toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Ban, V.; Soloninin, A.V.; Skripov, A.V.; Hadermann, J.; Abakumov, A.; Filinchuk, Y.
  Title Pressure-Collapsed Amorphous Mg(BH4)(2): An Ultradense Complex Hydride Showing a Reversible Transition to the Porous Framework Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 118 Issue 40 Pages 23402-23408
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Hydrogen-storage properties of complex hydrides depend of their form, such as a polymorphic form or an eutectic mixture. This Paper reports on an easy and reproducible way to synthesize a new stable form of magnesium borohydride by pressure-induced collapse of the porous gamma-Mg(BH4)(2). This amorphous complex hydride was investigated by temperature-programmed synchrotron X-ray diffraction (SXRD), transmission electron microscopy (TEM), thermogravimetric analysis, differential scanning calorimetry analysis, and Raman spectroscopy, and the dynamics of the BH4 reorientation was studied by spinlattice relaxation NMR spectroscopy. No long-range order is observed in the lattice region by Raman spectroscopy, while the internal vibration modes of the BH4 groups are the same as in the crystalline state. A hump at 4.9 angstrom in the SXRD pattern suggests the presence of nearly linear MgBH4 Mg fragments constituting all the known crystalline polymorphs of Mg(BH4)(2), which are essentially frameworks built of tetrahedral Mg nodes and linear BH4 linkers. TEM shows that the pressure-collapsed phase is amorphous down to the nanoscale, but surprisingly, SXRD reveals a transition at similar to 90 degrees C from the dense amorphous state (density of 0.98 g/cm(3)) back to the porous ? phase having only 0.55 g/cm(3) crystal density. The crystallization is slightly exothermic, with the enthalpy of -4.3 kJ/mol. The volumetric hydrogen density of the amorphous form is 145 g/L, one of the highest among hydrides. Remarkably, this form of Mg(BH4)2 has different reactivity compared to the crystalline forms. The parameters of the reorientational motion of BH4 groups in the amorphous Mg(BH4)(2) found from NMR measurements differ significantly from those in the known crystalline forms. The behavior of the nuclear spinlattice relaxation rates can be described in terms of a Gaussian distribution of the activation energies centered on 234 +/- 9 meV with the dispersion of 100 +/- 10 meV.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos (down) 000343016800067 Publication Date 2014-09-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 23 Open Access
  Notes Approved Most recent IF: 4.536; 2014 IF: 4.772
  Call Number UA @ lucian @ c:irua:121113 Serial 2711
Permanent link to this record
 

 
Author Malo, S.; Abakumov, A.M.; Daturi, M.; Pelloquin, D.; Van Tendeloo, G.; Guesdon, A.; Hervieu, M.
  Title Sr21Bi8Cu2(CO3)(2)O-41, a Bi5+ Oxycarbonate with an Original 10L Structure Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
  Volume 53 Issue 19 Pages 10266-10275
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The layered structure of Sr21Bi8Cu2(CO3)(2)O-41 (Z = 2) was determined by transmission electron microscopy, infrared spectroscopy, and powder X-ray diffraction refinement in space group P6(3)/mcm (No. 194), with a = 10.0966(3)angstrom and c = 26.3762(5)angstrom. This original 10L-type structure is built from two structural blocks, namely, [Sr15Bi6Cu2(CO3)O-29] and [Sr6Bi2(CO3)O-12]. The Bi5+ cations form [Bi2O10] dimers, whereas the Cu2+ and C atoms occupy infinite tunnels running along (c) over right arrow. The nature of the different blocks and layers is discussed with regard to the existing hexagonal layered compounds. Sr21Bi8Cu2(CO3)(2)O-41 is insulating and paramagnetic.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Easton, Pa Editor
  Language Wos (down) 000342856800039 Publication Date 2014-10-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record
  Impact Factor 4.857 Times cited Open Access
  Notes Approved Most recent IF: 4.857; 2014 IF: 4.762
  Call Number UA @ lucian @ c:irua:121115 Serial 3114
Permanent link to this record
 

 
Author Proost, J.; Blaffart, F.; Turner, S.; Idrissi, H.
  Title On the Origin of Damped Electrochemical Oscillations at Silicon Anodes (Revisited) Type A1 Journal article
  Year 2014 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
  Volume 15 Issue 14 Pages 3116-3124
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Electrochemical oscillations accompanying the formation of anodic silica have been shown in the past to be correlated with rather abrupt changes in the mechanical stress state of the silica film, commonly associated with some kind of fracture or porosification of the oxide. To advance the understanding on the origin of such oscillations in fluoride-free electrolytes, we have revisited a seminal experiment reported by Lehmann almost two decades ago. We thereby demonstrate that the oscillations are not stress-induced, and do not originate from a morphological transformation of the oxide in the course of anodisation. Alternatively, the mechanical features accompanying the oscillations can be explained by a partial relaxation of the field-induced electrostrictive stress. Furthermore, our observations suggest that the oscillation mechanism more likely results from a periodic depolarisation of the anodic silica.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos (down) 000342770500029 Publication Date 2014-08-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1439-4235; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.075 Times cited 5 Open Access
  Notes Approved Most recent IF: 3.075; 2014 IF: 3.419
  Call Number UA @ lucian @ c:irua:121086 Serial 2444
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; Liz-Marzan, L.M.; Van Tendeloo, G.
  Title Three-dimensional characterization of noble-metal nanoparticles and their assemblies by electron tomography Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
  Volume 53 Issue 40 Pages 10600-10610
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract New developments in the field of nanomaterials drive the need for quantitative characterization techniques that yield information down to the atomic scale. In this Review, we focus on the three-dimensional investigations of metal nanoparticles and their assemblies by electron tomography. This technique has become a versatile tool to understand the connection between the properties and structure or composition of nanomaterials. The different steps of an electron tomography experiment are discussed and we show how quantitative three-dimensional information can be obtained even at the atomic scale.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos (down) 000342761500006 Publication Date 2014-08-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited 58 Open Access OpenAccess
  Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261
  Call Number UA @ lucian @ c:irua:121093 Serial 3646
Permanent link to this record
 

 
Author Kurttepeli, M.; Deng, S.; Verbruggen, S.W.; Guzzinati, G.; Cott, D.J.; Lenaerts, S.; Verbeeck, J.; Van Tendeloo, G.; Detavernier, C.; Bals, S.
  Title Synthesis and characterization of photoreactive TiO2carbon nanosheet composites Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 118 Issue 36 Pages 21031-21037
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
  Abstract We report the atomic layer deposition of titanium dioxide on carbon nanosheet templates and investigate the effects of postdeposition annealing in a helium environment using different characterization techniques. The crystallization of the titanium dioxide coating upon annealing is observed using in situ X-ray diffraction. The (micro)structural characterization of the films is carried out by scanning electron microscopy and advanced transmission electron microscopy techniques. Our study shows that the annealing of the atomic layer deposition processed and carbon nanosheets templated titanium dioxide layers in helium environment resulting in the formation of a porous, nanocrystalline and photocatalytically active titanium dioxide-carbon nanosheet composite film. Such composites are suitable for photocatalysis and dye-sensitized solar cells applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos (down) 000341619500034 Publication Date 2014-08-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 9 Open Access OpenAccess
  Notes This research was funded by the Flemish research foundation FWO-Vlaanderen, by the European Research Council (Starting Grant No. 239865) and by the Special Research Fund BOF of Ghent University (GOA-01G01513). G.G, M.K., J.V., S.B., and G.V.T. acknowledge funding from the European Research Council under the seventh Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and No. 335078 COLOURATOMS. ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772
  Call Number UA @ lucian @ c:irua:119085 Serial 3416
Permanent link to this record
 

 
Author Sun, M.; Rousse, G.; Abakumov, A.M.; Van Tendeloo, G.; Sougrati, M.-T.; Courty, M.; Doublet, M.-L.; Tarascon, J.-M.
  Title An oxysulfate Fe2O(SO4)2 electrode for sustainable Li-based batteries Type A1 Journal article
  Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
  Volume 136 Issue 36 Pages 12658-12666
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract High-performing Fe-based electrodes for Li-based batteries are eagerly pursued because of the abundance and environmental benignity of iron, with especially great interest in polyanionic compounds because of their flexibility in tuning the Fe3+/Fe2+ redox potential. We report herein the synthesis and structure of a new Fe-based oxysulfate phase, Fe2O(SO4)(2), made at low temperature from abundant elements, which electrochemically reacts with nearly 1.6 Li atoms at an average voltage of 3.0 V versus Li+/Li, leading to a sustained reversible capacity of similar to 125 mAh/g. The Li insertiondeinsertion process, the first ever reported in any oxysulfate, entails complex phase transformations associated with the position of iron within the FeO6 octahedra. This finding opens a new path worth exploring in the quest for new positive electrode materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos (down) 000341544600029 Publication Date 2014-08-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.858 Times cited 11 Open Access
  Notes Approved Most recent IF: 13.858; 2014 IF: 12.113
  Call Number UA @ lucian @ c:irua:119906 Serial 96
Permanent link to this record
 

 
Author Abakumov, A.M.; Morozov, V.A.; Tsirlin, A.A.; Verbeeck, J.; Hadermann, J.
  Title Cation ordering and flexibility of the BO42- tetrahedra in incommensurately modulated CaEu2(BO4)4 (B = Mo, W) scheelites Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
  Volume 53 Issue 17 Pages 9407-9415
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The factors mediating cation ordering in the scheelite-based molybdates and tungstates are discussed on the basis of the incommensurately modulated crystal structures of the CaEu2(BO4)(4) (B = Mo, W) red phosphors solved from high-resolution synchrotron powder X-ray diffraction data. Monoclinic CaEu2(WO4)(4) adopts a (3 + 1)-dimensionally modulated structure [superspace group I2/b(alpha beta 0)00, a = 5.238 73(1)A, b = 5.266 35(1) A, c = 11.463 19(9) A, gamma = 91.1511(2)degrees, q = 0.56153(6)a* + 0.7708(9)b*, R-F = 0.050, R-p = 0.069], whereas tetragonal CaEu2(MoO4)(4) is (3 + 2)-dimensionally modulated [superspace group I4(1)/ a(alpha beta 0)00(-beta alpha 0)00, a = 5.238 672(7) A, c = 11.548 43(2) A, q(1) = 035331(8)a* + 0.82068(9)b*, q(2) = -0.82068(9)a* + 0.55331(8)b*, R-F = 0.061, R-p = 0.082]. In both cases the modulation arises from the ordering of the Ca/Eu cations and the cation vacancies at the A-sublattice of the parent scheelite ABO(4) structure. The cation ordering is incomplete and better described with harmonic rather than with steplike occupational modulation functions. The structures respond to the variation of the effective charge and cation size at the A-position through the flexible geometry of the MoO42- and WO42- tetrahedra demonstrating an alternation of stretching the B-O bond lengths and bending the O-B-O bond angles. The tendency towards A-site cation ordering in scheelites is rationalized using the difference in ionic radii and concentration of the A-site vacancies as parameters and presented in the form of a structure map.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Easton, Pa Editor
  Language Wos (down) 000341229600068 Publication Date 2014-08-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.857 Times cited 48 Open Access
  Notes Fwo G039211n Approved Most recent IF: 4.857; 2014 IF: 4.762
  Call Number UA @ lucian @ c:irua:119292UA @ admin @ c:irua:119292 Serial 297
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.; Volety, K.; Huyberechts, G.; Paul, J.
  Title High throughput first-principles calculations of bixbyite oxides for TCO applications Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 16 Issue 33 Pages 17724-17733
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract We present a high-throughput computing scheme based on density functional theory (DFT) to generate a class of oxides and screen them with the aim of identifying those that might be electronically appropriate for transparent conducting oxide (TCO) applications. The screening criteria used are a minimum band gap to ensure sufficient transparency, a band edge alignment consistent with easy n- or p-type dopability, and a minimum thermodynamic phase stability to be experimentally synthesizable. Following this scheme we screened 23 binary and 1518 ternary bixbyite oxides in order to identify promising candidates, which can then be a subject of an in-depth study. The results for the known TCOs are in good agreement with the reported data in the literature. We suggest a list of several new potential TCOs, including both n- and p-type compounds.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos (down) 000341064800041 Publication Date 2014-07-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 23 Open Access
  Notes ; We gratefully acknowledge financial support from the IWT-Vlaanderen through the ISIMADE project (IWT-n 080023), the FWO-Vlaanderen through project G.0150.13 and a GOA fund from the University of Antwerp. This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center VSC, which is funded by the Hercules foundation and the Flemish Government (EWI Department). ; Approved Most recent IF: 4.123; 2014 IF: 4.493
  Call Number UA @ lucian @ c:irua:118263 Serial 1469
Permanent link to this record
 

 
Author Çakir, D.; Sahin, H.; Peeters, F.M.
  Title Doping of rhenium disulfide monolayers : a systematic first principles study Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 16 Issue 31 Pages 16771-16779
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The absence of a direct-to-indirect band gap transition in ReS2 when going from the monolayer to bulk makes it special among the other semiconducting transition metal dichalcogenides. The functionalization of this promising layered material emerges as a necessity for the next generation technological applications. Here, the structural, electronic, and magnetic properties of substitutionally doped ReS2 monolayers at either the S or Re site were systematically studied by using first principles density functional calculations. We found that substitutional doping of ReS2 depends sensitively on the growth conditions of ReS2. Among the large number of non-metallic atoms, namely H, B, C, Se, Te, F, Br, Cl, As, P. and N, we identified the most promising candidates for n-type and p-type doping of ReS2. While Cl is an ideal candidate for n-type doping, P appears to be the most promising candidate for p-type doping of the ReS2 monolayer. We also investigated the doping of ReS2 with metal atoms, namely Mo, W, Ti, V. Cr, Co, Fe, Mn, Ni, Cu, Nb, Zn, Ru, Os and Pt. Mo, Nb, Ti, and V atoms are found to be easily incorporated in a single layer of ReS2 as substitutional impurities at the Re site for all growth conditions considered in this work. Tuning chemical potentials of dopant atoms energetically makes it possible to dope ReS2 with Fe, Co, Cr, Mn, W, Ru, and Os at the Re site. We observe a robust trend for the magnetic moments when substituting a Re atom with metal atoms such that depending on the electronic configuration of dopant atoms, the net magnetic moment of the doped ReS2 becomes either 0 or 1 mu(B). Among the metallic dopants, Mo is the best candidate for p-type doping of ReS2 owing to its favorable energetics and promising electronic properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos (down) 000340075700048 Publication Date 2014-07-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 58 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2014 IF: 4.493
  Call Number UA @ lucian @ c:irua:118742 Serial 752
Permanent link to this record
 

 
Author Filippousi, M.; Angelakeris, M.; Katsikini, M.; Paloura, E.; Efthimiopoulos, I.; Wang, Y.; Zamboulis, D.; Van Tendeloo, G.
  Title Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 118 Issue 29 Pages 16209-16217
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Iron oxide nanoparticles were prepared using the simplest and most efficient chemical route, the coprecipitation, in the absence and the presence of three different and widely used surfactants. The purpose of this study is to investigate the possible influence of the different surfactants on the structure and therefore on the magnetic properties of the iron oxide nanoparticles. Thus, different techniques were employed in order to elucidate the composition and structure of the magnetic iron oxide nanoparticles. By combining transmission electron microscopy with X-ray powder diffraction and X-ray absorption fine structure measurements, we were able to determine and confirm the crystal structure of the constituent iron oxides. The magnetic properties were investigated by measuring the hysteresis loops where the surfactant influence on their collective magnetic behavior and subsequent AC magnetic hyperthermia response is apparent. The results indicate that the produced iron oxide nanoparticles may be considered as good candidates for biomedical applications in hyperthermia treatments because of their high heating capacity exhibited under an alternating magnetic field, which is sufficient to provoke damage to the cancer cells.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos (down) 000339540700073 Publication Date 2014-07-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 47 Open Access
  Notes European Research Council under the seventh Framework Program (FP7); ERC Grant No. 246791 – COUNTATOMS; IAP-AIP functional Supramolecular structure IUAP P7/05 Approved Most recent IF: 4.536; 2014 IF: 4.772
  Call Number UA @ lucian @ c:irua:118129 Serial 3398
Permanent link to this record
 

 
Author Mai, H.H.; Kaydashev, V.E.; Tikhomirov, V.K.; Janssens, E.; Shestakov, M.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Moshchalkov, V.V.; Lievens, P.
  Title Nonlinear optical properties of Ag nanoclusters and nanoparticles dispersed in a glass host Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 118 Issue 29 Pages 15995-16002
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The nonlinear absorption of Ag atomic clusters and nanoparticles dispersed in a transparent oxyfluoride glass host has been studied. The as-prepared glass, containing 0.15 atom % Ag, shows an absorption band in the UV/violet attributed to the presence of amorphous Ag atomic nanoclusters with an average size of 1.2 nm. Upon heat treatment the Ag nanoclusters coalesce into larger nanoparticles that show a surface plasmon absorption band in the visible. Open aperture z-scan experiments using 480 nm nanosecond laser pulses demonstrated nonsaturated and saturated nonlinear absorption with large nonlinear absorption indices for the Ag nanoclusters and nanoparticles, respectively. These properties are promising, e.g., for applications in optical limiting and objects contrast enhancement.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos (down) 000339540700049 Publication Date 2014-07-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 43 Open Access
  Notes FWO; Methusalem; funding from the European Research Council under the seventh Framework Program (FP7); ERC Grant 246791 COUNTATOMS and the EC project IFOX. Approved Most recent IF: 4.536; 2014 IF: 4.772
  Call Number UA @ lucian @ c:irua:118626 Serial 2353
Permanent link to this record
 

 
Author Goris, B.; Guzzinati, G.; Fernández-López, C.; Pérez-Juste, J.; Liz-Marzán, L.M.; Trügler, A.; Hohenester, U.; Verbeeck, J.; Bals, S.; Van Tendeloo, G.
  Title Plasmon mapping in Au@Ag nanocube assemblies Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 118 Issue 28 Pages 15356-15362
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag coreshell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos (down) 000339368700031 Publication Date 2014-06-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 41 Open Access OpenAccess
  Notes Fwo; 246791 Countatoms; 278510 Vortex; 335078 Colouratom; 262348 Esmi ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772
  Call Number UA @ lucian @ c:irua:118099UA @ admin @ c:irua:118099 Serial 2644
Permanent link to this record
 

 
Author Rehor, I.; Mackova, H.; Filippov, S.K.; Kucka, J.; Proks, V.; Slegerova, J.; Turner, S.; Van Tendeloo, G.; Ledvina, M.; Hruby, M.; Cigler, P.;
  Title Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings Type A1 Journal article
  Year 2014 Publication ChemPlusChem Abbreviated Journal Chempluschem
  Volume 79 Issue 1 Pages 21-24
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The novel synthesis of a polymeric interface grown from the surface of bright fluorescent nanodiamonds is reported. The polymer enables bioorthogonal attachment of various molecules by click chemistry; the particles are resistant to nonspecific protein adsorption and show outstanding colloidal stability in buffers and biological media. The coating fully preserves the unique optical properties of the nitrogen-vacancy centers that are crucial for bioimaging and sensoric applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (down) 000337974900002 Publication Date 2013-12-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2192-6506; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.797 Times cited 34 Open Access
  Notes EU 7FP Program (no.262348); European Soft Matter Infrastructure; ESMI; ERC (grant no.246791)-COUNTATOMS; FWO Approved Most recent IF: 2.797; 2014 IF: 2.997
  Call Number UA @ lucian @ c:irua:113088 Serial 1235
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Abakumov, A.M.; Hadermann, J.
  Title Pb5Fe3TiO11Cl : a rare example of Ti(IV) in a square pyramidal oxygen coordination Type A1 Journal article
  Year 2014 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 215 Issue Pages 245-252
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A new oxychloride Pb5Fe3TiO11Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb5Fe3TiO11Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) Å and c=19.3345(2) Å. Pb5Fe3TiO11Cl is a new n=4 member of the oxychloride perovskite-based homologous series An+1BnO3n−1Cl. The structure is built of truncated Pb3Fe3TiO11 quadruple perovskite blocks separated by CsCl-type Pb2Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O6 octahedra sandwiched between two layers of (Fe,Ti)O5 square pyramids. The Ti4+ cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti4+ in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb5Fe3TiO11Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) μB and 3.86(5) μB on the octahedral and square-pyramidal sites, respectively.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos (down) 000336891300037 Publication Date 2014-04-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 4 Open Access
  Notes Fwo G.0184.09n. Approved Most recent IF: 2.299; 2014 IF: 2.133
  Call Number UA @ lucian @ c:irua:117066 Serial 3551
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Bakaimi, I.; Van Tendeloo, G.; Lappas, A.
  Title Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides : NaMnO2 polymorphism, redox potentials, and magnetism Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 26 Issue 10 Pages 3306-3315
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract New polymorphs of NaMnO2 have been observed using transmission electron microscopy and synchrotron X-ray powder diffraction. Coherent twin planes confined to the (NaMnO2) layers, parallel to the (10 (1) over bar) crystallographic planes of the monoclinic layered rock-salt-type alpha-NaMnO2 (O3) structure, form quasi-periodic modulated sequences, with the known alpha-and beta-NaMnO2 polymorphs as the two limiting cases. The energy difference between the polymorphic forms, estimated using a DFT-based structure relaxation, is on the scale of the typical thermal energies that results in a high degree of stacking disorder in these compounds. The results unveil the remarkable effect of the twin planes on both the magnetic and electrochemical properties. The polymorphism drives the magnetic ground state from a quasi-1D spin system for the geometrically frustrated alpha-polymorph through a two-leg spin ladder for the intermediate stacking sequence toward a quasi-2D magnet for the beta-polymorph. A substantial increase of the equilibrium potential for Na deintercalation upon increasing the concentration of the twin planes is calculated, providing a possibility to tune the electrochemical potential of the layered rock-salt ABO(2) cathodes by engineering the materials with a controlled concentration of twins.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (down) 000336637000036 Publication Date 2014-05-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 35 Open Access
  Notes Approved Most recent IF: 9.466; 2014 IF: 8.354
  Call Number UA @ lucian @ c:irua:117766 Serial 2232
Permanent link to this record
 

 
Author Morozov, V.A.; Lazoryak, B.I.; Shmurak, S.Z.; Kiselev, A.P.; Lebedev, O.I.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Van Tendeloo, G.
  Title Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 26 Issue 10 Pages 3238-3248
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Scheelite related compounds (A',A '')(n)[(B',B '')O-4](m) with B', B '' = W and/or Mo are promising new materials for red phosphors in pc-WLEDs (phosphor-converted white-light-emitting-diode) and solid-state lasers. Cation substitution in CaMoO4 of Ca2+ by the combination of Na+ and Eu3+, with the creation of A cation vacancies, has been investigated as a factor for controlling the scheelite-type structure and the luminescent properties. Na5Eu(MoO4)(4) and NaxEu(2-x)/33+square(2-x)/3MoO4 (0.138 <= x <= 0.5) phases with a scheelite-type structure were synthesized by the solid state method; their structural characteristics were investigated using transmission electron microscopy. Contrary to powder synchrotron X-ray diffraction before, the study by electron diffraction and high resolution transmission electron microscopy in this paper revealed that Na0.286Eu0.571MoO4 has a (3 + 2)D incommensurately modulated structure and that (3 + 2)D incommensurately modulated domains are present in Na0.200Eu0.600MoO4. It also confirmed the (3 + 1)D incommensurately modulated character of Na(0.138)Eu(0.621)Mo04. The luminescent properties of all phases under near-ultraviolet (n-UV) light have been investigated. The excitation spectra of these phosphors show the strongest absorption at about 395 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. The emission spectra indicate an intense red emission due to the D-5(0) -> F-7(2) transition of Eu3+, with local minima in the intensity at Na0.286Eu0.571MoO4 and Na0.200Eu0.600MoO4 for similar to 613 nm and similar to 616 nm bands. The phosphor Na5Eu(MoO4)(4) shows the brightest red light emission among the phosphors in the Na2MoO4-Eu2/3MoO4 system and the maximum luminescence intensity of Na5Eu(MoO4)(4) (lambda(ex) = 395 nm) in the D-5(0) -> F-7(2) transition region is close to that of the commercially used red phosphor YVO4:Eu3+ (lambda(ex) = 326 nm). Electron energy loss spectroscopy measurements revealed the influence of the structure and Na/Eu cation distribution on the number and positions of bands in the UV-optical-infrared regions of the EELS spectrum.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (down) 000336637000028 Publication Date 2014-05-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 53 Open Access
  Notes Fwo G039211n; Fwo G004413n; 278510 Vortex ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354
  Call Number UA @ lucian @ c:irua:117765UA @ admin @ c:irua:117765 Serial 1652
Permanent link to this record
 

 
Author Verbruggen, S.W.; Tytgat, T.; Van Passel, S.; Martens, J.A.; Lenaerts, S.
  Title Cost-effectiveness analysis to assess commercial TiO2 photocatalysts for acetaldehyde degradation in air Type A1 Journal article
  Year 2014 Publication Chemicke zvesti Abbreviated Journal Chem Pap
  Volume 68 Issue 9 Pages 1273-1278
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract In the commercialisation of photocatalytic air purifiers, the performance as well as the cost of the catalytic material plays an important role. Where most comparative studies only regard the photocatalytic activity as a decisive parameter, in this study both activity and cost are taken into account. Using a cost-effectiveness analysis, six different commercially available TiO2-based catalysts are evaluated in terms of their activities in photocatalytic degradation of acetaldehyde as a model reaction for indoor air purification.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos (down) 000336443400015 Publication Date 2014-02-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0366-6352 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.258 Times cited 10 Open Access
  Notes ; S. W. V. wishes to thank the Research Foundation Flanders (FWO) for the financial support received. The authors are grateful to the University of Antwerp for supporting and funding this research. Evonik is sincerely thanked for providing catalyst samples for our experiments free of charge. All companies are thanked for providing specific pricing data. ; Approved Most recent IF: 1.258; 2014 IF: 1.468
  Call Number UA @ admin @ c:irua:117297 Serial 6174
Permanent link to this record
 

 
Author Yin, S.; Tian, H.; Ren, Z.; Wei, X.; Chao, C.; Pei, J.; Li, X.; Xu, G.; Shen, G.; Han, G.
  Title Octahedral-shaped perovskite nanocrystals and their visible-light photocatalytic activity Type A1 Journal article
  Year 2014 Publication Chemical communications Abbreviated Journal Chem Commun
  Volume 50 Issue 45 Pages 6027-6030
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Octahedral-shaped perovskite PbTiO3 nanocrystals (PT OCT) with well-defined {111} facets exposed have been successfully synthesized via a facile hydrothermal method by using LiNO3 as an ion surfactant. The Li-O bond on the surface of PT OCT nanocrystals is essential to the stability of such nanocrystals and also results in a dramatic high visible-light photocatalytic activity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos (down) 000335984700022 Publication Date 2014-04-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.319 Times cited 19 Open Access
  Notes Approved Most recent IF: 6.319; 2014 IF: 6.834
  Call Number UA @ lucian @ c:irua:117690 Serial 2428
Permanent link to this record
 

 
Author Brito, B.G.A.; Hai, G.-Q.; Teixeira Rabelo, J.N.; Cândido, L.
  Title A quantum Monte Carlo study on electron correlation in all-metal aromatic clusters MAl4 – (M = Li, Na, K, Rb, Cu, Ag and Au) Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 16 Issue 18 Pages 8639-8645
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using fixed-node diffusion quantum Monte Carlo (FN-DMC) simulation we investigate the electron correlation in all-metal aromatic clusters MAl4- (with M = Li, Na, K, Rb, Cu, Ag and Au). The electron detachment energies and electron affinities of the clusters are obtained. The vertical electron detachment energies obtained from the FN-DMC calculations are in very good agreement with the available experimental results. Calculations are also performed within the Hartree-Fock approximation, density-functional theory (DFT), and the couple-cluster (CCSD(T)) method. From the obtained results, we analyse the impact of the electron correlation effects in these bimetallic clusters and find that the correlation of the valence electrons contributes significantly to the detachment energies and electron affinities, varying between 20% and 50% of their total values. Furthermore, we discuss the electron correlation effects on the stability of the clusters as well as the accuracy of the DFT and CCSD(T) calculations in the present systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos (down) 000334602900052 Publication Date 2014-03-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 10 Open Access
  Notes ; This research was supported by CNPq, FAPESP and FAPEG (Brazil). ; Approved Most recent IF: 4.123; 2014 IF: 4.493
  Call Number UA @ lucian @ c:irua:117247 Serial 2781
Permanent link to this record
 

 
Author Ustarroz, J.; Altantzis, T.; Hammons, J.A.; Hubin, A.; Bals, S.; Terryn, H.
  Title The role of nanocluster aggregation, coalescence, and recrystallization in the electrochemical deposition of platinum nanostructures Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 26 Issue 7 Pages 2396-2406
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract By using an optimized characterization approach that combines aberration-corrected transmission electron microscopy, electron tomography, and in situ ultrasmall angle X-ray scattering (USAXS), we show that the early stages of Pt electrochemical growth on carbon substrates may be affected by the aggregation, self-alignment, and partial coalescence of nanoclusters of d ≈ 2 nm. The morphology of the resulting nanostructures depends on the degree of coalescence and recrystallization of nanocluster aggregates, which in turn depends on the electrodeposition potential. At low overpotentials, a self-limiting growth mechanism may block the epitaxial growth of primary nanoclusters and results in loose dendritic aggregates. At more negative potentials, the extent of nanocluster coalescence and recrystallization is larger and further growth by atomic incorporation may be allowed. On one hand, this suggests a revision of the VolmerWeber island growth mechanism. Whereas this theory has traditionally assumed direct attachment as the only growth mechanism, it is suggested that nanocluster self-limiting growth, aggregation, and coalescence should also be taken into account during the early stages of nanoscale electrodeposition. On the other hand, depending on the deposition potential, ultrahigh porosities can be achieved, turning electrodeposition in an ideal process for highly active electrocatalyst production without the need of using high surface area carbon supports.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos (down) 000334572300026 Publication Date 2014-03-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 55 Open Access Not_Open_Access
  Notes FWO; contract no. FWOAL527 Approved Most recent IF: 9.466; 2014 IF: 8.354
  Call Number UA @ lucian @ c:irua:116956 Serial 2916
Permanent link to this record
 

 
Author Kundu, P.; Heidari, H.; Bals, S.; Ravishankar, N.; Van Tendeloo, G.
  Title Formation and thermal stability of gold-silica nanohybrids : insight into the mechanism and morphology by electron tomography Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
  Volume 53 Issue 15 Pages 3970-3974
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Gold-silica hybrids are appealing in different fields of applications like catalysis, sensorics, drug delivery, and biotechnology. In most cases, the morphology and distribution of the heterounits play significant roles in their functional behavior. Methods of synthesizing these hybrids, with variable ordering of the heterounits, are replete; however, a complete characterization in three dimensions could not be achieved yet. A simple route to the synthesis of Au-decorated SiO2 spheres is demonstrated and a study on the 3D ordering of the heterounits by scanning transmission electron microscopy (STEM) tomography is presentedat the final stage, intermediate stages of formation, and after heating the hybrid. The final hybrid evolves from a soft self-assembled structure of Au nanoparticles. The hybrid shows good thermal stability up to 400 degrees C, beyond which the Au particles start migrating inside the SiO2 matrix. This study provides an insight in the formation mechanism and thermal stability of the structures which are crucial factors for designing and applying such hybrids in fields of catalysis and biotechnology. As the method is general, it can be applied to make similar hybrids based on SiO2 by tuning the reaction chemistry as needed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos (down) 000333634800036 Publication Date 2014-03-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited 10 Open Access OpenAccess
  Notes This research has received funding from the European Community’s Seventh Framework Program (ERC; grant number 246791)— COUNTATOMS, COLOURATOMS, as well as from the IAP 7/05 Programme initiated by the Belgian Science Policy Office. Funding from the Department of Science and Technology (DST) is also acknowledged.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261
  Call Number UA @ lucian @ c:irua:117186 Serial 1251
Permanent link to this record
 

 
Author Alaria, J.; Borisov, P.; Dyer, M.S.; Manning, T.D.; Lepadatu, S.; Cain, M.G.; Mishina, E.D.; Sherstyuk, N.E.; Ilyin, N.A.; Hadermann, J.; Lederman, D.; Claridge, J.B.; Rosseinsky, M.J.;
  Title Engineered spatial inversion symmetry breaking in an oxide heterostructure built from isosymmetric room-temperature magnetically ordered components Type A1 Journal article
  Year 2014 Publication Chemical science Abbreviated Journal Chem Sci
  Volume 5 Issue 4 Pages 1599-1610
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
  Language Wos (down) 000332467400044 Publication Date 2014-01-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.668 Times cited 24 Open Access
  Notes Approved Most recent IF: 8.668; 2014 IF: 9.211
  Call Number UA @ lucian @ c:irua:117064 Serial 1045
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Rosciano, F.; Put, B.; Vereecken, P.M.; Stesmans, A.
  Title First-principles material modeling of solid-state electrolytes with the spinel structure Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume Issue Pages
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2...0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0...1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos (down) 000332395700048 Publication Date 2014-02-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 8 Open Access
  Notes Approved Most recent IF: 4.123; 2014 IF: 4.493
  Call Number UA @ lucian @ c:irua:128893 Serial 4520
Permanent link to this record
 

 
Author Singh, S.K.; Costamagna, S.; Neek-Amal, M.; Peeters, F.M.
  Title Melting of partially fluorinated graphene : from detachment of fluorine atoms to large defects and random coils Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 118 Issue 8 Pages 4460-4464
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The melting of fluorographene is very unusual and depends strongly on the degree of fluorination. For temperatures below 1000 K, fully fluorinated graphene (FFG) is thermomechanically more stable than graphene but at T-m approximate to 2800 K FFG transits to random coils which is almost 2 times lower than the melting temperature of graphene, i.e., 5300 K. For fluorinated graphene up to 30% ripples causes detachment of individual F-atoms around 2000 K, while for 40%-60% fluorination large defects are formed beyond 1500 K and beyond 60% of fluorination F-atoms remain bonded to graphene until melting. The results agree with recent experiments on the dependence of the reversibility of the fluorination process on the percentage of fluorination.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos (down) 000332188100069 Publication Date 2014-01-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 16 Open Access
  Notes ; This work was supported by the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-VI). Financial support from the Collaborative program MINCyT (Argentina)-FWO(Belgium) is also acknowledged. ; Approved Most recent IF: 4.536; 2014 IF: 4.772
  Call Number UA @ lucian @ c:irua:128874 Serial 4600
Permanent link to this record
 

 
Author Stambula, S.; Gauquelin, N.; Bugnet, M.; Gorantla, S.; Turner, S.; Sun, S.; Liu, J.; Zhang, G.; Sun, X.; Botton, G.A.
  Title Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 118 Issue 8 Pages 3890-3900
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A platform for producing stabilized Pt atoms and clusters through the combination of an N-doped graphene support and atomic layer deposition (ALD) for the Pt catalysts was investigated using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). It was determined, using imaging and spectroscopy techniques, that a wide range of N-dopant types entered the graphene lattice through covalent bonds without largely damaging its structure. Additionally and most notably, Pt atoms and atomic clusters formed in the absence of nanoparticles. This work provides a new strategy for experimentally producing stable atomic and subnanometer cluster catalysts, which can greatly assist the proton exchange membrane fuel cell (PEMFC) development by producing the ultimate surface area to volume ratio catalyst.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos (down) 000332188100004 Publication Date 2014-02-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 57 Open Access
  Notes Fwo Approved Most recent IF: 4.536; 2014 IF: 4.772
  Call Number UA @ lucian @ c:irua:115571 Serial 352
Permanent link to this record
 

 
Author Batuk, M.; Turner, S.; Abakumov, A.M.; Batuk, D.; Hadermann, J.; Van Tendeloo, G.
  Title Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
  Volume 53 Issue 4 Pages 2171-2180
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Crystallographic shear (CS) planes provide a new structure-generation mechanism in the anion-deficient perovskites containing lone-pair cations. Pb2Sr2Bi2Fe6O16, a new n = 6 representative of the AnBnO3n2 homologous series of the perovskite-based ferrites with the CS structure, has been synthesized using the solid-state technique. The structure is built of perovskite blocks with a thickness of four FeO6 octahedra spaced by double columns of FeO5 edge-sharing distorted tetragonal pyramids, forming 1/2[110](101)p CS planes (space group Pnma, a = 5.6690(2) Å, b = 3.9108(1) Å, c = 32.643(1) Å). Pb2Sr2Bi2Fe6O16 features a wealth of microstructural phenomena caused by the flexibility of the CS planes due to the variable ratio and length of the constituting fragments with {101}p and {001}p orientation. This leads to the formation of waves, hairpins, Γ-shaped defects, and inclusions of the hitherto unknown layered anion-deficient perovskites Bi2(Sr,Pb)Fe3O8.5 and Bi3(Sr,Pb)Fe4O11.5. Using a combination of diffraction, imaging, and spectroscopic transmission electron microscopy techniques this complex microstructure was fully characterized, including direct determination of positions, chemical composition, and coordination number of individual atomic species. The complex defect structure makes these perovskites particularly similar to the CS structures in ReO3-type oxides. The flexibility of the CS planes appears to be a specific feature of the Sr-based system, related to the geometric match between the SrO perovskite layers and the {100}p segments of the CS planes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Easton, Pa Editor
  Language Wos (down) 000332144100039 Publication Date 2014-01-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.857 Times cited 6 Open Access
  Notes Countatoms; FWO Approved Most recent IF: 4.857; 2014 IF: 4.762
  Call Number UA @ lucian @ c:irua:113507 Serial 198
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M.
  Title Electronic properties of graphene nano-flakes : energy gap, permanent dipole, termination effect, and Raman spectroscopy Type A1 Journal article
  Year 2014 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
  Volume 140 Issue 7 Pages 074304-74309
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C-Nc X-Nx (X = F or H). We studied GNFs with 10 < N-c < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Delta between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N-c, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy. (C) 2014 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos (down) 000332039900020 Publication Date 2014-02-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.965 Times cited 30 Open Access
  Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 2.965; 2014 IF: 2.952
  Call Number UA @ lucian @ c:irua:115857 Serial 1002
Permanent link to this record
 

 
Author Reynaud, M.; Rousse, G.; Abakumov, A.M.; Sougrati, M.T.; Van Tendeloo, G.; Chotard, J.-N.; Tarascon, J.-M.
  Title Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na2Mg(SO4)2\cdot4H2O Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
  Volume 2 Issue 8 Pages 2671-2680
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Mineralogy offers a large database to search for Li- or Na-based compounds having suitable structural features for acting as electrode materials, LiFePO4 being one example. Here we further explore this avenue and report on the electrochemical properties of the bloedite type compounds Na2M(SO4)(2)center dot 4H(2)O (M = Mg, Fe, Co, Ni, Zn) and their dehydrated phases Na2M(SO4)(2) (M = Fe, Co), whose structures have been solved via complementary synchrotron X-ray diffraction, neutron powder diffraction and transmission electron microscopy. Among these compounds, the hydrated and anhydrous iron-based phases show electrochemical activity with the reversible release/uptake of 1 Na+ or 1 Li+ at high voltages of similar to 3.3 V vs. Na+/Na-0 and similar to 3.6 V vs. Li+/Li-0, respectively. Although the reversible capacities remain lower than 100 mA h g(-1), we hope this work will stress further the importance of mineralogy as a source of inspiration for designing eco-efficient electrode materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos (down) 000331247500031 Publication Date 2013-11-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.867 Times cited 56 Open Access
  Notes Approved Most recent IF: 8.867; 2014 IF: 7.443
  Call Number UA @ lucian @ c:irua:115807 Serial 659
Permanent link to this record
 

 
Author Tan, H.; Tian, H.; Verbeeck, J.; Janssens, K.; Van Tendeloo, G.
  Title Nanoscale investigation of the degradation mechanism of a historical chrome yellow paint by quantitative electron energy loss spectroscopy mapping of chromium species Type A1 Journal article
  Year 2013 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
  Volume 52 Issue 43 Pages 11360-11363
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Getting the picture: The investigation of 100 year old chrome yellow paint by transmission electron microscopy and spectroscopy has led to the identification of four types of coreshell particles. This nanoscale investigation has allowed a mechanism to be proposed for the darkening of some bright yellow colors in Van Gogh's paintings (e.g. in Falling leaves (Les Alyscamps), 1888).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos (down) 000330735800026 Publication Date 2013-09-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited 29 Open Access
  Notes Esteem2; Vortex; Countatoms; esteem2jra3 ECASJO; Approved Most recent IF: 11.994; 2013 IF: 11.336
  Call Number UA @ lucian @ c:irua:110947UA @ admin @ c:irua:110947 Serial 2266
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Bontempi, E.; Gasparotto, A.; Lebedev, O.I.; Turner, S.; Depero, L.E.; Van Tendeloo, G.; Barreca, D.
  Title Insights on growth and nanoscopic investigation of uncommon iron oxide polymorphs Type A1 Journal article
  Year 2013 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
  Volume Issue 31 Pages 5454-5461
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Si(100)-supported Fe2O3 nanomaterials were developed by a chemical vapor deposition (CVD) approach. The syntheses, which were performed at temperatures between 400 and 550 °C, selectively yielded the scarcely studied β- and ϵ-Fe2O3 polymorphs under O2 or O2 + H2O reaction environments, respectively. Correspondingly, the observed morphology underwent a progressive evolution from interconnected nanopyramids to vertically aligned nanorods. The present study aims to provide novel insights into Fe2O3 nano-organization by a systematic investigation of the system structure/morphology and of their interrelations with growth conditions. In particular, for the first time, the β- and ϵ-Fe2O3 preparation process has been accompanied by a thorough multitechnique investigation, which, beyond X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FESEM), is carried out by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDXS), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), scanning TEM electron energy-loss spectroscopy (STEM-EELS), and high-angle annular dark-field STEM (HAADF-STEM). Remarkably, the target materials showed a high structural and compositional homogeneity throughout the whole thickness of the nanodeposit. In particular, spatially resolved EELS chemical maps through the spectrum imaging (SI) technique enabled us to gain important information on the local Fe coordination, which is of crucial importance in determining the system reactivity. The described preparation method is in fact a powerful tool to simultaneously tailor phase composition and morphology of iron(III) oxide nanomaterials, the potential applications of which include photocatalysis, magnetic devices, gas sensors, and anodes for Li-ion batteries.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos (down) 000330567000009 Publication Date 2013-10-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.444 Times cited 18 Open Access
  Notes Fwo; Countatoms Approved Most recent IF: 2.444; 2013 IF: 2.965
  Call Number UA @ lucian @ c:irua:110946 Serial 1676
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: