|   | 
Details
   web
Records
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S.
Title Study of a TiO2 photocatalytic coating for use in plasma catalysis Type A2 Journal article
Year 2013 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 78 Issue 1 Pages 227-233
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:105388 Serial 5991
Permanent link to this record
 

 
Author Verbruggen, S.
Title TiO2 gas phase photocatalysis from morphological design to plasmonic enhancement Type Doctoral thesis
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 173 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-441-0 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:116937 Serial 5998
Permanent link to this record
 

 
Author Geerts, R.; Vandermoere, F.; Halet, D.; Van Winckel, T.; Joos, P.; Van Den Steen, K.; Van Meenen, E.; Blust, R.; Vlaeminck, S.E.
Title Ik drink (geen) afval! Een exploratieve studie naar socio-demografische verschillen in publieke steun voor het hergebruik van afvalwater in Vlaanderen Type A1 Journal article
Year 2020 Publication Vlaams tijdschrift voor overheidsmanagement Abbreviated Journal
Volume Issue 3 Pages 51-69
Keywords A1 Journal article; Sociology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change
Abstract In een context van stijgende waterschaarste verkennen wij, naar ons weten voor het eerst in Vlaanderen, publieke steun voor de behandeling en het hergebruik van afvalwater als drinkwater. Vlaanderen is vandaag een van de weinige regio’s waar afvalwater reeds gerecycleerd wordt voor drinkwaterdoeleinden. Dit gebeurt op kleinschalig niveau en de uitbreiding hiervan is vandaag een van de Vlaamse beleidsdoelstellingen. Internationale voorbeelden toonden echter dat een gebrek aan publieke steun een aanzienlijk obstakel kan zijn. Vaak worden gezondheids- en veiligheidsbezorgdheden aangehaald als oorzaak voor het beperkte draagvlak. Minder is geweten over de socio-demografische distributie van dit draagvlak. Daarbovenop blijft er onduidelijkheid over de samenhang tussen socio-demografische kenmerken en gezondheids- en veiligheidsbezorgdheden. Met behulp van een enquête uitgevoerd in Vlaanderen (N=2309), bestudeerden wij ten eerste deze socio-demografische verschillen op basis van bivariate associaties (gender, opleidingsniveau, leeftijd en woonplaats). Ten tweede construeerden we een padmodel om te onderzoeken of deze verschillen verklaard kunnen worden aan de hand van gezondheids- en veiligheidsbezorgdheden. Onze resultaten toonden dat publieke steun voor afvalwaterhergebruik voor drinkwaterdoeleinden in Vlaanderen beperkt is. Het draagvlak was het laagst bij oudere mensen, vrouwen, lager geschoolde groepen en mensen die niet in de Provincie Antwerpen wonen. Voor een groot deel konden socio-demografische verschillen verklaard worden door hogere gezondheids- en veiligheidsbezorgdheden bij vrouwen, lager geschoolden en mensen uit West- en Oost-Vlaanderen. Dit suggereert een gebrek aan vertrouwen in waterexperts en -technologie bij bepaalde socio-demografische groepen, wat zich vertaalt in een verminderde publieke steun voor afvalwaterhergebruik. Op basis van deze bevindingen bespreken we een aantal potentiële actiestrategieën om publieke oppositie te anticiperen en proactief publieke steun te verwerven via doelgerichte (risico)communicatie.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1373-0509 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:171478 Serial 6541
Permanent link to this record
 

 
Author Gielis, J.; Caratelli, D.; Shi, P.; Ricci, P.E.
Title A note on spirals and curvature Type A1 Journal article
Year 2020 Publication Growth and form Abbreviated Journal
Volume 1 Issue 1 Pages 1-8
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Starting from logarithmic, sinusoidal and power spirals, it is shown how these spirals are connected directly with Chebyshev polynomials, Lamé curves, with allometry and Antonelli-metrics in Finsler geometry. Curvature is a crucial concept in geometry both for closed curves and equiangular spirals, and allowed Dillen to give a general definition of spirals. Many natural shapes can be described as a combination of one of two basic shapes in nature—circle and spiral—with Gielis transformations. Using this idea, shape description itself is used to develop a novel approach to anisotropic curvature in nature. Various examples are discussed, including fusion in flowers and its connection to the recently described pseudo-Chebyshev functions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2020-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:167061 Serial 6569
Permanent link to this record
 

 
Author Dattoli, G.; Di Palma, E.; Gielis, J.; Licciardi, S.
Title Parabolic trigonometry Type A1 Journal article
Year 2020 Publication International journal of applied and computational mathematics Abbreviated Journal
Volume 6 Issue 2 Pages 37
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2020-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2349-5103 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:167049 Serial 6578
Permanent link to this record
 

 
Author Roegiers, J.
Title Development of combined photocatalytic and active carbon fiber technology for indoor air purification based on Multiphysics models Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages XXX, 197 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Exposure to volatile organic compounds (VOCs) remains a major public health concern. Indoor VOC concentrations typically far exceed outdoor levels due to a variety of emission sources and the stringent insulation measures that are imposed today. Many attempts have been made to use photocatalysis for indoor air purification. In an ideal situation, photocatalysis is capable of complete mineralization of VOCs to H2O and CO2, without any byproduct formation. Moreover, the process can take place at standard atmospheric conditions, i.e. ambient temperature and atmospheric pressure. However, successful exploitation is still impeded due to low conversion efficiency, significant pressure loss (and hence a high energy consumption) and byproduct formation. In the first part of this thesis an attempt was made to tackles these problems by designing a novel type of photocatalytic (PCO) reactor. The PCO device consists of a cylindrical vessel filled with TiO2-coated glass tubes and equipped with UV fluorescence lamps. It was investigated in terms of fluid dynamics, coating properties, UV-light distribution and photocatalytic activity. Experimental data was later used to develop and calibrate a Multiphysics model. The model proved to be a useful tool for designing and upscaling the PCO reactor. Consequently, an optimized prototype reactor was constructed and tested according the CEN-EN-16846-1 standard for VOC removal. Although the prototype showed promising results for lab-scale conditions, it struggled with byproduct formation when purifying ppb-level VOCs. In the second part of this thesis, activated carbon adsorption was investigated in order to combine it with photocatalysis. Activated carbon fiber was opted for its fast kinetics, high adsorption capacity and thermo-electrical regeneration. The filter was studied in detail regarding the adsorption of polar and apolar VOCs at indoor air concentration levels and regeneration capabilities. Experimental data was used to develop a Multiphysics model for activated carbon adsorption as well. Consequently, a novel type of ACF filter was developed using the Multiphysics model, which was equipped with electrodes in the tips of the pleats for effective thermal regeneration. In the last part, the combination of both ACF and PCO was studied using a realistic case study. Based on the Multiphysics model, the feasibility of a so-called hybrid air purification device could be investigated. The Multiphysics model shows promising results for this hybrid PCO-ACF system and hence, a demo setup was constructed for future research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:181137 Serial 6860
Permanent link to this record
 

 
Author De Tommasi, E.; Rogato, A.; Caratelli, D.; Mescia, L.; Gielis, J.
Title Following the photons route : mathematical models describing the interaction of diatoms with light Type H1 Book chapter
Year 2022 Publication Abbreviated Journal
Volume Issue Pages 1-53
Keywords H1 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The interaction of diatoms with sunlight is fundamental in order to deeply understand their role in terrestrial ecology and biogeochemistry, essentially due to their massive contribution to global primary production through photosynthesis and its e↵ect on carbon, oxygen and silicon cycles. Following the journey of light through natural waters, its propagation through the intricate frustule micro- and nano-structure and, finally, its fate inside the photosynthetic machinery of the living cell requires several mathematical and computational models in order to accurately describe all the involved phenomena taking place at di↵erent space scales and physical regimes. In this chapter, we review the main analytical models describing the underwater optical field, the essential numerical algorithms for the study of photonic properties of the diatom frustule seen as a natural metamaterial, as well as the principal models describing photon harvesting in diatom plastids and methods for complex EM propagation problems and wave propagation in dispersive materials with multiple relaxation times. These mathematical methods will be integrated in a unifying geometric perspective.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-119-74985-1 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:186731 Serial 7165
Permanent link to this record
 

 
Author Ricci, P.E.; Gielis, J.
Title From Pythagoras to Fourier and from geometry to nature Type MA3 Book as author
Year 2022 Publication Abbreviated Journal
Volume Issue Pages 146 p.
Keywords MA3 Book as author; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2022-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-832323-0-0; 978-90-832323-1-7 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:186730 Serial 7166
Permanent link to this record
 

 
Author Loomba, V.; Pourfallah, H.; Olsen, J.E.; Einarsrud, K.E.
Title Lab-scale physical model experiments to understand the effect of particle bed on tapping flow rates Type P1 Proceeding
Year 2022 Publication Abbreviated Journal
Volume Issue Pages 159-170
Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2022-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-3-030-92543-7; 2367-1181; 2367-1696; 978-3-030-92546-8; 978-3-030-92544-4 ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:186090 Serial 7177
Permanent link to this record
 

 
Author Gielis, J.; Grigolia, R.
Title Lamé curves and Rvachev's R-functions Type A3 Journal article
Year 2022 Publication Sn – 1512-0066 Abbreviated Journal
Volume 37 Issue Pages 1-4
Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Gielis transformations are a generalization of Lame curves. To combine domains, we can make use of the natural alliance between Lame's work and Rvachev's R-functions. A logical next step is the extension to n-valued logic dening dierent partitions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189316 Serial 7178
Permanent link to this record
 

 
Author Borah, R.
Title Photoactive nanostructures : from single plasmonic nanoparticles to self-assembled films Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages xxxiv, 220 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Photoactive nanoparticles and their light-driven applications have gained tremendous scientific attention towards remediation of the global environmental problems, meeting alternative energy demands, and other new technological discoveries. The research work presented in this dissertation includes a fundamental investigation of such nanoparticles to gain deeper insights that will ultimately benefit their application. In particular, the study of plasmonic metal nanoparticles and metal oxide nanoparticles for light driven applications is the major theme of this work. The investigation begins with isolated plasmonic Au and Ag nanoparticles, followed by a natural extension to nanoparticle clusters, and then further to nanoparticle films. Next, the application of such plasmonic nanoparticle films for gaseous phase sensing of volatile organic compounds is explored. Finally, the film formation of metal-oxide nanoparticles by self-assembly is investigated for the fabrication of photoactive functional interfaces. The fundamental theoretical investigation of the isolated plasmonic nanoparticles encompasses alloy and core-shell nanostructures of Au-Ag bimetallic compositions. First, the optical properties of bimetallic alloy and core-shell nanoparticles are compared for different structures such as nanospheres, nanotriangles and nanorods. Based on the optical properties, the photothermal properties of these nanostructures are also evaluated for relevant light-driven applications. Further, to bridge the gap between the theoretical and experimental optical properties of colloidal plasmonic nanoparticles, the effect of different statistical parameters pertaining to the particle size distribution is studied. Going from isolated nanoparticles to nanoparticle clusters, the changes in the optical properties of plasmonic nanoparticles when they form finite clusters is investigated. A strong effect of clustering on the absorption intensities of the nanoparticles and hence, on the photothermal properties is found. Next, for the study of plasmonic nanoparticle infinite arrays, Au and Ag nanoparticles films are experimentally obtained by the self-assembly at the air-ethylene glycol interface. Upon further validation of the computational models with the experimental optical properties of these films, the near-field and far-field optical response of the plasmonic nanoparticle arrays is investigated. An application of the self-assembled Au nanoparticle film is then demonstrated in the sensing of volatile organic compounds (VOCs). Finally, the focus is shifted from plasmonic nanoparticles to metal oxide nanoparticles for their self-assembly at the air-water interface to obtain self-assembled films. For this, the hydrophobic functionalization of four metal oxides nanoparticles namely, TiO2, ZnO, WO3 and CuO is investigated. The insights from this work is useful for the design and fabrication of functional nanoparticles and interfaces for light driven applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189155 Serial 7188
Permanent link to this record
 

 
Author Spanoghe, J.
Title Purple bacteria cultivation on light, carbon dioxide and hydrogen gas : exploring and tuning the potential for microbial food production Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages vi, 207 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The human population is projected to grow to 9.7 billion by 2050, resulting in an estimated increase in protein demand of 50%. From an environmental perspective, the current and future demand of protein cannot be sustainably met as the conventional food production chain is severely altering biogeochemical cycles of nitrogen and phosphorus, biodiversity and land-use, with flows towards the biosphere and oceans that are exceeding the planetary boundaries. Microbial protein (protein derived from microorganisms) has been suggested as an excellent sustainable protein source, a fortiori when produced in a land- and fossil free manner. The photoautohydrogenotrophic cultivation (i.e. with light, CO2 and H2) of purple bacteria links up perfectly with the upcoming green electrification of industry (green H2) and the need for carbon capture and utilization. However, this metabolism represented a gap in literature, and thus this thesis aimed to establish a basic knowledge platform on its kinetic, stoichiometric and nutritional performance. At first, three originally photoheterotrophically enriched purple bacteria were studied of which Rhodobacter capsulatus reached the highest protein productivity of 0.16 g protein/L/d, which aligned well with the commonly-known photoautotrophic microalgae. Moreover, a full dietary essential amino acid match was found for human food, while the fatty acid content was dominated by the health-stimulating vaccenic acid (82-86%). Lastly, the achieved protein yield in photoautohydrogenotrophic purple bacteria was 2.3 times higher compared to hydrogen oxidizing bacteria, indicating a resource-efficient use of H2. Next, a photoautohydrogenotrophic enrichment of wastewater treatment microbiomes was performed in search for specialist species. While the isolates of this enrichment showed improvements in their performance during acclimation, the kinetic and nutritional performance of Rhodobacter capsulatus still excelled. Subsequently, the influence of nutrient limitations (C or N) and nitrogen gas fixation was studied on the nutritional tuning potential. Both the limitations as well as the N2 fixation resulted in the shift of the essential amino acid profiles. Additionally, the limitations significantly decreased the pigment content, while an increase in the storage of poly-P was seen in case of carbon limitations. The next major challenge was the production intensification in a photobioreactor of which the design was linked to minimizing both H2 and light limitations. The chosen bubble-column photobioreactor already resulted in a doubled biomass productivity. Finally, the remaining technological and non-technological challenges ahead for the production of a high-value, cost-efficient, environment-friendly microbial protein that complies with legislative requirements and appeals to future consumers were discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-741-1 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:188233 Serial 7198
Permanent link to this record
 

 
Author Van Tendeloo, M.
Title Resource-efficient nitrogen removal from sewage : kinetic, physical and chemical tools for mainstream partial nitritation/anammox Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages iv, 204 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Adequate removal of pollutants from sewage is important to protect the environment and public health. Today, sewage treatment plants are operational in many parts of the world, and although the used technologies are effective in removing pollutants from wastewater, they are energy- and resource-intensive. Reshaping sewage treatment into a two-stage system, with separated organic carbon and nitrogen removal, facilitates the transformation towards energy-positive sewage treatment. This thesis will focus on resource-efficient nitrogen removal from sewage via partial nitritation/anammox (PN/A), with reduced organic carbon and oxygen consumption compared to conventional techniques. PN/A relies on the teamwork between two microbial groups to convert ammonium into nitrogen gas. Several other groups of microbes however can proliferate in the sludge, competing for substrate with the key players, lowering the nitrogen removal efficiency and increasing the energy demand. To obtain the desired microbial community, control tools should be applied to selectively promote the desired microbes while suppressing the unwanted competitors. In this thesis, multiple control tools were studied to establish a workable framework for successful implementation of PN/A in the main stream of a sewage treatment plant. These tools can be divided into three categories: i) kinetic tools, regulating substrate availability (e.g., oxygen availability control and residual ammonium concentration), ii) physical tools, revolving around sludge retention and selection (e.g., sludge age control and sludge aggregation form), and iii) chemical tools, exposing the sludge to stress conditions for which the unwanted microbes are vulnerable (e.g., sludge treatments with a single stressor such as free ammonia). The first research chapter focussed on oxygen availability control and single-stressor sludge treatments. The following two chapters covered the development of a novel multi-stressor concept combining substrate starvation and exposure to sulphide and free ammonia. In the final research chapter, the previously obtained knowledge was combined into a demonstration study on pilot-scale. The combination of these control tools was found effective in achieving nitrogen removal via PN/A, both on lab- and pilot-scale. Consequently, the obtained results in this thesis can catalyse the implementation of mainstream PN/A by providing a toolbox with multiple control tools and clever reactor design, thus advancing the concept of energy neutrality and resource efficiency in sewage treatment plants.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:187665 Serial 7204
Permanent link to this record
 

 
Author Gielis, J.; Shi, P.; Caratelli, D.
Title Universal equations : a fresh perspective Type A1 Journal article
Year 2022 Publication Growth and Form Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A uniform description of natural shapes and phenomena is an important goal in science. Such description should check some basic principles, related to 1) the complexity of the model, 2) how well its fits real objects, phenomena and data, and 3) ia direct connection with optimization principles and the calculus of variations. In this article, we present nine principles, three for each group, and we compare some models with a claim to universality. It is also shown that Gielis Transformations and power laws have a common origin in conic sections
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189317 Serial 7224
Permanent link to this record
 

 
Author Gielis, J.; Tavkelidze, I.; Ricci, P.E.
Title About “bulky” links, generated by generalized Möbius-Listing bodies Type H3 Book chapter
Year 2011 Publication Abbreviated Journal
Volume Issue Pages 115-128 T2 - Proceedings of the International Conf
Keywords H3 Book chapter; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-9941-0-3727-6 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:97753 Serial 7403
Permanent link to this record
 

 
Author Gielis, J.; Tavkhelidze, I.; Ricci, P.E.
Title About “bulky” links generated by generalized Möbius-Listing bodies GML2n Type A2 Journal article
Year 2013 Publication Journal of mathematical sciences Abbreviated Journal
Volume 193 Issue 3 Pages 449-460
Keywords A2 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this paper, we consider the bulky knots and bulky links, which appear after cutting of a Generalized MöbiusListing GMLn2 body (with the radial cross section a convex plane 2-symmetric figure with two vertices) along a different Generalized MöbiusListing surfaces GMLn2 situated in it. The aim of this report is to investigate the number and geometric structure of the independent objects that appear after such a cutting process of GMLn2 bodies. In most cases we are able to count the indices of the resulting mathematical objects according to the known classification for the standard knots and links.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2013-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1072-3374; 1573-8795 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:110953 Serial 7404
Permanent link to this record
 

 
Author Tavkhelidze, I.; Gielis, J.; Pinelas, S.
Title About some methods of analytic representation and classification of a wide set of geometric figures with “complex” configuration Type A3 Journal article
Year 2020 Publication Sn – 1512-0066 Abbreviated Journal
Volume 34 Issue Pages 81-84
Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174475 Serial 7406
Permanent link to this record
 

 
Author Tavkhelidze, I.; Gielis, J.; Pinelas, S.
Title About some methods of analytic representation and classification of a wide set of geometric figures with “complex” configuration Type H1 Book chapter
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 347-359 T2 - Differential and difference equations
Keywords H1 Book chapter; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date 2020-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-030-56322-6 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174479 Serial 7407
Permanent link to this record
 

 
Author Meerburg, F.A.; Boon, N.; Van Winckel, T.; Pauwels, K.; Vlaeminck, S.E.
Title The age of wastewater mining : selection for sludge with a maximum capture potential for organics in a high-rate contact stabilization system Type P3 Proceeding
Year 2015 Publication Abbreviated Journal
Volume Issue Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151144 Serial 7428
Permanent link to this record
 

 
Author Van Winckel, T.; De Clippeleir, H.; Mancell-Egala, A.; Rahman, A.; Wett, B.; Bott, C.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S.
Title Balancing flocs and granules by external selectors to increase capacity in high-rate activated sludge systems Type P3 Proceeding
Year 2016 Publication Abbreviated Journal
Volume Issue Pages 6 p. T2 - WEFTEC.16, 24 - 28 September 2016, New O
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151122 Serial 7548
Permanent link to this record
 

 
Author Carvajal-Arroyo, J.M.; Vitor Akaboci, T.R.; Ruscalleda, M.; Colprim, J.; Courtens, E.; Vlaeminck, S.E.
Title Biofilms for one-stage autotrophic nitrogen removal Type H3 Book chapter
Year 2016 Publication Abbreviated Journal
Volume Issue Pages 205-222 T2 - Aquatic biofilms : ecology, water qua
Keywords H3 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-910190-17-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:130466 Serial 7559
Permanent link to this record
 

 
Author Xie, Y.
Title Bioreactor strategies for sustainable nitrogen cycling based on mineralization/nitrification, partial nitritation/anammox or sulfur-based denitratation Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages iv, 205 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In the biogeochemical flows on Earth, the reactive nitrogen (Nr) level has three times surpassed the safe boundary. The severe transgression of this boundary goes against sustainable planetary development. The modern food production process excessively relies on synthetic Nr fertilizers from the Haber– Bosch process. However, the massive loss of valuable nitrogen resources (i.e., 78-89%) from agriculture has been causing severe nitrogen cascade. Besides, the domestic wastewater in some local areas is discharged without proper treatment, making it a nonnegligible source of Nr pollution for local water bodies. Anthropogenic activities keep pumping out Nr pollution via point-source and non-point-source (NPS) emissions. Compared to the NPS emissions, point sources give visible and identified waste streams. It is vital to intervene the nitrogen cascade from point sources and facilitate humanity back to the safe Nr boundary. The collected and collectible Nr streams from food production, waste management, and recycling secondary raw materials can be used as waste-based fertilizers for agricultural cultivation. Besides the well-investigated recovery of inorganic Nr, organic Nr accounts for a massive Nr proportion on the Earth. Proper handling and treatment make these useful organic fertilizers for soil-based cultivation. However, these organic Nr fertilizers cannot directly apply to fertigation or hydroponic cultivation systems, and further biological conversion via nitrogen mineralization and nitrification to nitrate is essential. Besides the direct Nr cycling, the indirect Nr cycling ‘over the atmosphere’ should also be considered. In this way, the nitrogen cycle can be completed via converting the waste Nr back to nitrogen gas (i.e., Nr removal) and then synthesizing into Nr again. The municipal wastewater treatment plants receive a vast amount of low-strength Nr wastewater (mainly as ammonium) daily. Compared to the conventional nitrification/denitrification process, partial nitritation/anammox (PN/A) is considered a resource- and cost-effective technology for wastewater with a low COD/N ratio. Moreover, the novel autotrophic denitratation/anammox process could be a good Nr removal process for wastewater containing both ammonium and nitrate. This Ph.D. thesis aimed to develop Nr recovery, conversion, and removal bioreactor strategies for different types of waste streams and biomass. Nr recovery was investigated on high-strength Nr waste streams for fertigation or hydroponic applications in Chapters 2 and 3. On the other hand, Nr removal was studied on the medium- to low-strength Nr waste streams in Chapters 4 and 5. In Chapter 2, a novel mineralization and nitrification system was proposed, producing nutrient solutions from solid organic fertilizers for hydroponic systems. Batch tests showed that aerobic incubation at 35°C could realize the NO₃⁻-N production efficiency above 90% from a novel microbial fertilizer. Subsequently, in the stirred tank bioreactor test, NO₃⁻-N production efficiency stabilized in a range of 44-51% under the influent loading rate of 400 mg TN L⁻¹ d⁻¹ at a 5-day HRT. Using Ca(OH)₂ and Mg(OH)₂ as pH control reagents generated the nutrient solutions with different P, Ca, and Mg nutrient levels. After modeling the nutrient balancing process, the proportion of organic-sourced NO₃⁻-N in the Hoagland nutrient solution (HNS) of Ca(OH)₂ scenario was 92.7%, while only 37.4% in the Mg(OH)₂ scenario. Compared to commercial scenarios, the total costs of the organic-sourced HNS can be cost-competitive for hydroponic cultivation. In Chapter 3, the Nr recovery as nitrate (NO₃⁻-N) from diluted human urine (around 670 mg N L⁻¹) was explored in a trickling filter (TF) for the first time. A novel concept of in-situ integrating the TF system into hydroponic systems was proposed as meaningful progress towards sustainable agriculture. The difference between synthetic and real urine in nitrification efficiency was found to be negligible. The full nitrification of alkalinized real urine was realized in the pH-controlled TF by calcium hydroxide (Ca(OH)₂) at around pH 6. The TF could handle different urine collection batches and maintain relatively stable nitrification performance, with NO₃⁻-N production efficiency and rate of 88±3% and 136±4 mg N L⁻¹ d⁻¹, respectively. The optimal HLR to realize this nitrification performance was 2 m³ m⁻² h⁻¹, with energy consumption of 1.8 kWh electricity kg⁻¹ NO₃⁻-N production. Ca(OH)₂, as a cheap base, its triple advantages on urine alkalinization, full nitrification, and macronutrient supplementation were successfully demonstrated in our proposed concept. In Chapter 4, towards more sustainable wastewater treatment, the feasibility of one-stage partial nitritation/anammox (PN/A) was investigated in three parallel packed-bed trickling filters (TFs), with three types of carrier materials of different specific surface areas. Synthetic wastewater containing 100-250 mg NH₄⁺-N L⁻¹ was tested to mimic medium-strength household waste streams after carbon removal. Interestingly, the cheap carrier based on expanded clay achieved similar rates as commercially used plastic carrier materials. The top passive ventilation combined with an optimum hydraulic loading rate of 1.8 m³ m⁻² h⁻¹ could reach approximately 60% total nitrogen (TN) removal at a rate of 300 mg N L⁻¹ d⁻¹. A relatively low NO₃⁻-N production (13%) via PN/A was achieved in TFs. Most of the TN removal took place in the top compartment, where anammox activity was the highest. Energy consumption estimation (0.78 kWh electricity g⁻¹ N removed) suggested that the proposed process could be a suitable low-cost alternative for nitrogen removal. In Chapter 5, coupling sulfur-driven denitratation (SDN) with anammox was proposed to treat the wastewater containing both NO₃⁻-N and NH₄⁺-N, like the secondary effluents of mainstream PN/A processes. To explore the feasibility of sufficient and stable NO₂⁻-N accumulation via SDN in the long term, the effects of pH setpoints, residual NO₃⁻-N level, and biomass-specific NO₃⁻-N loading rate (BSNLR) were investigated. Alternating the pH setpoints between 7.0 and 8.5 could temporarily stimulate the NO₂⁻-N accumulation. Both the residual NO₃⁻-N and BSNLR showed highly positive correlations with the NO₂⁻-N accumulation efficiency. Under the control of pH 8.5, 1.0±0.8 mg NO₃⁻-N L⁻¹ and 150±42 mg NO₃⁻-N g⁻¹ VSS d⁻¹, SDN could produce 6.4±1.0 mg NO₂⁻-N L⁻¹ in the short term. Thiobacillus members may play a crucial role in managing the NO₂⁻-N accumulation, but the reduction of abundance and possible adaptation significantly impaired the efficacy of control strategies in the long run. Overall, novel technologies have been proposed to sustainably convert Nr in waste streams and biomass. The decision for Nr recovery versus removal and synthesis should be based on specific cases with the best environmental, economic, and human-health sustainability. In the future, the Nr management concepts should be further improved to make the nitrogen cycle more sustainable with higher resource use efficiency and less Nr emissions to the environment. Although the thesis is mainly focused on limited types of Nr waste streams, it pointed out the direction of sustainable Nr management and could facilitate the Nr back to the safe boundary in the long run.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:182099 Serial 7563
Permanent link to this record
 

 
Author Van Eynde, E.
Title Biotemplate silica-titania diatoms for gas phase photocatalysis Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages 184 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-500-4 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:130503 Serial 7564
Permanent link to this record
 

 
Author Gielis, J.; Caratelli, D.; Tavkelidze, I.; Fougerolle, Y.; Ricci, P.E.; Gerats, T.
Title Bulky knots and links generated by cutting generalized Mobius-Listing bodies and applications in the natural sciences Type H2 Book chapter
Year 2013 Publication Abbreviated Journal
Volume Issue Pages 167-183 T2 - Math Art Summit : Koninklijke Vlaamse
Keywords H2 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-6569-119-4 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:110955 Serial 7569
Permanent link to this record
 

 
Author Ilgrande, C.; Christiaens, M.; Clauwaert, P.; Vlaeminck, S.E.; Boon, N.
Title Can nitrification bring us to Mars? The role of microbial interactions on nitrogen recovery in Life Support Systems Type A2 Journal article
Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 81 Issue 1 Pages 74-79
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The development cost-effective life support technologies is a highly relevant topic for space biology. Currently, food and water supply during space flights is currently restricted by technical and economic constraints: daily water consumption of an average crew of 6 members is about 72 L, with an estimated cost of 2,160,000 d-1. To reduce these costs and sustain long term space missions, the European Space Agency designed MELiSSA, an artificial ecosystem based on 5 compartments for the recycling gas, liquid and solid waste (Lasseur et al., 2011). In the CI stage, crew and inedible solid waste is fermented by thermophilic anaerobic bacteria, producing volatile fatty acids (VFAs), CO2 and ammonium (NH4+). In the CII compartment the VFAs are converted into edible biomass, using the photoheterotroph Rodospirillum rubrum. Afterwards, the nitrifying CIII unit converts toxic levels of ammonia/ammonium into nitrate, which enables the effluent to be fed to the photoautotrohopic CIV stage, that provides food and oxygen for the crew (Godia et al., 2002). The highest nitrogen flux in a Life Support System is human urine. As nitrate is the preferred form of nitrogen fertilizer for hydroponic plant cultivation, urine nitrification is an essential process in the MELiSSA loop. The development of the Additional Unit for Water Treatment or Urine NItrification ConsortiUM (UNICUM) requires the selection and characterization of the microorganisms that will be used. The key microorganisms in the biological treatment of urine are heterotrophs, for the hydrolysis of urea into ammonia and carbon dioxide, Ammonia Oxidizing Bacteria (AOB), for the ammonia oxidation into nitrite and Nitrite Oxidizing Bacteria (NOB), for the conversion of nitrite into nitrate. The strains were selected according to predefined safety (non sporogenic and BSL 1) and metabolic (Ks, μmax) criteria. To evaluate functional consortia for space applications, ureolysis, nitritation and nitratation of the selected microorganisms and synthetic communities were elucidated. Additionally, urine is a matrix with a high salt content. Unhydrolised urine's EC ranges from 1.1 to 33.9 mS/cm, the mean value being 21.5 mS/cm (Marickar, 2010), while hydrolysed urine can reach higher levels, up to 75 mS/cm. This conditions could inhibit microbial metabolism, therefore the effect of salinity on urine nitrification was also elucidated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151151 Serial 7573
Permanent link to this record
 

 
Author Düking, R.; Gielis, J.; Liese, W.
Title Carbon flux and carbon stock in a bamboo stand and their relevance for mitigating climate change Type A3 Journal article
Year 2011 Publication Bamboo Science & Culture Abbreviated Journal
Volume 24 Issue 1 Pages 1-6
Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this report we describe the basics of biological carbon fixation in bamboo forests. Confusing carbon stock with carbon flux has led to false expectations on the significance of bamboo forests as carbon sinks. Furthermore, misunderstandings about the growth of bamboo culms can lead to highly exaggerated expectations on the productivity of bamboo.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1535-7635 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:91091 Serial 7578
Permanent link to this record
 

 
Author Sóti, V.
Title Catalytic detoxification of lignocellulose hydrolyzate Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages XXVII, 243 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract The present PhD research investigated the possibility of catalytic detoxification of poplar wood based and steam exploded lignocellulosic hydrolyzate with different types of laccase enzymes, with special focus on ethanol and lactic acid products at industrially relevant parameters: high final product concentration, high initial substrate loading and integrated processes. The simultaneous saccharification and fermentation (SSF) process was taken as a base case and five types of laccases were thoroughly investigated on their utilization potential. Phenolic removal from the liquid xylose rich fraction (XRF) was higher with fungal laccases (65-90 %) compared to approximately 30 % removal with bacterial laccase. Moreover, the optimal pH of fungal laccases was close to pH 4.5, the optimum for cellulase, while the bacterial laccase worked at basic pH. Integrating laccase treatment and hydrolysis together showed that fungal laccases have negative impact on final sugar concentration, while bacterial laccase had a strong positive effect. Although bacterial laccase removed less phenol and although its optimal conditions are difficult to integrate with hydrolysis, its enhancing effect on cellulase activity makes it a better candidate for application. The presence of the solid fraction (SF) alters the phenolic concentration evolution significantly, thus screening experiments with the liquid fraction alone do not provide sufficient information for the combined process. Magnetic Cross-Linked Enzyme Aggregates (m-CLEAs) immobilization was assessed for bacterial laccase. m-CLEAs decreased phenolic concentration faster at every pH compared to free bacterial laccase; however, the removal was caused by adsorption rather than by enzyme activity. Although the size of m-CLEAs particles are in the µm range, around 90 % of the initial catalyst mass was recycled from a dense (15 % substrate loading) mixture via magnetic separation. The high recycling rate is promising; m-CLEAs immobilization method can have industrial utilization potential. Minimum sugar revenue (MSR) estimations show that currently hardwood based MSR is 70 % more expensive than corn grain based MSR. About 7-10 fold cellulase activity increase will be needed until MSR will be competitive with corn grain MSR. However, m-CLEAs cellulase can already be competitive if the corn prices are in the higher regime of last year’s prices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:180125 Serial 7584
Permanent link to this record
 

 
Author Wood, J.; Geerts, R.; Majean, L.; Coene, V.; Vanheeswijck, J.; de Smalen, D.; Ronda, T.; Keizer, K.
Title De combinatie werk-gezin en het gebruik van formele kinderopvang bij vrouwen met een migratieachtergrond : een mixed methods-benadering Type A1 Journal article
Year 2019 Publication Sociologos (Brussel) Abbreviated Journal
Volume 40 Issue 2-3-4 Pages 123-149
Keywords A1 Journal article; Sociology; Centre for Population, Family and Health; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2295-8150 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:167658 Serial 7678
Permanent link to this record
 

 
Author Van Winckel, T.; Al-Omari, A.; Takás, I.; Wett, B.; Bachmann, B.; Sturm, B.; Bott, C.; Vlaeminck, S.E.; Murthy, S.; De Clippeleir, H.
Title Conceptual framework for deammonification in a combined floc-granule system : impact of aeration control, external selector and bioaugmentation based on full-scale data from WWTP in Strass Type P3 Proceeding
Year 2017 Publication Abbreviated Journal
Volume Issue Pages 16 p. T2 - IWA 2017 Conference on Sustainable Wast
Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151109 Serial 7722
Permanent link to this record
 

 
Author Reniers, G.L.L.; Sörensen, K.; Vrancken, K.
Title Conclusions and recommendations Type H1 Book chapter
Year 2013 Publication Abbreviated Journal
Volume Issue Pages 265-268 T2 - Management principles of sustainable
Keywords H1 Book chapter; Engineering Management (ENM); Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (down) Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 9783527649488 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:107610 Serial 7723
Permanent link to this record