|   | 
Details
   web
Records
Author Aierken, Y.; Sevik, C.; Gulseren, O.; Peeters, F.M.; Çakir, D.
Title MXenes/graphene heterostructures for Li battery applications : a first principles study Type A1 Journal article
Year 2018 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 6 Issue 5 Pages 2337-2345
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract MXenes are the newest class of two-dimensional (2D) materials, and they offer great potential in a wide range of applications including electronic devices, sensors, and thermoelectric and energy storage materials. In this work, we combined the outstanding electrical conductivity, that is essential for battery applications, of graphene with MXene monolayers (M2CX2 where M = Sc, Ti, V and X = OH, O) to explore its potential in Li battery applications. Through first principles calculations, we determined the stable stacking configurations of M2CX2/graphene bilayer heterostructures and their Li atom intercalation by calculating the Li binding energy, diffusion barrier and voltage. We found that: (1) for the ground state stacking, the interlayer binding is strong, yet the interlayer friction is small; (2) Li binds more strongly to the O-terminated monolayer, bilayer and heterostructure MXene systems when compared with the OHterminated MXenes due to the H+ induced repulsion to the Li atoms. The binding energy of Li decreases as the Li concentration increases due to enhanced repulsive interaction between the positively charged Li ions; (3) Ti2CO2/graphene and V2CO2/graphene heterostructures exhibit large Li atom binding energies making them the most promising candidates for battery applications. When fully loaded with Li atoms, the binding energy is -1.43 eV per Li atom and -1.78 eV per Li atom for Ti2CO2/graphene and V2CO2/graphene, respectively. These two heterostructures exhibit a nice compromise between storage capacity and kinetics. For example, the diffusion barrier of Li in Ti2CO2/graphene is around 0.3 eV which is comparable to that of graphite. Additionally, the calculated average voltages are 1.49 V and 1.93 V for Ti2CO2/graphene and V2CO2/graphene structures, respectively; (4) a small change in the in-plane lattice parameters (<1%), interatomic bond lengths and interlayer distances (<0.5 angstrom) proves the stability of the heterostructures against Li intercalation, and the impending phase separation into constituent layers and capacity fading during charge-discharge cycles in real battery applications; (5) as compared to bare M2CX2 bilayers, M2CX2/graphene heterostructures have lower molecular mass, offering high storage capacity; (6) the presence of graphene ensures good electrical conductivity that is essential for battery applications. Given these advantages, Ti2CO2/graphene and V2CO2/graphene heterostructures are predicted to be promising for lithium-ion battery applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos (up) 000423981200049 Publication Date 2018-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 131 Open Access
Notes ; This work was supported by the bilateral project between the Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by the TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from the TUBITAK (Grant No. 115F024 and 116F080). Part of this work was supported by the BAGEP Award of the Science Academy. ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:149265UA @ admin @ c:irua:149265 Serial 4945
Permanent link to this record
 

 
Author Pauwels, D.; Geboes, B.; Hereijgers, J.; Choukroun, D.; De Wael, K.; Breugelmans, T.
Title The application of an electrochemical microflow reactor for the electrosynthetic aldol reaction of acetone to diacetone alcohol Type A1 Journal article
Year 2017 Publication Chemical engineering research and design Abbreviated Journal Chem Eng Res Des
Volume 128 Issue Pages 205-213
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The design and application of an electrochemical micro-flow reactor for the aldol reaction of acetone to diacetone alcohol (DAA) is reported. The modular reactor could be readily disassembled and reassembled to change the electrodes, incorporate a membrane and remove possible obstructions. The productivity and efficiency was quantified. Using a platinum deposit as electrocatalyst or an inert glassy carbon electrode as working electrode, the maximum obtainable equilibrium concentration of ±15 m% was reached after a single pass up to a flow rate of 8 ml min−1, yielding 0.57 g min−1 DAA (3.46 mmol cm−3 min−1) at an efficiency of 0.33 g C−1 on platinum and 0.50 g min−1 (3.04 mmol cm−3 min−1) at 1.20 g C−1 on glassy carbon. Note that no optimisation studies have been made in the present paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000424736500018 Publication Date 2017-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0263-8762 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.538 Times cited 2 Open Access
Notes ; The authors would like to thank Bert De Mot for assisting with the measurements. Jonas Hereijgers greatly acknowledges the Research Foundation – Flanders (FWO) for support through a Post-Doctoral grant (12Q8817N). ; Approved Most recent IF: 2.538
Call Number UA @ admin @ c:irua:146943 Serial 5871
Permanent link to this record
 

 
Author Neyts, E.C.
Title Atomistic simulations of plasma catalytic processes Type A1 Journal article
Year 2018 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
Volume 12 Issue 1 Pages 145-154
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carried out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000425156500017 Publication Date 2017-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.712 Times cited 5 Open Access Not_Open_Access
Notes Approved Most recent IF: 1.712
Call Number UA @ lucian @ c:irua:149233 Serial 4927
Permanent link to this record
 

 
Author Iyikanat, F.; Yagmurcukardes, M.; Senger, R.T.; Sahin, H.
Title Tuning electronic and magnetic properties of monolayer \alpha-RuCl3 by in-plane strain Type A1 Journal article
Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 6 Issue 8 Pages 2019-2025
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By employing density functional theory-based methods, the structural, vibrational, electronic, and magnetic properties of monolayer -RuCl3 were investigated. It was demonstrated that ferromagnetic (FM) and zigzag-antiferromagnetic (ZZ-AFM) spin orders in the material have very close total energies with the latter being the ground state. We found that each Ru atom possesses a magnetic moment of 0.9 (B) and the material exhibits strong magnetic anisotropy. While both phases exhibit indirect gaps, the FM phase is a magnetic semiconductor and the ZZ-AFM phase is a non-magnetic semiconductor. The structural stability of the material was confirmed by phonon calculations. Moreover, dynamical analysis revealed that the magnetic order in the material can be monitored via Raman measurements of the crystal structure. In addition, the magnetic ground state of the material changes from ZZ-AFM to FM upon certain applied strains. Valence and conduction band-edges of the material vary considerably under in-plane strains. Owing to the stable lattice structure and unique and controllable magnetic properties, monolayer -RuCl3 is a promising material in nanoscale device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000426483800015 Publication Date 2018-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 16 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. acknowledges financial support from TUBITAK under project number 116C073. H. S. also acknowledges support from Bilim Akademisi-The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:149900UA @ admin @ c:irua:149900 Serial 4952
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Claes, N.; Solís, D.M.; Taboada, J.M.; Bals, S.; Liz-Marzán, L.M.; Grzelczak, M.
Title Reversible Clustering of Gold Nanoparticles under Confinement Type A1 Journal article
Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 57 Issue 57 Pages 3183-3186
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A limiting factor of solvent-induced nanoparticle self-assembly is the need for constant sample dilution in assembly/disassembly cycles. Changes in the nanoparticle concentration alter the kinetics of the subsequent assembly process, limiting optical signal recovery. Herein, we show that upon confining hydrophobic nanoparticles in permeable silica nanocapsules, the number of nanoparticles participating in cyclic aggregation remains constant despite bulk changes in solution, leading to highly reproducible plasmon band shifts at different solvent compositions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000426759900031 Publication Date 2018-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 53 Open Access OpenAccess
Notes L.M.L.-M. and M.G. acknowledge funding from the Spanish MINECO (Grant #MAT2013-46101R). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). D.M.S., and J.M.T, acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish MINECO (Projects TEC2017-85376-C2-1-R, TEC2017-85376-C2-2-R), and from the ERDF and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 11.994
Call Number EMAT @ emat @c:irua:149558UA @ admin @ c:irua:149558 Serial 4911
Permanent link to this record
 

 
Author Vermeulen, M.; Janssens, K.; Sanyova, J.; Rahemi, V.; McGlinchey, C.; De Wael, K.
Title Assessing the stability of arsenic sulfide pigments and influence of the binding media on their degradation by means of spectroscopic and electrochemical techniques Type A1 Journal article
Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 138 Issue 138 Pages 82-91
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In this paper, we used the semiconducting and lightfastness properties of synthetic and mineral arsenic sulfide pigments to study their stability by means of electrochemical and microfadometric techniques. A combination of these techniques shows that in the early stage of the degradation process, amorphous arsenic sulfides are more stable than both crystalline forms, while upon longer exposure time, amorphous pigments will fade more than both mineral pigments, making it less suitable. While the stability study was carried out on unbound pigments, the influence of the organic binder on the relative degradation of the arsenic sulfide pigments was investigated through a multi-analytical approach on pigment/binder mock-up paint samples. For this purpose, the formation of arsenic trioxide was assessed by micro Fourier transform infrared (μ-FTIR) spectroscopy while the influence of the binder on the formation of sulfates was studied by means of synchrotron radiation X-ray near edge structure (μ-XANES). Both techniques elucidate a higher stability of all pigments in gum arabic while the use of egg yolk as binder leads to the most degradation, most likely due to its sulfur-rich composition. In the context of the degradation of arsenic sulfide pigments, other binders such as animal glue, egg white or linseed oil show an intermediate impact.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000428103000010 Publication Date 2018-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 4 Open Access
Notes ; This research is made possible with the support of the Belgian Science Policy Office (BELSPO, Brussels) through the research program Science for a Sustainable Development – SDD, “Long-term role and fate of metal-sulfides in painted works of art – S2ART” (grant number SD/RI/04A). We gratefully acknowledge Megane Willems (Institut Paul-Lambin) for her help with mu-FFIR analyses and realization of the mock-up paint samples. We acknowledge the Paul Scherrer Institut, Villigen, Switzerland for provision of synchrotron radiation beamtime at beamline Phoenix of the SLS. ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:150149 Serial 5482
Permanent link to this record
 

 
Author Legrand, S.; Ricciardi, P.; Nodari, L.; Janssens, K.
Title Non-invasive analysis of a 15th century illuminated manuscript fragment: point-based vs imaging spectroscopy Type A1 Journal article
Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 138 Issue 138 Pages 162-172
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Illuminated manuscript fragments are some of the best preserved objects of Western cultural heritage. Therefore, scholars are limited to non-invasive – often point-based – methods, to answer questions on material usage, technique, origin and previous treatments. These powerful methods yield specific information; however, the information is limited to the number of points analyzed. Imaging spectroscopies such as MA-XRF and MA-rFTIR combine specificity with the power of imaging, resulting in distribution images that are interpretable by non-spectroscopists and the public at large. In this paper the possible added value of using imaging spectroscopy is discussed. Do these methods yield the same results as an extensive point-based spectroscopic campaign and can they bring novel information? As a case study, a 15th century illuminated manuscript fragment is employed in order to explore the differences between these approaches and present an inventory of their advantages and limitations. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000428103000019 Publication Date 2018-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 12 Open Access
Notes ; The authors wish to thank Dr. Stella Panayotova, Keeper of Manuscripts and Printed Books at the Fitzwilliam Museum, for allowing technical analysis of the manuscript fragment, and Dr. Suzanne Reynolds, Assistant Keeper of Manuscripts and Printed Books, for crucial help in identifying the text on the reverse of the fragment and its significance. We also wish to thank Prof. Andrew Beeby and Dr. Catherine Nicholson for their complementary Raman analyses. The warm hospitality of the Hamilton Kerr Institute is also gratefully acknowledged. The Esmee Fairbairn Collections Fund and Cambridge University's Returning Carers Scheme provided funding for part of this research. SL and KJ acknowledge support from project METOX (contract BR/165/A6/MetOx), BELSPO, Brussels. ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:151563 Serial 5749
Permanent link to this record
 

 
Author van der Snickt, G.; Legrand, S.; Slama, I.; Van Zuien, E.; Gruber, G.; Van der Stighelen, K.; Klaassen, L.; Oberthaler, E.; Janssens, K.
Title In situ macro X-ray fluorescence (MA-XRF) scanning as a non-invasive tool to probe for subsurface modifications in paintings by PP Rubens Type A1 Journal article
Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 138 Issue 138 Pages 238-245
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Within the last decade, the established synchrotron- and laboratory-based micro-XRF scanning technology inspired the development of mobile instruments that allow performing in situ experiments on paintings on a macro scale. Since the development of the first mobile scanner at the start of this decade, this chemical imaging technique has brought new insights with respect to several iconic paintings, especially in cases when standard imaging techniques such as X-Ray Radiography (XRR) or Infrared Refiectography (IRR) yielded ambiguous results. The ability of scanning MA-XRF to visualise the distribution of elements detected at and below the paint surface renders this spectrometric method particularly helpful for studying painting techniques and revealing materials that remain hidden below the paint surface. The latter aspect is especially relevant for the technical study of works by Pieter Paul Rubens (1577-1640) as this highly productive seventeenth century master is particularly renowned for the continuous application of modifications during (and even after) the entire course of the creative process. In this work, the added value of MA-XRF scanning experiments for visualising these subsurface features is exemplified by interpreting the chemical images obtained on three of Rubens' key works. Special attention is given to three types of adjustments that are particularly relevant for the technical study of Rubens' oeuvre: (1) compositional changes ('pentimenti'), exemplified by results obtained on The Portrait of Helene Fourment (ca. 1638), (2) extensions to the support ('Anstlickungen.), illustrated by imaging experiments performed on the Venus Frigida (1614) and (3) Rubens' intriguing halos around flesh tones, as found amongst others in The Incredulity of Saint Thomas (1613). The ensuing insights in the paint stratigraphy and the underlying supporting structure illustrate the potential of MA-XRF scanning for the non-invasive, comparative study of Rubens' oeuvre. The results do not only augment the understanding of the complex genesis of Rubens' works of art and his efficient painting technique, but prove valuable during conservation treatments as well, as addressed in this paper. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000428103000027 Publication Date 2018-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 5 Open Access
Notes ; ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:151564 Serial 5657
Permanent link to this record
 

 
Author Hirayama, A.; Abe, Y.; van Loon, A.; De Keyser, N.; Noble, P.; Vanmeert, F.; Janssens, K.; Tantrakarn, K.; Taniguchi, K.; Nakai, I.
Title Development of a new portable X-ray powder diffractometer and its demonstration to on-site analysis of two selected old master paintings from the Rijksmuseum Type A1 Journal article
Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 138 Issue 138 Pages 266-272
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A portable X-ray powder diffractometer (p-XRD) PT-APXRD III has been developed for onsite analysis of paintings and archaeological samples. By using a Cu anode X-ray tube and a silicon drift diode (SDD) detector, diffraction patterns with a high signalnoise (S/N) ratio can be recorded. The X-ray tube can be operated at a maximum voltage of 60 kV, which makes it possible to simultaneously record X-ray fluorescence spectra up to the high-energy region. The total weight of this instrument is 16 kg, which can be carried anywhere and the goniometer unit (5.6 kg) can be placed on a tripod for analysis of mural paintings. We brought the instrument to the Rijksmuseum in the Netherlands to examine its applicability for the analysis of oil paintings. We successfully analyzed two seventeenthcentury oil paintings by Johannes Vermeer and Jan Davidsz de Heem (copy after). Ultramarine blue, leadtin yellow type I, and Naples yellow were identified from the diffraction patterns, demonstrating the high practicality of this instrument. Furthermore, it was found from the SEM-EDX analysis of a paint cross section that the yellow pigment was applied in separate layers rather than being mixed. This diffractometer will be commercially available in the near future and will have many applications in the field of material analysis. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000428103000030 Publication Date 2018-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 2 Open Access
Notes ; This research was conducted with the support of the JSPS (Tokyo, Japan)-FWO (Brussels, Belgium) bilateral exchange project. ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:151565 Serial 5575
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Modelling molecular adsorption on charged or polarized surfaces: a critical flaw in common approaches Type A1 Journal article
Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 20 Issue 13 Pages 8456-8459
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A number of recent computational material design studies based on density functional theory (DFT) calculations have put forward a new class of materials with electrically switchable chemical characteristics that can be exploited in the development of tunable gas storage and electrocatalytic applications. We find systematic flaws in almost every computational study of gas adsorption on polarized or charged surfaces, stemming from an improper and unreproducible treatment of periodicity, leading to very large errors of up to 3 eV in some cases. Two simple corrective procedures that lead to consistent results are proposed, constituting a crucial course correction to the research in the field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000428779700007 Publication Date 2018-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 8 Open Access OpenAccess
Notes K. M. B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation – Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government – department EWI. Approved Most recent IF: 4.123
Call Number PLASMANT @ plasmant @c:irua:150357 Serial 4916
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Van Boxem, W.; Bogaerts, A.
Title Transport and accumulation of plasma generated species in aqueous solution Type A1 Journal article
Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 20 Issue 10 Pages 6845-6859
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The interaction between cold atmospheric pressure plasma and liquids is receiving increasing attention for various applications. In particular, the use of plasma-treated liquids (PTL) for biomedical applications is of growing importance, in particular for sterilization and cancer treatment. However, insight into the

underlying mechanisms of plasma–liquid interactions is still scarce. Here, we present a 2D fluid dynamics model for the interaction between a plasma jet and liquid water. Our results indicate that the formed reactive species originate from either the gas phase (with further solvation) or are formed at the liquid interface. A clear increase in the aqueous density of H2O2, HNO2/NO2- and NO3-

is observed as a function of time, while the densities of O3, HO2/O2- and ONOOH/ONOO- are found to quickly reach a maximum due to chemical reactions in solution. The trends observed in our model correlate well with experimental observations from the literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000429286100009 Publication Date 2018-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 35 Open Access OpenAccess
Notes The authors thank Petr Luke`s (Institute of Plasma Physics AS CR, Czech Republic) and Yury Gorbanev (UAntwerp, group PLASMANT) for the fruitful discussions regarding the chemistry in the model and the plasma–liquid interactions. Approved Most recent IF: 4.123
Call Number PLASMANT @ plasmant @c:irua:149557 Serial 4908
Permanent link to this record
 

 
Author Berends, A.C.; van der Stam, W.; Hofmann, J.P.; Bladt, E.; Meeldijk, J.D.; Bals, S.; de Donega, C.M.
Title Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS2 nanocrystals Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 30 Pages 2400-2413
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract ZnS shelling of I-III-VI(2 )nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I-III-VI2 colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS2 NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 degrees C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI2 ) and high reaction temperatures (210 degrees C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos (up) 000430023700027 Publication Date 2018-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 85 Open Access OpenAccess
Notes ; Annelies van der Bok is gratefully acknowledged for performing the ICP measurements. A.C.B. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant No. ECHO.712.014.001. S.B. and E.B. acknowledge financial support from European Research Council (ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:150772UA @ admin @ c:irua:150772 Serial 4972
Permanent link to this record
 

 
Author De Jong, M.; Florea, A.; de Vries, A.-M.; van Nuijs, A.L.N.; Covaci, A.; Van Durme, F.; Martins, J.C.; Samyn, N.; De Wael, K.
Title Levamisole : a common adulterant in cocaine street samples hindering electrochemical detection of cocaine Type A1 Journal article
Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 90 Issue 8 Pages 5290-5297
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre
Abstract The present work investigates the electrochemical determination of cocaine in the presence of levamisole, one of the most common adulterants found in cocaine street samples. Levamisole misleads cocaine color tests, giving a blue color (positive test) even in the absence of cocaine. Moreover, the electrochemical detection of cocaine is also affected by the presence of levamisole, with a suppression of the oxidation signal of cocaine. When levamisole is present in the sample in ratios higher than 1:1, the cocaine signal is no longer detected, thus leading to false negative results. Mass spectrometry and nuclear magnetic resonance were used to investigate if the signal suppression is due to the formation of a complex between cocaine and levamisole in bulk solution. Strategies to eliminate this suppressing effect are further suggested in this manuscript. In a first approach, the increase of the pH of the sample solution from pH 7 to pH 12 allowed the voltammetric determination of cocaine in the presence of levamisole in a concentration range from 10 to 5000 μM at nonmodified graphite disposable electrodes with a detection limit of 5 μM. In a second approach, the graphite electrode was cathodically pretreated, resulting in the presence of oxidation peaks of both cocaine and levamisole, with a detection limit for cocaine of 3 μM over the linear range of concentrations from 10 to 2500 μM. Both these strategies have been successfully applied for the simultaneous detection of cocaine and levamisole in three street samples on unmodified graphite disposable electrodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000430512200049 Publication Date 2018-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 8 Open Access
Notes ; This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No. 753223 Narcoreader. This work was also supported by BR/314/PI/ APTADRU Project and IOF-SBO (UAntwerp). Alexander van Nuijs acknowledges the Research Foundation-Flanders (FWO) for his postdoctoral fellowship. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:149528 Serial 5693
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Nuytten, T.; Meersschaut, J.; Conard, T.; Caymax, M.; Radu, I.; Delabie, A.; Neyts, E.C.; De Gendt, S.
Title The conversion mechanism of amorphous silicon to stoichiometric WS2 Type A1 Journal article
Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 6 Issue 15 Pages 4122-4130
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The deposition of ultra-thin tungsten films and their related 2D chalcogen compounds on large area dielectric substrates by gas phase reactions is challenging. The lack of nucleation sites complicates the adsorption of W-related precursors and subsequent sulfurization usually requires high temperatures. We propose here a technique in which a thin solid amorphous silicon film is used as reductant for the gas phase precursor WF6 leading to the conversion to metallic W. The selectivity of the W conversion towards the underlying dielectric surfaces is demonstrated. The role of the Si surface preparation, the conversion temperature, and Si thickness on the formation process is investigated. Further, the in situ conversion of the metallic tungsten into thin stoichiometric WS2 is achieved by a cyclic approach based on WF6 and H2S pulses at the moderate temperature of 450 1C, which is much lower than usual oxide sulfurization processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000430538000036 Publication Date 2018-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 4 Open Access OpenAccess
Notes This work was supported throughout a strategic fundamental research grant for M. H. by the agency Flanders innovation & entrepreneurship (VLAIO). Approved Most recent IF: 5.256
Call Number PLASMANT @ plasmant @c:irua:150968 Serial 4921
Permanent link to this record
 

 
Author Zhang, H.; Wang, W.; Li, X.; Han, L.; Yan, M.; Zhong, Y.; Tu, X.
Title Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma : a chemical kinetics study Type A1 Journal article
Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 345 Issue 345 Pages 67-78
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, a chemical kinetics study on methane activation for hydrogen production in a warm plasma, i.e., N-2 rotating gliding arc (RGA), was performed for the first time to get new insights into the underlying reaction mechanisms and pathways. A zero-dimensional chemical kinetics model was developed, which showed a good agreement with the experimental results in terms of the conversion of CH4 and product selectivities, allowing us to get a better understanding of the relative significance of various important species and their related reactions to the formation and loss of CH4, H-2, and C2H2 etc. An overall reaction scheme was obtained to provide a realistic picture of the plasma chemistry. The results reveal that the electrons and excited nitrogen species (mainly N-2(A)) play a dominant role in the initial dissociation of CH4. However, the H atom induced reaction CH4+ H -> CH3+ H-2, which has an enhanced reaction rate due to the high gas temperature (over 1200 K), is the major contributor to both the conversion of CH4 and H-2 production, with its relative contributions of > 90% and > 85%, respectively, when only considering the forward reactions. The coexistence and interaction of thermochemical and plasma chemical processes in the rotating gliding arc warm plasma significantly enhance the process performance. The formation of C-2 hydrocarbons follows a nearly one-way path of C2H6 -> C2H4 -> C2H2, explaining why the selectivities of C-2 products decreased in the order of C2H2 > C2H4 > C2H6.
Address
Corporate Author Thesis
Publisher Elsevier Sequoia Place of Publication Lausanne Editor
Language Wos (up) 000430696500008 Publication Date 2018-03-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 25 Open Access OpenAccess
Notes Approved Most recent IF: 6.216
Call Number UA @ lucian @ c:irua:151450 Serial 5036
Permanent link to this record
 

 
Author Quintanilla, M.; Zhang, Y.; Liz-Marzan, L.M.
Title Subtissue plasmonic heating monitored with CaF2:Nd3+,Y3+ nanothermometers in the second biological window Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 8 Pages 2819-2828
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Measuring temperature in biological environments is an ambitious goal toward supporting medical treatment and diagnosis. Minimally invasive techniques based on optical probes require very specific properties that are difficult to combine within a single material. These include high chemical stability in aqueous environments, optical signal stability, low toxicity, high emission intensity, and, essential, working at wavelengths within the biological transparency windows so as to minimize invasiveness while maximizing penetration depth. We propose CaF2:Nd3+,Y3+ as a candidate for thermometry based on an intraband ratiometric approach, fully working within the biological windows (excitation at 808 nm; emission around 1050 nm). We optimized the thermal probes through the addition of Y3+ as a dopant to improve both emission intensity and thermal sensitivity. To define the conditions under which the proposed technique can be applied, gold nanorods were used to optically generate subtissue hot areas, while the resulting temperature variation was monitored with the new nanothermometers.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos (up) 000431088400038 Publication Date 2018-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 28 Open Access Not_Open_Access
Notes ; The authors would like to thank Dr. Guillermo Gonzalez Rubio for the kind support with the synthesis of gold nanorods. M.Q and L.M.L.-M. acknowledge financial support from the European Commission under the Marie Sklodowska-Curie program (H2020-MSCA-IF-2014_659021 – PHELLINI). Y.Z. acknowledges financial support from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]^2 Marie Sklodowska-Curie fellowship (12U4917N). ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:151576 Serial 5042
Permanent link to this record
 

 
Author Wang, W.; Snoeckx, R.; Zhang, X.; Cha, M.S.; Bogaerts, A.
Title Modeling Plasma-based CO2and CH4Conversion in Mixtures with N2, O2, and H2O: The Bigger Plasma Chemistry Picture Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 16 Pages 8704-8723
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Because of the unique properties of plasma technology, its use in gas conversion applications is gaining significant interest around the globe. Plasma-based CO2 and CH4 conversion has become a major research area. Many investigations have already been performed regarding the single-component gases, that is, CO2 splitting and CH4 reforming, as well as for two-component mixtures, that is, dry reforming of methane

(CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2 hydrogenation (CO2/H2), and even first steps toward the influence of N2 impurities have been taken, that is, CO2/N2 and CH4/N2. In this Feature Article we briefly discuss the advances made in literature for these different steps from a plasma chemistry modeling point of view. Subsequently, we present a comprehensive plasma chemistry set, combining the knowledge gathered in this field so far and supported with extensive experimental data. This set can be used for chemical kinetics plasma modeling for all possible combinations of CO2, CH4, N2, O2, and H2O to investigate the bigger picture of the underlying plasmachemical pathways for these mixtures in a dielectric barrier discharge plasma. This is extremely valuable

for the optimization of existing plasma-based CO2 conversion and CH4 reforming processes as well as for investigating the influence of N2, O2, and H2O on these processes and even to support plasma-based multireforming processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000431151200002 Publication Date 2018-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 28 Open Access OpenAccess
Notes Federaal Wetenschapsbeleid, IAP/7 ; King Abdullah University of Science and Technology; H2020 Marie Sklodowska-Curie Actions, 657304 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0383.16N G.0254.14N ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:150969 Serial 4922
Permanent link to this record
 

 
Author Xia, C.; Winckelmans, N.; Prins, P.T.; Bals, S.; Gerritsen, H.C.; de Mello Donegá, C.
Title Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth Type A1 Journal article
Year 2018 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 140 Issue 140 Pages 5755-5763
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2–xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000431600000016 Publication Date 2018-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 43 Open Access OpenAccess
Notes Chenghui Xia acknowledges China Scholarship Council (CSC) for financial support (NO. 201406330055). S.B and N.W. acknowledge funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant Number ECHO.712.014.001. The authors thank Xiaobin Xie and Da Wang for some TEM measurements, Donglong Fu for XRD measurements, Christina H. M. van Oversteeg for ICP-OES measurements, and Chun-Che Lin for suggestions regarding the synthesis. ECAS_Sara (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858
Call Number EMAT @ emat @c:irua:150362UA @ admin @ c:irua:150362 Serial 4917
Permanent link to this record
 

 
Author Wei, H.; Hu, Z.-Y.; Xiao, Y.-X.; Tian, G.; Ying, J.; Van Tendeloo, G.; Janiak, C.; Yang, X.-Y.; Su, B.-L.
Title Control of the interfacial wettability to synthesize highly dispersed PtPd nanocrystals for efficient oxygen reduction reaction Type A1 Journal article
Year 2018 Publication Chemistry: an Asian journal Abbreviated Journal Chem-Asian J
Volume 13 Issue 9 Pages 1119-1123
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Highly dispersed PtPd bimetallic nanocrystals with enhanced catalytic activity and stability were prepared by adjusting the interfacial wettability of the reaction solution on a commercial carbon support. This approach holds great promise for the development of high-performance and low-cost catalysts for practical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos (up) 000431625200006 Publication Date 2018-03-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1861-4728; 1861-471x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.083 Times cited 3 Open Access Not_Open_Access
Notes ; This work supported by National Key R&D Program of China (2017YFC1103800), PCSIRT (IRT15R52), NSFC (U1663225, U1662134, 51472190, 51611530672, 21711530705, 51503166), ISTCP (2015DFE52870), HPNSF (2016CFA033, 2017CFB487), and Open Project Program of State Key Laboratory of Petroleum Pollution Control (Grant No. PPC2016007), CNPC Research Institute of Safety and Environmental Technology, SKLPPC. ; Approved Most recent IF: 4.083
Call Number UA @ lucian @ c:irua:151525 Serial 5018
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; Bal, K.M.; Neyts, E.C.
Title High Coke Resistance of a TiO2Anatase (001) Catalyst Surface during Dry Reforming of Methane Type A1 Journal Article
Year 2018 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 122 Issue 17 Pages 9389-9396
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The resistance of a TiO2 anatase (001) surface to coke formation was studied in the context of dry reforming of methane using density functional theory (DFT) calculations. As carbon atoms act as precursors for coke formation, the resistance to coke formation can be measured by the carbon coverage of the surface. This is related to the stability of different CHx (x = 0−3) species and their rate of hydrogenation and dehydrogenation on the TiO2 surface. Therefore, we studied the reaction mechanisms and their corresponding rates as a function of the temperature for the dehydrogenation of the species on the surface. We found that the stabilities of C and CH are significantly lower than those of CH3 and CH2. The hydrogenation rates of the different species are significantly higher than the dehydrogenation rates in a temperature range of 300−1000 K. Furthermore, we found that dehydrogenation of CH3, CH2, and CH will only occur at appreciable rates starting from 600, 900, and 900 K, respectively. On the basis of these results, it is clear that the anatase (001) surface has a high coke resistance, and it is thus not likely that the surface will become poisoned by coke during dry reforming of methane. As the rate limiting step in dry reforming is the dissociative adsorption of CH4, we studied an alternative approach to thermal catalysis. We found that the temperature threshold for dry reforming is at least 700 K. This threshold temperature may be lowered by the use of plasma-catalysis, where the appreciable rates of adsorption of plasma-generated CHx radicals result in bypassing the rate limiting step of the reaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000431723700014 Publication Date 2018-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 1 Open Access OpenAccess
Notes Federaal Wetenschapsbeleid, IAP/7 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N ; Onderzoeksfonds, Universiteit Antwerpen, 32249 ; Approved Most recent IF: 4.536
Call Number PLASMANT @ plasmant @c:irua:151529c:irua:152816 Serial 5000
Permanent link to this record
 

 
Author Pearce, P.E.; Rousse, G.; Karakulina, O.M.; Hadermann, J.; Van Tendeloo, G.; Foix, D.; Fauth, F.; Abakumov, A.M.; Tarascon, J.-M.
Title β-Na1.7IrO3: A Tridimensional Na-Ion Insertion Material with a Redox Active Oxygen Network Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 10 Pages 3285-3293
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The revival of the Na-ion battery concept has prompted an intense search for new high capacity Na-based positive electrodes. Recently, emphasis has been placed on manipulating Na-based layered compounds to trigger the participation of the anionic network. We further explored this direction and show the feasibility of achieving anionic-redox activity in three-dimensional Na-based compounds. A new 3D β-Na1.7IrO3 phase was synthesized in a two-step process, which involves first the electrochemical removal of Li from β-Li2IrO3 to produce β-IrO3, which is subsequently reduced by electrochemical Na insertion. We show that β-Na1.7IrO3 can reversibly uptake nearly 1.3 Na+ per formula unit through an uneven voltage profile characterized by the presence of four plateaus related to structural transitions. Surprisingly, the β-Na1.7IrO3 phase was found to be stable up to 600 °C, while it could not be directly synthesized via conventional synthetic methods. Although these Na-based iridate phases are of limited practical interest, they help to understand how introducing highly polarizable guest ions (Na+) into host rocksalt-derived oxide structures affects the anionic redox mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000433403800014 Publication Date 2018-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access OpenAccess
Notes The authors thank A. Perez for fruitful discussions and his valuable help in synchrotron XRD experiment and Matthieu Courty for carrying out the DSC measurements. The authors also greatly thank Matthieu Saubanère and Marie-Liesse Doublet for valuable discussions on theoretical aspects of this work. This work is based on experiments performed on the Materials Science and Powder Diffraction Beamline at ALBA synchrotron (Proposal 2016091814), Cerdanyola del Vallès, E- 08290 Barcelona, Spain. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116-ARPEMA. G.R. acknowledges funding from ANR DeliRedox. O.M.K., J.H., and A.M.A. are grateful to FWO Vlaanderen for financial support under Grant G040116N. Approved Most recent IF: 9.466
Call Number EMAT @ emat @c:irua:152048 Serial 4996
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Van Alphen, S.; Michielsen, I.; Meynen, V.; Cool, P.; Bogaerts, A.
Title A packed-bed DBD micro plasma reactor for CO 2 dissociation: Does size matter? Type A1 Journal article
Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 348 Issue Pages 557-568
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract DBD plasma reactors are of great interest for environmental and energy applications, such as CO2 conversion, but they suffer from limited conversion and especially energy efficiency. The introduction of packing materials has been a popular subject of investigation in order to increase the reactor performance. Reducing the discharge gap of the reactor below one millimetre can enhance the plasma performance as well. In this work, we combine both effects and use a packed-bed DBD micro plasma reactor to investigate the influence of gap size reduction, in combination with a packing material, on the conversion and efficiency of CO2 dissociation. Packing materials used in this work were SiO2, ZrO2, and Al2O3 spheres as well as glass wool. The results are compared to a regular size reactor as a benchmark. Reducing the discharge gap can greatly increase the CO2 conversion, although at a lower energy efficiency. Adding a packing material further increases the conversion when keeping a constant residence time, but is greatly dependent on the material composition, gap and sphere size used. Maximum conversions of 50–55% are obtained for very long residence times (30 s and higher) in an empty reactor or with certain packing material combinations, suggesting a balance in CO2 dissociation and recombination reactions. The maximum energy efficiency achieved is 4.3%, but this is for the regular sized reactor at a short residence time (7.5 s). Electrical characterization is performed to reveal some trends in the electrical behaviour of the plasma upon reduction of the discharge gap and addition of a packing material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000434467000055 Publication Date 2018-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 22 Open Access Not_Open_Access: Available from 03.05.2020
Notes We acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N) and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved Most recent IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:151238 Serial 4956
Permanent link to this record
 

 
Author Vanmeert, F.; de Nolf, W.; De Meyer, S.; Dik, J.; Janssens, K.
Title Macroscopic X-ray powder diffraction scanning, a new method for highly selective chemical imaging of works of art : instrument optimization Type A1 Journal article
Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 90 Issue 11 Pages 6436-6444
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In the past decade macroscopic X-ray fluorescence imaging (MA-XRF) has become established as a method for the noninvasive investigation of flat painted surfaces, yielding large scale elemental maps. MA-XRF is limited by a lack of specificity, only allowing for indirect pigment identification based on the simultaneous presence of chemical elements. The high specificity of X-ray powder diffraction (XRPD) mapping is already being exploited at synchrotron facilities for investigations at the (sub)microscopic scale, but the technique has not yet been employed using lab sources. In this paper we present the development of a novel MA-XRPD/XRF instrument based on a laboratory X-ray source. Several combinations of X-ray sources and area detectors are evaluated in terms of their spatial and angular resolution and their sensitivity. The highly specific imaging capability of the combined MA-XRPD/XRF instrument is demonstrated on a 15th/16th century illuminated manuscript directly revealing the distribution of a large number of inorganic pigments, including the uncommon yellow pigment massicot (o-PbO). The case study illustrates the wealth of new mapping information that can be obtained in a noninvasive manner using the laboratory MA-XRPD/XRF instrument.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000434893200019 Publication Date 2018-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 11 Open Access
Notes ; The authors thank the persons involved at Incoatec GmbH, imXPAD SAS and Dectris Ltd. for loaning us some of their products over the past years. We acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” Project and GOA Project Solarpaint (University of Antwerp Research Council). Photo Copyright Geert Van der Snickt, 2008 for the photograph of the illuminated manuscript in the TOC graphic. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:151993 Serial 5701
Permanent link to this record
 

 
Author Vanmeert, F.; de Nolf, W.; Dik, J.; Janssens, K.
Title Macroscopic X-ray powder diffraction scanning : possibilities for quantitative and depth-selective parchment analysis Type A1 Journal article
Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 90 Issue 11 Pages 6445-6452
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract At or below the surface of painted works of art, valuable information is present that provides insights into an objects past, such as the artists technique and the creative process that was followed or its conservation history but also on its current state of preservation. Various noninvasive techniques have been developed over the past 2 decades that can probe this information either locally (via point analysis) or on a macroscopic scale (e.g., full-field imaging and raster scanning). Recently macroscopic X-ray powder diffraction (MA-XRPD) mapping using laboratory X-ray sources was developed. This method can visualize highly specific chemical distributions at the macroscale (dm(2)). In this work we demonstrate the synergy between the quantitative aspects of powder diffraction and the noninvasive scanning capability of MA-XRPD highlighting the potential of the method to reveal new types of information. Quantitative data derived from a 15th/16th century illuminated sheet of parchment revealed three lead white pigments with different hydrocerussite-cerussite compositions in specific pictorial elements, while quantification analysis of impurities in the blue azurite pigment revealed two distinct azurite types: one rich in barite and one in quartz. Furthermore, on the same artifact, the depth-selective possibilities of the method that stem from an exploitation of the shift of the measured diffraction peaks with respect to reference data are highlighted. The influence of different experimental parameters on the depth-selective analysis results is briefly discussed. Promising stratigraphic information could be obtained, even though the analysis is hampered by not completely understood variations in the unit cell dimensions of the crystalline pigment phases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000434893200020 Publication Date 2018-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 6 Open Access
Notes ; The authors thank Incoatec GmbH for giving us the opportunity to test the I mu S Cu X-ray source. We acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, and GOA Project Solarpaint (University of Antwerp Research Council). Photo Copyright Geert Van der Snickt, 2008 for the photograph of the illuminated manuscript in the TOC graphic. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:151994 Serial 5702
Permanent link to this record
 

 
Author De Jong, M.; Florea, A.; Eliaerts, J.; Van Durme, F.; Samyn, N.; De Wael, K.
Title Tackling poor specificity of cocaine color tests by electrochemical strategies Type A1 Journal article
Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 90 Issue 11 Pages 6811-6819
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract This paper presents electrochemical strategies for the fast screening of cocaine and most common cutting agents found in seized drug samples. First, a study on the performance of Scott color tests on cocaine and a wide range of cutting agents is described. The cutting agents causing false positive or false negative results when in mixture with cocaine are identified. To overcome the lack of specificity of color tests, we further propose a fast screening strategy by means of square wave voltammetry on disposable graphite screen printed electrodes, which reveals the unique fingerprint of cocaine and cutting agents. By employing a forward and backward scan and by a dual pH strategy, we enrich the electrochemical fingerprint and enable the simultaneous detection of cocaine and cutting agents. The effectiveness of the developed strategies was tested for the detection of cocaine in seized cocaine samples and compared with the color tests. Moreover, we prove the usefulness of square wave voltammetry for predicting possible interfering agents in color tests, based on the reduction peak of cobalt thiocyanate. The developed electrochemical strategies allow for a quick screening of seized cocaine samples resulting in a selective identification of drugs and cutting agents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000434893200066 Publication Date 2018-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 7 Open Access
Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223 Narcoreader. This work was also supported by Grants BR/314 /PI/APTADRU and IOF-SBO. ; Approved Most recent IF: 6.32
Call Number UA @ admin @ c:irua:151316 Serial 5867
Permanent link to this record
 

 
Author Miliani, C.; Monico, L.; Melo, M.J.; Fantacci, S.; Angelin, E.M.; Romani, A.; Janssens, K.
Title Photochemistry of Artists' Dyes and Pigments : towards better understanding and prevention of colour change in works of art Type A1 Journal article
Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 57 Issue 25 Pages 7324-7334
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The absorption of light gives a pigment its colour and its reason for being, but it also creates excited states, that is, new molecules with an energy excess that can be dissipated through degradation pathways. Photodegradation processes provoke long-term, cumulative and irreversible colour changes (fading, darkening, blanching) of which the prediction and prevention are challenging tasks. Of all the environmental risks that affect heritage materials, light exposure is the only one that cannot be controlled without any impact on the optimal display of the exhibit. Light-induced alterations are not only associated with the pigment itself but also with its interactions with support/binder and, in turn, are further complicated by the nature of the environmental conditions. In this Minireview we investigate how chemistry, encompassing multi-scale analytical investigations of works of art, computational modelling and physical and chemical studies contributes to improve our prediction of artwork appearance before degradation and to establish effective preventive conservation strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000434949200006 Publication Date 2018-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 10 Open Access
Notes ; We acknowledge: ACS and APS for the permission to adapt Figure 1c,d; RSC to adapt Figures 1e, 3c,d and 4a; Wiley and IUCr to adapt Figures 3b and 4b-d; for the detail of a Andean textile in Figure 5, Museum of Fine Arts, Boston, USA; for the illuminated initial in Figure 6, Torre do Tombo (ANTT). Financial support from the H2020 project IPERION-CH (GA. 654028) is gratefully acknowledged. ; Approved Most recent IF: 11.994
Call Number UA @ admin @ c:irua:153184 Serial 5769
Permanent link to this record
 

 
Author Vanmeert, F.; Hendriks, E.; van der Snickt, G.; Monico, L.; Dik, J.; Janssens, K.
Title Chemical Mapping by Macroscopic X-ray Powder Diffraction (MA-XRPD) of Van Gogh's Sunflowers : identification of areas with higher degradation risk Type A1 Journal article
Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 57 Issue 25 Pages 7418-7422
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The discoloration rate of chrome yellow (CY), a class of synthetic inorganic pigments (PbCr1-xSxO4) frequently used by Van Gogh and his contemporaries, strongly depends on its sulfate content and on its crystalline structure (either monoclinic or orthorhombic). Macroscopic X-Ray powder diffraction imaging of selected areas on Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam) revealed the presence of two subtypes of CY: the light-fast monoclinic PbCrO4 (LF-CY) and the light-sensitive monoclinic PbCr1-xSxO4 (x approximate to 0.5; LS-CY). The latter was encountered in large parts of the painting (e.g., in the pale-yellow background and the bright-yellow petals, but also in the green stems and flower hearts), thus indicating their higher risk for past or future darkening. Overall, it is present in more than 50% of the CY regions. Preferred orientation of LS-CY allows observation of a significant ordering of the elongated crystallites along the direction of Van Gogh's brush strokes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000434949200023 Publication Date 2018-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 10 Open Access
Notes ; The authors acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, the GOA Project Solarpaint (University of Antwerp Research Council), and the Interreg Smart*Light project. Raman analyses were performed using the European MOLAB platform, which is financially supported by the Horizon 2020 Programme (IPERION CH Grant 654028). The authors thank the staff of the Van Gogh Museum for their collaboration. ; Approved Most recent IF: 11.994
Call Number UA @ admin @ c:irua:153185 Serial 5517
Permanent link to this record
 

 
Author Grimaud, A.; Iadecola, A.; Batuk, D.; Saubanere, M.; Abakumov, A.M.; Freeland, J.W.; Cabana, J.; Li, H.; Doublet, M.-L.; Rousse, G.; Tarascon, J.-M.
Title Chemical activity of the peroxide/oxide redox couple : case study of Ba5Ru2O11 in aqueous and organic solvents Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 11 Pages 3882-3893
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The finding that triggering the redox activity of oxygen ions within the lattice of transition metal oxides can boost the performances of materials used in energy storage and conversion devices such as Li-ion batteries or oxygen evolution electrocatalysts has recently spurred intensive and innovative research in the field of energy. While experimental and theoretical efforts have been critical in understanding the role of oxygen nonbonding states in the redox activity of oxygen ions, a clear picture of the redox chemistry of the oxygen species formed upon this oxidation process is still missing. This can be, in part, explained by the complexity in stabilizing and studying these species once electrochemically formed. In this work, we alleviate this difficulty by studying the phase Ba5Ru2O11, which contains peroxide O-2(2-) groups, as oxygen evolution reaction electrocatalyst and Li-ion battery material. Combining physical characterization and electrochemical measurements, we demonstrate that peroxide groups can easily be oxidized at relatively low potential, leading to the formation of gaseous dioxygen and to the instability of the oxide. Furthermore, we demonstrate that, owing to the stabilization at high energy of peroxide, the high-lying energy of the empty sigma* antibonding O-O states limits the reversibility of the electrochemical reactions when the O-2(2-)/O2- redox couple is used as redox center for Li-ion battery materials or as OER redox active sites. Overall, this work suggests that the formation of true peroxide O-2(2-) states are detrimental for transition metal oxides used as OER catalysts and Li-ion battery materials. Rather, oxygen species with O-O bond order lower than 1 would be preferred for these applications.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos (up) 000435416600038 Publication Date 2018-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 2 Open Access Not_Open_Access
Notes ; We thank S. Belin of the ROCK beamline (financed by the French National Research Agency (ANR) as a part of the “Investissements d'Avenir” program, reference: ANR-10-EQPX-45; proposal no. 20160095) of synchrotron SOLEIL for her assistance during XAS measurements. Authors would also like to thank V. Nassif for her assistance on the D1B beamline. A.G, G.R, and J.-M.T. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant Project 670116-ARPEMA. ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:151980 Serial 5016
Permanent link to this record
 

 
Author Dong, Y.; Chen, S.-Y.; Lu, Y.; Xiao, Y.-X.; Hu, J.; Wu, S.-M.; Deng, Z.; Tian, G.; Chang, G.-G.; Li, J.; Lenaerts, S.; Janiak, C.; Yang, X.-Y.; Su, B.-L.
Title Hierarchical MoS2@TiO2 heterojunctions for enhanced photocatalytic performance and electrocatalytic hydrogen evolution Type A1 Journal article
Year 2018 Publication Chemistry: an Asian journal Abbreviated Journal Chem-Asian J
Volume 13 Issue 12 Pages 1609-1615
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Hierarchical MoS2@TiO2 heterojunctions were synthesized through a one-step hydrothermal method by using protonic titanate nanosheets as the precursor. The TiO2 nanosheets prevent the aggregation of MoS2 and promote the carrier transfer efficiency, and thus enhance the photocatalytic and electrocatalytic activity of the nanostructured MoS2. The obtained MoS2@TiO2 has significantly enhanced photocatalytic activity in the degradation of rhodamineB (over 5.2times compared with pure MoS2) and acetone (over 2.8times compared with pure MoS2). MoS2@TiO2 is also beneficial for electrocatalytic hydrogen evolution (26times compared with pure MoS2, based on the cathodic current density). This work offers a promising way to prevent the self-aggregation of MoS2 and provides a new insight for the design of heterojunctions for materials with lattice mismatches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000435773300011 Publication Date 2018-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1861-4728; 1861-471x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.083 Times cited 22 Open Access
Notes ; This work was supported by the National Key R&D Program of China (2017YFC1103800), PCSIRT (IRT15R52), NSFC (U1662134, U1663225, 51472190, 51611530672, 51503166, 21706199, 21711530705), ISTCP (2015DFE52870), HPNSF (2016CFA033, 2017CFB487), and SKLPPC (PPC2016007). ; Approved Most recent IF: 4.083
Call Number UA @ admin @ c:irua:151971 Serial 5956
Permanent link to this record
 

 
Author Tang, Y.; Hunter, E.C.; Battle, P.D.; Hendrickx, M.; Hadermann, J.; Cadogan, J.M.
Title Ferrimagnetism as a consequence of unusual cation ordering in the Perovskite SrLa2FeCoSbO9 Type A1 Journal article
Year 2018 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 57 Issue 12 Pages 7438-7445
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A polycrystalline sample of SrLa2FeCoSbO9 has been prepared in a solid-state reaction and studied by a combination of electron microscopy, magnetometry, Mossbauer spectroscopy, X-ray diffraction, and neutron diffraction. The compound adopts a monoclinic (space group P2(1)/n; a = 5.6218(6), b = 5.6221(6), c = 7.9440(8) angstrom, beta = 90.050(7)degrees at 300 K) perovskite-like crystal structure with two crystallographically distinct six-coordinate sites. One of these sites is occupied by 2/3 Co-2(+),1/3 Fe3+ and the other by 2/3 Sb5+, 1/3 Fe3+. This pattern of cation ordering results in a transition to a ferrimagnetic phase at 215 K. The magnetic moments on nearest-neighbor, six-coordinate cations align in an antiparallel manner, and the presence of diamagnetic Sb5+ on only one of the two sites results in a nonzero remanent magnetization of similar to 1 mu(B) per formula unit at 5 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos (up) 000436023800073 Publication Date 2018-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 6 Open Access Not_Open_Access
Notes ; PDB, ECH, and JH acknowledge support from EPSRC under grant EP/M0189954/1. We would like to thank the STFC for the award of beamtime at the ISIS Neutron and Muon Source (RB 1610100), and we thank Dr. I. da Silva for the assistance provided. We also thank Dr. R Paria Sena for help with the HAADF-STEM and STEM-EDX experiments. ; Approved Most recent IF: 4.857
Call Number UA @ lucian @ c:irua:152485 Serial 5103
Permanent link to this record