperatures T<0.30.4Tc, with Tc the critical temperature. When approaching Tc, the jumps are smoothed into steplike but continuous drops. A similar picture occurs for d>1520 nm. Only when the diameter exceeds 5070 nm the quantum-size cascades are fully washed out, and we arrive at the mesoscopic regime. Below this regime the critical current density jc exhibits the quantum-size oscillations with pronounced resonant enhancements: the smaller the diameter, the more significant is the enhancement. Thickness fluctuations of real samples will smooth out such oscillations into an overall growth of jc with decreasing nanowire diameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000268617500092 Publication Date 2009-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77949 Serial 3358  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: