toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tian, H.; Verbeeck, J.; Brück, S.; Paul, M.; Kufer, D.; Sing, M.; Claessen, R.; Van Tendeloo, G. pdf  doi
openurl 
  Title Interface-induced modulation of charge and polarization in thin film Fe3O4 Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 3 Pages 461-465  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Charge and polarization modulations in Fe3O4 are controlled by taking advantage of interfacial strain effects. The feasibility of oxidation state control by strain modification is demonstrated and it is shown that this approach offers a stable configuration at room temperature. Direct evidence of how a local strain field changes the atomic coordination and introduces atomic displacements leading to polarization of Fe ions is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos (up) 000334289300011 Publication Date 2013-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 15 Open Access  
  Notes Vortex; FWO; Countatoms; Hercules ECASJO_; Approved Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:112419UA @ admin @ c:irua:112419 Serial 1694  
Permanent link to this record
 

 
Author Buffière, M.; Brammertz, G.; Oueslati, S.; El Anzeery, H.; Bekaert, J.; Ben Messaoud, K.; Köble, C.; Khelifi, S.; Meuris, M.; Poortmans, J. pdf  doi
openurl 
  Title Spectral current-voltage analysis of kesterite solar cells Type A1 Journal article
  Year 2014 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue 17 Pages 175101-175105  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract Current-voltage analysis using different optical band pass filters has been performed on Cu2ZnSnSe4 and Cu2ZnSn(S, Se)(4) thin-film solar cells. When using red or orange light (i.e. wavelengths above 600 nm), a distortion appears in the I-V curve of the Cu2ZnSnSe4 solar cell, indicating an additional potential barrier to the current flow in the device for these conditions of illumination. This barrier is reduced when using a Cu2ZnSn(S, Se)(4) absorber. Numerical simulations demonstrate that the barrier visible under red light could be explained by a positive conduction band offset at the front interface coupled with compensating defects in the buffer layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos (up) 000334504800003 Publication Date 2014-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:117170 Serial 3070  
Permanent link to this record
 

 
Author Ustarroz, J.; Altantzis, T.; Hammons, J.A.; Hubin, A.; Bals, S.; Terryn, H. pdf  doi
openurl 
  Title The role of nanocluster aggregation, coalescence, and recrystallization in the electrochemical deposition of platinum nanostructures Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 7 Pages 2396-2406  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract By using an optimized characterization approach that combines aberration-corrected transmission electron microscopy, electron tomography, and in situ ultrasmall angle X-ray scattering (USAXS), we show that the early stages of Pt electrochemical growth on carbon substrates may be affected by the aggregation, self-alignment, and partial coalescence of nanoclusters of d ≈ 2 nm. The morphology of the resulting nanostructures depends on the degree of coalescence and recrystallization of nanocluster aggregates, which in turn depends on the electrodeposition potential. At low overpotentials, a self-limiting growth mechanism may block the epitaxial growth of primary nanoclusters and results in loose dendritic aggregates. At more negative potentials, the extent of nanocluster coalescence and recrystallization is larger and further growth by atomic incorporation may be allowed. On one hand, this suggests a revision of the VolmerWeber island growth mechanism. Whereas this theory has traditionally assumed direct attachment as the only growth mechanism, it is suggested that nanocluster self-limiting growth, aggregation, and coalescence should also be taken into account during the early stages of nanoscale electrodeposition. On the other hand, depending on the deposition potential, ultrahigh porosities can be achieved, turning electrodeposition in an ideal process for highly active electrocatalyst production without the need of using high surface area carbon supports.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos (up) 000334572300026 Publication Date 2014-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 55 Open Access Not_Open_Access  
  Notes FWO; contract no. FWOAL527 Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:116956 Serial 2916  
Permanent link to this record
 

 
Author Li, D.Y.; Zeng, Y.J.; Batuk, D.; Pereira, L.M.C.; Ye, Z.Z.; Fleischmann, C.; Menghini, M.; Nikitenko, S.; Hadermann, J.; Temst, K.; Vantomme, A.; Van Bael, M.J.; Locquet, J.P.; Van Haesendonck, C.; doi  openurl
  Title Relaxor ferroelectricity and magnetoelectric coupling in ZnOCo nanocomposite thin films : beyond multiferroic composites Type A1 Journal article
  Year 2014 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 6 Issue 7 Pages 4737-4742  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract ZnOCo nanocomposite thin films are synthesized by combination of pulsed laser deposition of ZnO and Co ion implantation. Both superparamagnetism and relaxor ferroelectricity as well as magnetoelectric coupling in the nanocomposites have been demonstrated. The unexpected relaxor ferroelectricity is believed to be the result of the local lattice distortion induced by the incorporation of the Co nanoparticles. Magnetoelectric coupling can be attributed to the interaction between the electric dipole moments and the magnetic moments, which are both induced by the incorporation of Co. The introduced ZnOCo nanocomposite thin films are different from conventional strain-mediated multiferroic composites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000334572800018 Publication Date 2014-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 21 Open Access  
  Notes Approved Most recent IF: 7.504; 2014 IF: 6.723  
  Call Number UA @ lucian @ c:irua:117063 Serial 2864  
Permanent link to this record
 

 
Author Galván-Moya, J.E.; Altantzis, T.; Nelissen, K.; Peeters, F.M.; Grzelczak, M.; Liz-Marán, L.M.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Self-organization of highly symmetric nanoassemblies : a matter of competition Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 4 Pages 3869-3875  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The properties and applications of metallic nanoparticles are inseparably connected not only to their detailed morphology and composition but also to their structural configuration and mutual interactions. As a result, the assemblies often have superior properties as compared to individual nanoparticles. Although it has been reported that nanoparticles can form highly symmetric clusters, if the configuration can be predicted as a function of the synthesis parameters, more targeted and accurate synthesis will be possible. We present here a theoretical model that accurately predicts the structure and configuration of self-assembled gold nanoclusters. The validity of the model is verified using quantitative experimental data extracted from electron tomography 3D reconstructions of different assemblies. The present theoretical model is generic and can in principle be used for different types of nanoparticles, providing a very wide window of potential applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000334990600084 Publication Date 2014-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 34 Open Access OpenAccess  
  Notes FWO; Methusalem; 246791 COUNTATOMS; 335078 COLOURATOM; 262348 ESMI; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:116955 Serial 2977  
Permanent link to this record
 

 
Author Schütte, K.; Doddi, A.; Kroll, C.; Meyer, H.; Wiktor, C.; Gemel, C.; Van Tendeloo, G.; Fischer, R.A.; Janiak, C. pdf  url
doi  openurl
  Title Colloidal nickel/gallium nanoalloys obtained from organometallic precursors in conventional organic solvents and in ionic liquids : noble-metal-free alkyne semihydrogenation catalysts Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 10 Pages 5532-5544  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Efforts to replace noble-metal catalysts by low-cost alternatives are of constant interest. The organometallic, non-aqueous wet-chemical synthesis of various hitherto unknown nanocrystalline Ni/Ga intermetallic materials and the use of NiGa for the selective semihydrogenation of alkynes to alkenes are reported. Thermal co-hydrogenolysis of the all-hydrocarbon precursors [Ni(COD)(2)] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in high-boiling organic solvents mesitylene and n-decane in molar ratios of 1 : 1, 2 : 3 and 3 : 1 yields the nano-crystalline powder materials of the over-all compositions NiGa, Ni2Ga3 and Ni3Ga, respectively. Microwave induced co-pyrolysis of the same precursors without additional hydrogen in the ionic liquid [BMIm][BF4] (BMIm = 1-butyl-3-methyl-imidazolium) selectively yields the intermetallic phases NiGa and Ni3Ga from the respective 1 : 1 and 3 : 1 molar ratios of the precursors. The obtained materials are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), IR, powder X-ray diffraction (PXRD) and atomic absorption spectroscopy (AAS). The single-source precursor [Ni(GaCp*)(PMe3)(3)] with a fixed Ni : Ga stoichiometry of 1 : 1 was employed as well. In comparison with the co-hydrogenolytic dual precursor source approach it turned out to be less practical due to inefficient nickel incorporation caused by the parasitic formation of stable [Ni(PMe3)(4)]. The use of ionic liquid [BMIm][BF4] as a non-conventional solvent to control the reaction and stabilize the nanoparticles proved to be particularly advantageous and stable colloids of the nanoalloys NiGa and Ni3Ga were obtained. A phase-selective Ni/Ga colloid synthesis in conventional solvents and in the presence of surfactants such as hexadecylamine (HDA) was not feasible due to the undesired reactivity of HDA with GaCp* leading to inefficient gallium incorporation. Recyclable NiGa nanoparticles selectively semihydrogenate 1-octyne and diphenylacetylene (tolan) to 1-octene and diphenylethylene, respectively, with a yield of about 90% and selectivities of up to 94 and 87%. Ni-NPs yield alkanes with a selectivity of 97 or 78%, respectively, under the same conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000335148800069 Publication Date 2014-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 40 Open Access  
  Notes Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:117251 Serial 390  
Permanent link to this record
 

 
Author Lu, J.; Roeffaers, M.B.J.; Bartholomeeusen, E.; Sels, B.F.; Schryvers, D. doi  openurl
  Title Intergrowth of components and ramps in coffin-shaped ZSM-5 zeolite crystals unraveled by focused ion beam-assisted transmission electron microscopy Type A1 Journal article
  Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 20 Issue 1 Pages 42-49  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Scanning electron microscopy, focused ion beam (FIB), and transmission electron microscopy are combined to study the intergrowth of 90 degrees rotational components and of ramps in coffin-shaped ZSM-5 crystals. The 90 degrees rotational boundaries with local zig-zag features between different intergrowth components are observed in the main part of crystal. Also a new kind of displacement boundary is described. At the displacement boundary there is a shift of the unit cells along the boundary without a change in orientation. Based on lamellae prepared with FIB from different positions of the ramps and crystal, the orientation relationships between ramps and the main part of the crystal are studied and the three-dimensional morphology and growth mechanism of the ramp are illustrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos (up) 000335378400006 Publication Date 2013-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 7 Open Access  
  Notes Approved Most recent IF: 1.891; 2014 IF: 1.877  
  Call Number UA @ lucian @ c:irua:117688 Serial 1697  
Permanent link to this record
 

 
Author Khazzan, S.; Bessais, L.; Van Tendeloo, G.; Mliki, N. pdf  doi
openurl 
  Title Correlation between the nanocrystalline Sm(Fe,Mo)12 and its out of equilibrium phase Sm(Fe,Mo)10 Type A1 Journal article
  Year 2014 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 363 Issue Pages 125-132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanostructured Sm-Fe-Mo semi-hard magnetic material exhibiting enhanced magnetic properties can be produced by ball milling followed by recrystallization. Milled samples were annealed for 30 min in a vacuum at different temperatures (T-A) between 700 and 1190 degrees C. The effects of heat treatment and Mo content on structural and magnetic property changes have been investigated by means of X-ray diffraction using the Rietvekl method, transmission electron microscopy and magnetic measurements. For samples annealed at T-A > 900 degrees C the tetragonal ThMn12-type structure is identified, while for 700 < T-A < 900 degrees C a new out of equilibrium P6/mmm type structure was found as the major phase. This novel nanocrystalline phase has never been synthesized before. The correspondent stoichiometry is determined on the basis of the vacancy model. The Rietveld analysis gives a stoichiometry ratio equal to 1:10, for the out of equilibrium hexagonal phase, which is described with three crystallographic transition metal sites: 3g is fully occupied, 61 occupation is limited to hexagons surrounding the Fe dumbbell pairs 2e. We have performed a magnetic and structural study of nanocrystalline metastable P6/mrnm Sm(Fe1-xMo)(10), correlated with structural transformation towards its equilibrium derivative 14/mrnm Sm(Fe1-xMo)(12). A maximum of the coercive field H-C (H-C > 5 kOe) has been observed for the new hexagonal P6/rnmm phase suggesting that nanocrystalline Sm(Fe,Mo)(10), is a semi hard material, and is potential candidate for magnetic recording. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000335393900021 Publication Date 2014-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.63; 2014 IF: 1.970  
  Call Number UA @ lucian @ c:irua:117139 Serial 524  
Permanent link to this record
 

 
Author Shenderova, O.; Hens, S.; Vlasov, I.; Turner, S.; Lu, Y.-G.; Van Tendeloo, G.; Schrand, A.; Burikov, S.A.; Dolenko, T.A. pdf  doi
openurl 
  Title Carbon-dot-decorated nanodiamonds Type A1 Journal article
  Year 2014 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 31 Issue 5 Pages 580-590  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis of a new class of fluorescent carbon nanomaterials, carbon-dot-decorated nanodiamonds (CDD-ND), is reported. These CDD-NDs are produced by specific acid treatment of detonation soot, forming tiny rounded sp2 carbon species (carbon dots), 12 atomic layers thick and 12 nm in size, covalently attached to the surface of the detonation diamond nanoparticles. A combination of nanodiamonds bonded with a graphitic phase as a starting material and the application of graphite intercalated acids for oxidation of the graphitic carbon is necessary for the successful production of CDD-ND. The CDD-ND photoluminescence (PL) is stable, 20 times more intense than the intrinsic PL of well-purified NDs and can be tailored by changing the oxidation process parameters. Carbon-dot-decorated DNDs are shown to be excellent probes for bioimaging applications and inexpensive additives for PL nanocomposites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos (up) 000335518900008 Publication Date 2014-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 30 Open Access  
  Notes Fwo; 262348 Esmi; 246791 Countatoms Approved Most recent IF: 4.474; 2014 IF: 3.081  
  Call Number UA @ lucian @ c:irua:117332 Serial 280  
Permanent link to this record
 

 
Author Van den Broek, W.; Rosenauer, A.; Van Aert, S.; Sijbers, J.; van Dyck, D. pdf  url
doi  openurl
  Title A memory efficient method for fully three-dimensional object reconstruction with HAADF STEM Type A1 Journal article
  Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 141 Issue Pages 22-31  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The conventional approach to object reconstruction through electron tomography is to reduce the three-dimensional problem to a series of independent two-dimensional slice-by-slice reconstructions. However, at atomic resolution the image of a single atom extends over many such slices and incorporating this image as prior knowledge in tomography or depth sectioning therefore requires a fully three-dimensional treatment. Unfortunately, the size of the three-dimensional projection operator scales highly unfavorably with object size and readily exceeds the available computer memory. In this paper, it is shown that for incoherent image formation the memory requirement can be reduced to the fundamental lower limit of the object size, both for tomography and depth sectioning. Furthermore, it is shown through multislice calculations that high angle annular dark field scanning transmission electron microscopy can be sufficiently incoherent for the reconstruction of single element nanocrystals, but that dynamical diffraction effects can cause classification problems if more than one element is present. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000335766600004 Publication Date 2014-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 6 Open Access  
  Notes ResearchFoundationFlanders(FWO;G.0393.11; G.0064.10;andG.0374.13); European Union Seventh Frame- workProgramme [FP7/2007-2013]under Grant agreement no. 312483 (ESTEEM2).; esteem2jra2; esteem2jra4 Approved Most recent IF: 2.843; 2014 IF: 2.436  
  Call Number UA @ lucian @ c:irua:117650 Serial 1992  
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Verbeeck, J. url  doi
openurl 
  Title Quantitative measurement of orbital angular momentum in electron microscopy Type A1 Journal article
  Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 89 Issue 5 Pages 053818  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focused on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multipinhole interferometer. We demonstrate both its ability to accurately measure orbital angular momentum distribution, and its experimental limitations when used in a transmission electron microscope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos (up) 000335826300012 Publication Date 2014-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 23 Open Access  
  Notes 7th Framework Program (FP7); ERC Starting Grant No. 278510- VORTEX 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). 7th Framework Program (FP7), ERC Grant No. 246791- COUNTATOMS. SP – 053818-1; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808  
  Call Number UA @ lucian @ c:irua:117093UA @ admin @ c:irua:117093 Serial 2758  
Permanent link to this record
 

 
Author Meert, K.W.; Morozov, V.A.; Abakumov, A.M.; Hadermann, J.; Poelman, D.; Smet, P.F. url  doi
openurl 
  Title Energy transfer in Eu3+ doped scheelites : use as thermographic phosphor Type A1 Journal article
  Year 2014 Publication Optics express Abbreviated Journal Opt Express  
  Volume 22 Issue 9 Pages A961-A972  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper the luminescence of the scheelite-based CaGd2(1-x)Eu2x(WO4)4 solid solutions is investigated as a function of the Eu content and temperature. All phosphors show intense red luminescence due to the 5D0 7F2 transition in Eu3+, along with other transitions from the 5D1 and 5D0 excited states. For high Eu3+ concentrations the intensity ratio of the emission originating from the 5D1 and 5D0 levels has a non-conventional temperature dependence, which could be explained by a phonon-assisted cross-relaxation process. It is demonstrated that this intensity ratio can be used as a measure of temperature with high spatial resolution, allowing the use of these scheelites as thermographic phosphor. The main disadvantage of many thermographic phosphors, a decreasing signal for increasing temperature, is absent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000335905300037 Publication Date 2014-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 47 Open Access  
  Notes Approved Most recent IF: 3.307; 2014 IF: 3.488  
  Call Number UA @ lucian @ c:irua:117067 Serial 1044  
Permanent link to this record
 

 
Author Yin, S.; Tian, H.; Ren, Z.; Wei, X.; Chao, C.; Pei, J.; Li, X.; Xu, G.; Shen, G.; Han, G. doi  openurl
  Title Octahedral-shaped perovskite nanocrystals and their visible-light photocatalytic activity Type A1 Journal article
  Year 2014 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 50 Issue 45 Pages 6027-6030  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Octahedral-shaped perovskite PbTiO3 nanocrystals (PT OCT) with well-defined {111} facets exposed have been successfully synthesized via a facile hydrothermal method by using LiNO3 as an ion surfactant. The Li-O bond on the surface of PT OCT nanocrystals is essential to the stability of such nanocrystals and also results in a dramatic high visible-light photocatalytic activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos (up) 000335984700022 Publication Date 2014-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 19 Open Access  
  Notes Approved Most recent IF: 6.319; 2014 IF: 6.834  
  Call Number UA @ lucian @ c:irua:117690 Serial 2428  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Filippousi, M.; Flahaut, D.; Van Tendeloo, G.; Lacombe, S.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title Plasmonic goldsilver alloy on TiO2 photocatalysts with tunable visible light activity Type A1 Journal article
  Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 156 Issue Pages 116-121  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Adaptation of the photoresponse of anatase TiO2 to match the solar spectrum is an important scientific challenge. Modification of TiO2 with noble metal nanoparticles displaying surface plasmon resonance effects is one of the promising approaches. Surface plasmon resonance typically depends on chemical composition, size, shape and spatial organization of the metal nanoparticles in contact with TiO2. AuxAg(1 − x) alloy nanoparticles display strong composition-dependent surface plasmon resonance in the visible light region of the spectrum. In this work, a general strategy is presented to prepare plasmonic TiO2-based photocatalysts with a visible light response that can be accurately tuned over a broad range of the spectrum. The application as self-cleaning material toward the degradation of stearic acid is demonstrated for a plasmonic TiO2 photocatalyst displaying visible light photoactivity at the intensity maximum of solar light around 490 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000336013200014 Publication Date 2014-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 84 Open Access  
  Notes Flanders(FWO); Methusalem Approved Most recent IF: 9.446; 2014 IF: 7.435  
  Call Number UA @ lucian @ c:irua:115552 Serial 2646  
Permanent link to this record
 

 
Author Kalesaki, E.; Boneschanscher, M.P.; Geuchies, J.J.; Delerue, C.; Morais Smith, C.; Evers, W.H.; Allan, G.; Altantzis, T.; Bals, S.; Vanmaekelbergh, D. pdf  url
doi  openurl
  Title Preparation and study of 2-D semiconductors with Dirac type bands due to the honeycomb nanogeometry Type P1 Proceeding
  Year 2014 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – Proceedings of SPIE Abbreviated Journal  
  Volume 8981 Issue Pages 898107-898107  
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The interest in 2-dimensional systems with a honeycomb lattice and related Dirac-­type electronic bands has exceeded the prototype graphene1. Currently, 2-­dimensional atomic2,3 and nanoscale4-­8 systems are extensively investigated in the search for materials with novel electronic properties that can be tailored by geometry. The immediate question that arises is how to fabricate 2-­D semiconductors that have a honeycomb nanogeometry, and as a consequence of that, display a Dirac-­type band structure? Here, we show that atomically coherent honeycomb superlattices of rocksalt (PbSe, PbTe) and zincblende (CdSe, CdTe) semiconductors can be obtained by nanocrystal self-­assembly and facet-­to-­facet atomic bonding, and subsequent cation exchange. We present a extended structural analysis of atomically coherent 2-­D honeycomb structures that were recently obtained with self-assembly and facet-­to-­facet bonding9. We show that this process may in principle lead to three different types of honeycomb structures, one with a graphene type-­, and two others with a silicene-­type structure. Using TEM, electron diffraction, STM and GISAXS it is convincingly shown that the structures are from the silicene-­type. In the second part of this work, we describe the electronic structure of graphene-­type and silicene type honeycomb semiconductors. We present the results of advanced electronic structure calculations using the sp3d5s* atomistic tight-­binding method10. For simplicity, we focus on semiconductors with a simple and single conduction band for the native bulk semiconductor. When the 3-­D geometry is changed into 2-­D honeycomb, a conduction band structure transformation to two types of Dirac cones, one for S-­ and one for P-­orbitals, is observed. The width of the bands depends on the honeycomb period and the coupling between the nanocrystals. Furthermore, there is a dispersionless P-­orbital band, which also forms a landmark of the honeycomb structure. The effects of considerable intrinsic spin-­orbit coupling are briefly considered. For heavy-­element compounds such as CdTe, strong intrinsic spin-­‐orbit coupling opens a non-­trivial gap at the P-­orbital Dirac point, leading to a quantum Spin Hall effect10-­12. Our work shows that well known semiconductor crystals, known for centuries, can lead to systems with entirely new electronic properties, by the simple action of nanogeometry. It can be foreseen that such structures will play a key role in future opto-­electronic applications, provided that they can be fabricated in a straightforward way.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000336040600004 Publication Date 2014-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes This work has been supported by funding of the French National Research Agency [ANR, (ANR-­‐09-­‐BLAN-­‐0421-­‐01)], NWO and the Dutch organization FOM [Programs “Control over Functional Nanoparticle Solids” (FNPS) and “Designing Dirac Carriers in Semiconductors” Approved Most recent IF: NA  
  Call Number c:irua:131912 Serial 4039  
Permanent link to this record
 

 
Author Liakakos, N.; Gatel, C.; Blon, T.; Altantzis, T.; Lentijo-Mozo, S.; Garcia-Marcelot, C.; Lacroix, L.M.; Respaud, M.; Bals, S.; Van Tendeloo, G.; Soulantica, K. pdf  url
doi  openurl
  Title CoFe nanodumbbells : synthesis, structure, and magnetic properties Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 5 Pages 2747-2754  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report the solution phase synthesis, the structural analysis, and the magnetic properties of hybrid nanostructures combining two magnetic metals. These nano-objects are characterized by a remarkable shape, combining Fe nanocubes on Co nanorods. The topological composition, the orientation relationship, and the growth steps have been studied by advanced electron microscopy techniques, such as HRTEM, electron tomography, and state-of-the-art 3-dimensional elemental mapping by EDX tomography. The soft iron nanocubes behave as easy nucleation centers that induce the magnetization reversal of the entire nanohybrid, leading to a drastic modification of the overall effective magnetic anisotropy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos (up) 000336074800080 Publication Date 2014-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 27 Open Access OpenAccess  
  Notes The authors thank the ANR for the project “Batmag”, the French national project EMMA (ANR12 BS10 013 01), the European Commission for the FP7 NAMDIATREAM project (EU NMP4-LA-2010-246479), and the METSA network for the HRTEM. This has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483-ESTEEM2 (Integrated Infrastructure Initiative- I3). It was also supported by Programme Investissements d’Avenir under the program ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT. The authors acknowledge financial support from European Research Council (ERC Advanced Grant # 24691-COUNTATOMS and ERC Starting Grant # 335078-COLOURATOMS).; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:116953 Serial 377  
Permanent link to this record
 

 
Author Zhang, F.; Vanmeensel, K.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Naert, I.; Vleugels, J. doi  openurl
  Title 3Y-TZP ceramics with improved hydrothermal degradation resistance and fracture toughness Type A1 Journal article
  Year 2014 Publication Journal of the European Ceramic Society Abbreviated Journal J Eur Ceram Soc  
  Volume 34 Issue 10 Pages 2453-2463  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Different factors such as the way of incorporating the Y2O3 stabilizer, alumina addition and sintering temperature were assessed with the goal to improve the low temperature degradation (LTD) resistance of 3Y-TZP without compromising on the mechanical properties. The degradation of hydrothermally treated specimens was studied by X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy. Decreasing the sintering temperature decreased the LTD susceptibility of 3Y-TZPs but did not allow to obtain a LTD resistant 3Y-TZP with optimized mechanical properties. Alumina addition along with the use of Y2O3 stabilizer coated starting powder allowed to combine both an excellent toughness and LTD resistance, as compared to alumina-free and stabilizer co-precipitated powder based equivalents. Transmission electron microscopy revealed that the improved LTD resistance could be attributed to the segregation of Al3+ at the grain boundary and the heterogeneously distributed Y3+ stabilizer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Barking Editor  
  Language Wos (up) 000336352500033 Publication Date 2014-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0955-2219; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 48 Open Access  
  Notes Fwo G.0431.10n Approved Most recent IF: 3.411; 2014 IF: 2.947  
  Call Number UA @ lucian @ c:irua:117065 c:irua:117065 Serial 11  
Permanent link to this record
 

 
Author Morozov, V.A.; Lazoryak, B.I.; Shmurak, S.Z.; Kiselev, A.P.; Lebedev, O.I.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Influence of the structure on the properties of NaxEuy(MoO4)z red phosphors Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 10 Pages 3238-3248  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Scheelite related compounds (A',A '')(n)[(B',B '')O-4](m) with B', B '' = W and/or Mo are promising new materials for red phosphors in pc-WLEDs (phosphor-converted white-light-emitting-diode) and solid-state lasers. Cation substitution in CaMoO4 of Ca2+ by the combination of Na+ and Eu3+, with the creation of A cation vacancies, has been investigated as a factor for controlling the scheelite-type structure and the luminescent properties. Na5Eu(MoO4)(4) and NaxEu(2-x)/33+square(2-x)/3MoO4 (0.138 <= x <= 0.5) phases with a scheelite-type structure were synthesized by the solid state method; their structural characteristics were investigated using transmission electron microscopy. Contrary to powder synchrotron X-ray diffraction before, the study by electron diffraction and high resolution transmission electron microscopy in this paper revealed that Na0.286Eu0.571MoO4 has a (3 + 2)D incommensurately modulated structure and that (3 + 2)D incommensurately modulated domains are present in Na0.200Eu0.600MoO4. It also confirmed the (3 + 1)D incommensurately modulated character of Na(0.138)Eu(0.621)Mo04. The luminescent properties of all phases under near-ultraviolet (n-UV) light have been investigated. The excitation spectra of these phosphors show the strongest absorption at about 395 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. The emission spectra indicate an intense red emission due to the D-5(0) -> F-7(2) transition of Eu3+, with local minima in the intensity at Na0.286Eu0.571MoO4 and Na0.200Eu0.600MoO4 for similar to 613 nm and similar to 616 nm bands. The phosphor Na5Eu(MoO4)(4) shows the brightest red light emission among the phosphors in the Na2MoO4-Eu2/3MoO4 system and the maximum luminescence intensity of Na5Eu(MoO4)(4) (lambda(ex) = 395 nm) in the D-5(0) -> F-7(2) transition region is close to that of the commercially used red phosphor YVO4:Eu3+ (lambda(ex) = 326 nm). Electron energy loss spectroscopy measurements revealed the influence of the structure and Na/Eu cation distribution on the number and positions of bands in the UV-optical-infrared regions of the EELS spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000336637000028 Publication Date 2014-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 53 Open Access  
  Notes Fwo G039211n; Fwo G004413n; 278510 Vortex ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:117765UA @ admin @ c:irua:117765 Serial 1652  
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Bakaimi, I.; Van Tendeloo, G.; Lappas, A. doi  openurl
  Title Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides : NaMnO2 polymorphism, redox potentials, and magnetism Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 10 Pages 3306-3315  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New polymorphs of NaMnO2 have been observed using transmission electron microscopy and synchrotron X-ray powder diffraction. Coherent twin planes confined to the (NaMnO2) layers, parallel to the (10 (1) over bar) crystallographic planes of the monoclinic layered rock-salt-type alpha-NaMnO2 (O3) structure, form quasi-periodic modulated sequences, with the known alpha-and beta-NaMnO2 polymorphs as the two limiting cases. The energy difference between the polymorphic forms, estimated using a DFT-based structure relaxation, is on the scale of the typical thermal energies that results in a high degree of stacking disorder in these compounds. The results unveil the remarkable effect of the twin planes on both the magnetic and electrochemical properties. The polymorphism drives the magnetic ground state from a quasi-1D spin system for the geometrically frustrated alpha-polymorph through a two-leg spin ladder for the intermediate stacking sequence toward a quasi-2D magnet for the beta-polymorph. A substantial increase of the equilibrium potential for Na deintercalation upon increasing the concentration of the twin planes is calculated, providing a possibility to tune the electrochemical potential of the layered rock-salt ABO(2) cathodes by engineering the materials with a controlled concentration of twins.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000336637000036 Publication Date 2014-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 35 Open Access  
  Notes Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:117766 Serial 2232  
Permanent link to this record
 

 
Author De Schutter, B.; Devulder, W.; Schrauwen, A.; van Stiphout, K.; Perkisas, T.; Bals, S.; Vantomme, A.; Detavernier, C. pdf  doi
openurl 
  Title Phase formation in intermixed NiGe thin films : influence of Ge content and low-temperature nucleation of hexagonal nickel germanides Type A1 Journal article
  Year 2014 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng  
  Volume 120 Issue Pages 168-173  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this study, we focus on phase formation in intermixed NiGe thin films as they represent a simplified model of the small intermixed interface layer that is believed to form upon deposition of Ni on Ge and where initial phase formation happens. A combinatorial sputter deposition technique was used to co-deposit a range of intermixed NiGe thin films with Ge concentrations varying between 0 and 50 at.%Ge in a single deposition on both Ge (100) and inert SiO2 substrates. In situ X-ray diffraction and transmission electron microscopy where used to study phase formation. In almost the entire composition range under investigation, crystalline phases where found to be present in the as-deposited films. Between 36 and 48 at.%Ge, high-temperature hexagonal nickel germanides were found to occur metastabily below 300 °C, both on SiO2 and Ge (100) substrates. For Ge concentrations in the range between 36 and 42 at.%, this hexagonal germanide phase was even found to be present at room temperature in the as-deposited films. The results obtained in this work could provide more insight in the phase sequence of a pure Ni film on Ge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000336697300028 Publication Date 2013-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.806 Times cited 9 Open Access Not_Open_Access  
  Notes FWO project Nr. G076112N Approved Most recent IF: 1.806; 2014 IF: 1.197  
  Call Number UA @ lucian @ c:irua:116958 Serial 2584  
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Abakumov, A.M.; Hadermann, J. pdf  doi
openurl 
  Title Pb5Fe3TiO11Cl : a rare example of Ti(IV) in a square pyramidal oxygen coordination Type A1 Journal article
  Year 2014 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 215 Issue Pages 245-252  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new oxychloride Pb5Fe3TiO11Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb5Fe3TiO11Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) Å and c=19.3345(2) Å. Pb5Fe3TiO11Cl is a new n=4 member of the oxychloride perovskite-based homologous series An+1BnO3n−1Cl. The structure is built of truncated Pb3Fe3TiO11 quadruple perovskite blocks separated by CsCl-type Pb2Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O6 octahedra sandwiched between two layers of (Fe,Ti)O5 square pyramids. The Ti4+ cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti4+ in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb5Fe3TiO11Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) μB and 3.86(5) μB on the octahedral and square-pyramidal sites, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos (up) 000336891300037 Publication Date 2014-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 4 Open Access  
  Notes Fwo G.0184.09n. Approved Most recent IF: 2.299; 2014 IF: 2.133  
  Call Number UA @ lucian @ c:irua:117066 Serial 3551  
Permanent link to this record
 

 
Author Gorlé, C.; Larsson, J.; Emory, M.; Iaccarino, G. pdf  doi
openurl 
  Title The deviation from parallel shear flow as an indicator of linear eddy-viscosity model inaccuracy Type A1 Journal article
  Year 2014 Publication Physics of fluids Abbreviated Journal Phys Fluids  
  Volume 26 Issue 5 Pages 051702  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A marker function designed to indicate in which regions of a generic flow field the results from linear eddy-viscosity turbulence models are plausibly inaccurate is introduced. The marker is defined to identify regions that deviate from parallel shear flow. For two different flow fields it is shown that these regions largely coincide with regions where the prediction of the Reynolds stress divergence is inaccurate. The marker therefore offers a guideline for interpreting results obtained from Reynolds-averaged Navier-Stokes simulations and provides a basis for the further development of turbulence model-form uncertainty quantification methods. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos (up) 000337103900002 Publication Date 2014-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-6631;1089-7666; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.232 Times cited 19 Open Access  
  Notes Approved Most recent IF: 2.232; 2014 IF: 2.031  
  Call Number UA @ lucian @ c:irua:118385 Serial 684  
Permanent link to this record
 

 
Author Huang, S.-Z.; Jin, J.; Cai, Y.; Li, Y.; Tan, H.-Y.; Wang, H.-E.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 12 Pages 6819-6827  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Well shaped single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets at different particle sizes have been synthesized and used as anode materials for lithium ion batteries. The electrochemical results show that the smallest sized Mn3O4 nano-octahedra show the best cycling performance with a high initial charge capacity of 907 mA h g−1 and a 50th charge capacity of 500 mA h g−1 at a current density of 50 mA g−1 and the best rate capability with a charge capacity of 350 mA h g−1 when cycled at 500 mA g−1. In particular, the nano-octahedra samples demonstrate a much better electrochemical performance in comparison with irregular shaped Mn3O4 nanoparticles. The best electrochemical properties of the smallest Mn3O4 nano-octahedra are ascribed to the lower charge transfer resistance due to the exposed highly active {011} facets, which can facilitate the conversion reaction of Mn3O4 and Li owing to the alternating Mn and O atom layers, resulting in easy formation and decomposition of the amorphous Li2O and the multi-electron reaction. On the other hand, the best electrochemical properties of the smallest Mn3O4 nano-octahedra can also be attributed to the smallest size resulting in the highest specific surface area, which provides maximum contact with the electrolyte and facilitates the rapid Li-ion diffusion at the electrode/electrolyte interface and fast lithium-ion transportation within the particles. The synergy of the exposed {011} facets and the smallest size (and/or the highest surface area) led to the best performance for the Mn3O4 nano-octahedra. Furthermore, HRTEM observations verify the oxidation of MnO to Mn3O4 during the charging process and confirm that the Mn3O4 octahedral structure can still be partly maintained after 50 dischargecharge cycles. The high Li-ion storage capacity and excellent cycling performance suggest that Mn3O4 nano-octahedra with exposed highly active {011} facets could be excellent anode materials for high-performance lithium-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000337143900072 Publication Date 2014-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 80 Open Access  
  Notes Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:117076 Serial 1047  
Permanent link to this record
 

 
Author Deng, S.; Kurttepeli, M.; Deheryan, S.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Van Tendeloo, G.; Detavernier, C. pdf  url
doi  openurl
  Title Synthesis of a 3D network of Pt nanowires by atomic layer deposition on a carbonaceous template Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 12 Pages 6939-6944  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The formation of a 3D network composed of free standing and interconnected Pt nanowires is achieved by a two-step method, consisting of conformal deposition of Pt by atomic layer deposition (ALD) on a forest of carbon nanotubes and subsequent removal of the carbonaceous template. Detailed characterization of this novel 3D nanostructure was carried out by transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS). The characterization showed that this pure 3D nanostructure of platinum is self-supported and offers an enhancement of the electrochemically active surface area by a factor of 50.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000337143900086 Publication Date 2014-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 14 Open Access OpenAccess  
  Notes The authors wish to thank the Research Foundation – Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERCgrant agreement N°239865-COCOON, N°246791-COUNTATOMS and N°335078–COLOURATOM). The authors would also want to thank the support from UGENT-GOA-01G01513, IWT-SBO SOSLion and the Belgian government through Interuniversity Attraction Poles (IAPPAI).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:118393 Serial 3454  
Permanent link to this record
 

 
Author M. K. Kinyanjui, N. Gauquelin, E. Benckiser, H. –U. Habermeier, B. Keimer, U. Kaiser and G.A. Botton doi  openurl
  Title Local lattice distortion and anisotropic modulation in Epitaxially Strained LaNiO3/LaAlO3 hetero-structures Type A1 Journal Article
  Year 2014 Publication Applied Physics Letters Abbreviated Journal  
  Volume 104 Issue Pages 221909  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Using a complementary combination of x-ray diffraction and atomically resolved imaging we investigated the lattice structure of epitaxial LaNiO3/LaAlO3 superlattices grown on a compressive-strain inducing LaSrAlO4 (001) substrate. A refinement of the structure obtained from the x-ray data revealed the monoclinic I 2/c 1 1 space group. The (Ni/Al)O6 octahedral rotation angle perpendicular to the superlattice plane is enhanced, and the one parallel to the plane is reduced with respect to the corresponding bulk values. High-angle annular dark field imaging was used to determine the lattice parameters within the superlattice unit cell. High-resolution electron microscopy images of the oxygen atoms are consistent with the x-ray results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000337161700029 Publication Date 2014-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 22 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4545  
Permanent link to this record
 

 
Author Masenelli-Varlot, K.; Malchere, A.; Ferreira, J.; Heidari Mezerji, H.; Bals, S.; Messaoudi, C.; Garrido, S.M. url  doi
openurl 
  Title Wet-STEM tomography : principles, potentialities and limitations Type A1 Journal article
  Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 20 Issue 2 Pages 366-375  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The characterization of biological and inorganic materials by determining their three-dimensional structure in conditions closer to their native state is a major challenge of technological research. Environmental scanning electron microscopy (ESEM) provides access to the observation of hydrated samples in water environments. Here, we present a specific device for ESEM in the scanning transmission electron microscopy mode, allowing the acquisition of tilt-series suitable for tomographic reconstructions. The resolution which can be obtained with this device is first determined. Then, we demonstrate the feasibility of tomography on wet materials. The example studied here is hydrophilic mesoporous silica (MCM-41). Finally, the minimum thickness of water which can be detected is calculated from Monte Carlo simulations and compared with the resolution expected in the tomograms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos (up) 000337304700005 Publication Date 2014-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 9 Open Access OpenAccess  
  Notes IAP-PAI; European Research Council under the 7th Framework Program (FP7); ERC grant no. 335078-COLOURATOMS.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 1.891; 2014 IF: 1.877  
  Call Number UA @ lucian @ c:irua:118411 Serial 3915  
Permanent link to this record
 

 
Author Goris, B.; Polavarapu, L.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Monitoring galvanic replacement through three-dimensional morphological and chemical mapping Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 6 Pages 3220-3226  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Galvanic replacement reactions on metal nanoparticles are often used for the preparation of hollow nanostructures with tunable porosity and chemical composition, leading to tailored optical and catalytic properties. However, the precise interplay between the three-dimensional (3D) morphology and chemical composition of nanostructures during galvanic replacement is not always well understood as the 3D chemical imaging of nanoscale materials is still challenging. It is especially far from straightforward to obtain detailed information from the inside of hollow nanostructures using electron microscopy techniques such as SEM or TEM. We demonstrate here that a combination of state-of-the-art EDX mapping with electron tomography results in the unambiguous determination of both morphology transformation and elemental composition of nanostructures in 3D, during galvanic replacement of Ag nanocubes. This work provides direct and unambiguous experimental evidence toward understanding the galvanic replacement reaction. In addition, the powerful approach presented here can be applied to a wide range of nanoscale transformation processes, which will undoubtedly guide the development of novel nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos (up) 000337337100038 Publication Date 2014-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 120 Open Access OpenAccess  
  Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:116954 Serial 2189  
Permanent link to this record
 

 
Author Yalcin, A.O.; Fan, Z.; Goris, B.; Li, W.F.; Koster, R.S.; Fang, C.M.; van Blaaderen, A.; Casavola, M.; Tichelaar, F.D.; Bals, S.; Van Tendeloo, G.; Vlugt, T.J.H.; Vanmaekelbergh, D.; Zandbergen, H.W.; van Huis, M.A.; pdf  url
doi  openurl
  Title Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 6 Pages 3661-3667  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Here, we show a novel solidsolidvapor (SSV) growth mechanism whereby epitaxial growth of heterogeneous semiconductor nanowires takes place by evaporation-induced cation exchange. During heating of PbSe-CdSe nanodumbbells inside a transmission electron microscope (TEM), we observed that PbSe nanocrystals grew epitaxially at the expense of CdSe nanodomains driven by evaporation of Cd. Analysis of atomic-resolution TEM observations and detailed atomistic simulations reveals that the growth process is mediated by vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos (up) 000337337100106 Publication Date 2014-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 42 Open Access OpenAccess  
  Notes 262348 Esmi; Fwo; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:117027 Serial 179  
Permanent link to this record
 

 
Author Boneschanscher, M.P.; Evers, W.H.; Geuchies, J.J.; Altantzis, T.; Goris, B.; Rabouw, F.T.; van Rossum, S.A.P.; van der Zant, H.S.J.; Siebbeles, L.D.A.; Van Tendeloo, G.; Swart, I.; Hilhorst, J.; Petukhov, A.V.; Bals, S.; Vanmaekelbergh, D.; pdf  url
doi  openurl
  Title Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices Type A1 Journal article
  Year 2014 Publication Science Abbreviated Journal Science  
  Volume 344 Issue 6190 Pages 1377-1380  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oriented attachment of synthetic semiconductor nanocrystals is emerging as a route for obtaining new semiconductors that can have Dirac-type electronic bands like graphene, but also strong spin-orbit coupling. The two-dimensional assembly geometry will require both atomic coherence and long-range periodicity of the superlattices. We show how the interfacial self-assembly and oriented attachment of nanocrystals results in two-dimensional (2D) metal chalcogenide semiconductors with a honeycomb superlattice. We present an extensive atomic and nanoscale characterization of these systems using direct imaging and wave scattering methods. The honeycomb superlattices are atomically coherent, and have an octahedral symmetry that is buckled; the nanocrystals occupy two parallel planes. Considerable necking and large-scale atomic motion occurred during the attachment process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos (up) 000337531700035 Publication Date 2014-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075;1095-9203; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.205 Times cited 304 Open Access OpenAccess  
  Notes Fwo; 262348 Esmi; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 37.205; 2014 IF: 33.611  
  Call Number UA @ lucian @ c:irua:117095 Serial 1840  
Permanent link to this record
 

 
Author Idrissi, H.; Amin-Ahmadi, B.; Wang, B.; Schryvers, D. pdf  doi
openurl 
  Title Review on TEM analysis of growth twins in nanocrystalline palladium thin films : toward better understanding of twin-related mechanisms in high stacking fault energy metals Type A1 Journal article
  Year 2014 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 251 Issue 6 Pages 1111-1124  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Various modes of transmission electron microscopy including aberration corrected imaging were used in order to unravel the fundamental mechanisms controlling the formation of growth twins and the evolution of twin boundaries under mechanical and hydrogen loading modes in nanocrystalline (nc) palladium thin films. The latter were produced by electron-beam evaporation and sputter deposition and subjected to uniaxial tensile deformation as well as hydriding/dehydriding cycles. The results show that the twins form by dissociation of grain boundaries. The coherency of Σ3{111} coherent twin boundaries considerably decreases with deformation due to dislocation/twin boundary interactions while Σ3{112} incoherent twin boundaries dissociate under hydrogen cycling into two-phase boundaries bounding a new and unstable 9R phase. The effect of these elementary mechanisms on the macroscopic behavior of the palladium films is discussed and compared to recent experimental and simulation works in the literature. The results provide insightful information to guide the production of well-controlled population of growth twins in high stacking fault energy nc metallic thin films. The results also indicate directions for further enhancement of the mechanical properties of palladium films as needed for instance in palladium-based membranes in hydrogen applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos (up) 000337608600001 Publication Date 2014-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 7 Open Access  
  Notes Iap P7/21; Fwo G012012n Approved Most recent IF: 1.674; 2014 IF: 1.489  
  Call Number UA @ lucian @ c:irua:114580 Serial 2905  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: