toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vanhellemont, J.; Romano Rodriguez, A.; Fedina, L.; van Landuyt, J.; Aseev, A. pdf  doi
openurl 
  Title Point defect reactions in silicon studied in situ by high flux electron irradiation in high voltage transmission electron microscope Type A1 Journal article
  Year 1995 Publication Materials science and technology Abbreviated Journal Mater Sci Tech-Lond  
  Volume (up) 11 Issue 11 Pages 1194-1202  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Results are presented of in situ studies of 1 MeV electron irradiation induced (113) defect generation in silicon containing different types and concentrations of extrinsic point defects. A semiquantitative model is developed describing the influence of interfaces and stress fields and of extrinsic point defects on the (113) defect generation in silicon during irradiation. The theoretical results obtained are correlated with experimental data obtained on silicon uniformly doped with boron and phosphorus and with observations obtained by irradiating cross-sectional samples of wafers with highly doped surface layers. It is shown that in situ irradiation in a high voltage election microscope is a powerful tool for studying local point defect reactions in silicon. (C) 1995 The Institute of Materials.  
  Address  
  Corporate Author Thesis  
  Publisher Inst Materials Place of Publication London Editor  
  Language Wos A1995TQ95100016 Publication Date 2014-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-0836;1743-2847; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.995 Times cited 7 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:95911 Serial 2654  
Permanent link to this record
 

 
Author Vanhellemont, J.; Romano-Rodriguez, A.; Fedina, L.; van Landuyt, J.; Aseev, A. openurl 
  Title Point defect reactions in silicon studies in situ by high flux electron irradiation in high voltage transmission electron microscope Type A3 Journal article
  Year 1995 Publication Materials science and technology Abbreviated Journal  
  Volume (up) 11 Issue Pages 1194-1204  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1995TQ95100016 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13297 Serial 2655  
Permanent link to this record
 

 
Author Wang, Y.; Belén Serrano, A.; Sentosun, K.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Stabilization and encapsulation of gold nanostars mediated by dithiols Type A1 Journal article
  Year 2015 Publication Small Abbreviated Journal Small  
  Volume (up) 11 Issue 11 Pages 4314-4320  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Surface chemistry plays a pivotal role in regulating the morphology of nanoparticles, maintaining colloidal stability, and mediating the interaction with target analytes toward practical applications such as surface-enhanced Raman scattering (SERS)-based sensing and imaging. The use of a binary ligand mixture composed of 1,4-benzenedithiol (BDT) and hexadecyltrimethylammonium chloride (CTAC) to provide gold nanostars with long-term stability is reported. This is despite BDT being a bifunctional ligand, which usually leads to bridging and loss of colloidal stability. It is found however that neither BDT nor CTAC alone are able to provide sufficient colloidal and chemical stability. BDT-coated Au nanostars are additionally used as seeds to direct the encapsulation with a gold outer shell, leading to the formation of unusual nanostructures including semishell-coated gold nanostars, which are characterized by high-resolution electron microscopy and electron tomography. Finally, BDT is exploited as a probe to reveal the enhanced local electric fields in the different nanostructures, showing that the semishell configuration provides significantly high SERS signals as compared to other coreshell configurations obtained during seeded growth, including full shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000360852900009 Publication Date 2015-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 36 Open Access OpenAccess  
  Notes 267867 Plasmaquo; 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.643; 2015 IF: 8.368  
  Call Number c:irua:127571 Serial 3136  
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Van Tendeloo, G.; van Dyck, D.; Avila-Brande, D. pdf  openurl
  Title Statistical estimation of oxygen atomic positions eith sub Ångstrom precision from exit wave reconstruction Type A3 Journal article
  Year 2005 Publication Microscopy and microanalysis Abbreviated Journal  
  Volume (up) 11 Issue S Pages 556-557  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:54881 Serial 3155  
Permanent link to this record
 

 
Author Schryvers, D.; Potapov, P.; Ledda, A.; Shelyakov, A. doi  openurl
  Title Structural characterisation of melt-spun Ti-Ni-Cu-ribbons Type A1 Journal article
  Year 2001 Publication Journal de physique: 4 Abbreviated Journal J Phys Iv  
  Volume (up) 11 Issue Pages 363-368  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos 000173253800062 Publication Date 2007-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:48386 Serial 3214  
Permanent link to this record
 

 
Author Lepoittevin, C.; Malo, S.; Van Tendeloo, G.; Hervieu, M. pdf  doi
openurl 
  Title Synthesis and structural mechanisms of the 2201-type ferrites and polytypes: Fe2(Sr2-xAx)FeO6.5-\delta/2 (A = Ba, La, Tl, Pb and Bi) Type A1 Journal article
  Year 2009 Publication Solid state sciences Abbreviated Journal Solid State Sci  
  Volume (up) 11 Issue 3 Pages 595-607  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Fe2(Sr2 − xAx)FeO6.5 − ä/2 systems have been investigated, by doping the iron rich 2201-type parent structure with Ba2+, La3+ and 5d10 post-transition cations. The syntheses have been carried out up to the limit of the 2201-type solid solutions, in order to test the role of the double iron layer Fe2O2.5 − ä/2. The localisation of the charge carriers in these compounds is consistent with their strong antiferro-magnetism. The investigation was then carried out in the transition part of the diagram up to the formation of stable phases. The study of structural mechanisms was carried using high resolution electron microscopy (transmission and scanning transmission), electron diffraction and energy dispersive spectroscopy. Different non-stoichiometry mechanisms are observed, depending on the electronic structure and chemical properties of the doping elements. The specific behavior of the modulated double iron layer is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000264644800001 Publication Date 2008-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.811 Times cited 3 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 1.811; 2009 IF: 1.675  
  Call Number UA @ lucian @ c:irua:76416 Serial 3437  
Permanent link to this record
 

 
Author Fröba, M.; Köhn, R.; Bouffaud, G.; Richard, O.; Van Tendeloo, G. pdf  doi
openurl 
  Title _Fe2O3 nanoparticles with mesoporous MCM-48 silica: in situ formation and characterisation Type A1 Journal article
  Year 1999 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (up) 11 Issue Pages 2858-2865  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000083261100032 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 202 Open Access  
  Notes Approved Most recent IF: 9.466; 1999 IF: 3.273  
  Call Number UA @ lucian @ c:irua:29721 Serial 3530  
Permanent link to this record
 

 
Author Bals, S.; Casavola, M.; van Huis, M.A.; Van Aert, S.; Batenburg, K.J.; Van Tendeloo, G.; Vanmaekelbergh, D. pdf  url
doi  openurl
  Title Three-dimensional atomic imaging of colloidal core-shell nanocrystals Type A1 Journal article
  Year 2011 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume (up) 11 Issue 8 Pages 3420-3424  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Colloidal coreshell semiconductor nanocrystals form an important class of optoelectronic materials, in which the exciton wave functions can be tailored by the atomic configuration of the core, the interfacial layers, and the shell. Here, we provide a trustful 3D characterization at the atomic scale of a free-standing PbSe(core)CdSe(shell) nanocrystal by combining electron microscopy and discrete tomography. Our results yield unique insights for understanding the process of cation exchange, which is widely employed in the synthesis of coreshell nanocrystals. The study that we present is generally applicable to the broad range of colloidal heteronanocrystals that currently emerge as a new class of materials with technological importance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000293665600062 Publication Date 2011-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 121 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 12.712; 2011 IF: 13.198  
  Call Number UA @ lucian @ c:irua:91263 Serial 3643  
Permanent link to this record
 

 
Author Bals, S.; Kisielowski, C.; Croitoru, M.; Van Tendeloo, G. openurl 
  Title Tomography using annular dark field imaging in TEM Type A3 Journal article
  Year 2005 Publication Microscopy and microanalysis Abbreviated Journal  
  Volume (up) 11 Issue S Pages 2118-2119  
  Keywords A3 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:54880 Serial 3672  
Permanent link to this record
 

 
Author Abakumov, M.A.; Nukolova, N.V.; Sokolsky-Papkov, M.; Shein, S.A.; Sandalova, T.O.; Vishwasrao, H.M.; Grinenko, N.F.; Gubsky, I.L.; Abakumov, A.M.; Kabanov, A.V.; Chekhonin, V.P.; pdf  url
doi  openurl
  Title VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor Type A1 Journal article
  Year 2015 Publication Nanomedicine: nanotechnology, biology and medicine Abbreviated Journal Nanomed-Nanotechnol  
  Volume (up) 11 Issue 11 Pages 825-833  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (MRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with D-eff of 53 +/- 9 nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5 mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma C6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. (C) 2015 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000354559600004 Publication Date 2015-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9634; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.72 Times cited 62 Open Access  
  Notes Approved Most recent IF: 5.72; 2015 IF: 6.155  
  Call Number c:irua:126351 Serial 3838  
Permanent link to this record
 

 
Author Bekermann, D.; Gasparotto, A.; Barreca, D.; Devi, A.; Fischer, R.A.; Kete, M.; Štangar, U.L.; Lebedev, O.I.; Maccato, C.; Tondello, E.; Van Tendeloo, G. pdf  doi
openurl 
  Title ZnO nanorod arrays by plasma-enhanced CVD for light-activated functional applications Type A1 Journal article
  Year 2010 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem  
  Volume (up) 11 Issue 11 Pages 2337-2340  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Switch of the surface properties: Supported ZnO nanorod arrays with tailored roughness and aspect ratios are successfully synthesized by plasma-enhanced chemical vapor deposition. Such nanostructures exhibit significant superhydrophilic and photocatalytic properties tunable as a function of their morphological organization (see picture). This renders them promising building blocks for the fabrication of stimuli-responsive materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000281061500008 Publication Date 2010-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.075 Times cited 38 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 3.075; 2010 IF: 3.340  
  Call Number UA @ lucian @ c:irua:84594 Serial 3935  
Permanent link to this record
 

 
Author Cooper, D.; de la Peña, F.; Béché, A.; Rouvière, J.-L.; Servanton, G.; Pantel, R.; Morin, P. doi  openurl
  Title Field mapping with nanometer-scale resolution for the next generation of electronic devices Type A1 Journal article
  Year 2011 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume (up) 11 Issue 11 Pages 4585-4590  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In order to improve the performance of todays nanoscaled semiconductor devices, characterization techniques that can provide information about the position and activity of dopant atoms and the strain fields are essential. Here we demonstrate that by using a modern transmission electron microscope it is possible to apply multiple techniques to advanced materials systems in order to provide information about the structure, fields, and composition with nanometer-scale resolution. Off-axis electron holography has been used to map the active dopant potentials in state-of-the-art semiconductor devices with 1 nm resolution. These dopant maps have been compared to electron energy loss spectroscopy maps that show the positions of the dopant atoms. The strain fields in the devices have been measured by both dark field electron holography and nanobeam electron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000296674700014 Publication Date 2011-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access  
  Notes Approved Most recent IF: 12.712; 2011 IF: 13.198  
  Call Number UA @ lucian @ c:irua:136369 Serial 4499  
Permanent link to this record
 

 
Author Montanarella, F.; Altantzis, T.; Zanaga, D.; Rabouw, F.T.; Bals, S.; Baesjou, P.; Vanmaekelbergh, D.; van Blaaderen, A. pdf  url
doi  openurl
  Title Composite Supraparticles with Tunable Light Emission Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume (up) 11 Issue 11 Pages 9136-9142  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Robust luminophores emitting light with broadly tunable colors are desirable in many applications such as light-emitting diode (LED)-based lighting, displays, integrated optoelectronics and biology. Nanocrystalline quantum dots with multicolor emission, from core- and shell-localized excitons, as well as solid layers of mixed quantum dots that emit different colors have been proposed. Here, we report on colloidal supraparticles that are composed of three types of Cd(Se,ZnS) core/(Cd,Zn)S shell nanocrystals with emission in the red, green, and blue. The emission of the supraparticles can be varied from pure to composite colors over the entire visible region and finetuned into variable shades of white light by mixing the nanocrystals in controlled proportions. Our approach results in supraparticles with sizes spanning the colloidal domain and beyond that combine versatility and processability with a broad, stable, and tunable emission, promising applications in lighting devices and biological research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411918200062 Publication Date 2017-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 36 Open Access OpenAccess  
  Notes We thank J. J. Geuchies for help with the optical analysis, W. Vlug for providing silica particles filled with RITC, J. D. Meeldijk for his assistance with SE-STEM measurements, E. B. van der Wee for help with the calculation of the radial distribution functions, and M. van Huis and S. Dussi for very fruitful discussions. This work was supported by the European Comission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656). D.V. wishes to thank the Dutch FOM (program DDC13), NWO−CW (Toppunt 718.015.002), and the European Research Council under HORIZON 2020 (grant 692691 FIRSTSTEP) for financial support. A.v.B. and F.M. acknowledge partial funding from the European Research Council under the European Union’s Seventh Framework Programme (FP-2007-2013)/ERC advanced grant agreement 291667: HierarSACol. S.B. and D.Z. acknowledge financial support from the European Research Council (starting grant no. COLOURATOM 335078), and T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. ECAS_Sara (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:146095UA @ admin @ c:irua:146095 Serial 4732  
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V. pdf  doi
openurl 
  Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume (up) 11 Issue 9 Pages 8643-8649  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411918200012 Publication Date 2017-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access  
  Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942  
  Call Number UA @ lucian @ c:irua:146770 Serial 4895  
Permanent link to this record
 

 
Author Barreca, D.; Gri, F.; Gasparotto, A.; Carraro, G.; Bigiani, L.; Altantzis, T.; Žener, B.; Lavrenčič Štangar, U.; Alessi, B.; Padmanaban, D.B.; Mariotti, D.; Maccato, C. url  doi
openurl 
  Title Multi-functional MnO2nanomaterials for photo-activated applications by a plasma-assisted fabrication route Type A1 Journal article
  Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) 11 Issue 1 Pages 98-108  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Supported MnO2-based nanomaterials were fabricated on fluorine-doped tin oxide substrates by plasma enhanced-chemical vapor deposition (PE-CVD) between 100 °C and 400 °C, starting from a fluorinated Mn(II) diamine diketonate precursor. Growth experiments yielded -MnO2 nanosystems with hierarchical morphology tuneable from dendritic structures to quasi-1D nanosystems as a function of growth temperature, whose variation enabled also a concomitant tailoring of the system fluorine content, and of the optical absorption and band gap. Preliminary photocatalytic tests were aimed at the investigation of photoinduced hydrophilic (PH) and solid phase photocatalytic (PC) performances of the present nanomaterials, as well as at the photodegradation of Plasmocorinth B azo-dye aqueous solutions. The obtained findings highlighted an attractive system photoactivity even under visible light, finely tailored by fluorine content, morphological organization and optical properties of the prepared nanostructures. The results indicate that the synthesized MnO2 nanosystems have potential applications as advanced smart materials for anti-fogging/self-cleaning end uses and water purification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454327500037 Publication Date 2018-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 7 Open Access OpenAccess  
  Notes Padova University DOR 2016–2017, P-DiSC #03BIRD2016-UNIPD projects, HERALD Cost Action MP1402 – 37831 and ACTION post-doc fellowship are acknowledged for financial support. T.A. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO). Thanks are also due to Prof. Sara Bals (EMAT, University of Antwerp, Belgium), Prof. Romana Cerc Korošec and to Dr. Lev Matoh (University of Ljubljana, Slovenia), and to Prof. Elza Bontempi (Brescia University, Italy). The work was also supported by EPSRC (award EP/R008841/1, EP/M024938/1). Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @UA @ admin @ c:irua:156388 Serial 5148  
Permanent link to this record
 

 
Author Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S. url  doi
openurl 
  Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
  Year 2018 Publication Materials Abbreviated Journal Materials  
  Volume (up) 11 Issue 11 Pages 1304  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000444112800041 Publication Date 2018-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.654 Times cited 15 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654  
  Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064  
Permanent link to this record
 

 
Author Gasparotto, A.; Maccato, C.; Carraro, G.; Sada, C.; Štangar, U.L.; Alessi, B.; Rocks, C.; Mariotti, D.; La Porta, A.; Altantzis, T.; Barreca, D. url  doi
openurl 
  Title Surface Functionalization of Grown-on-Tip ZnO Nanopyramids: From Fabrication to Light-Triggered Applications Type A1 Journal Article
  Year 2019 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume (up) 11 Issue 17 Pages 15881-15890  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract We report on a combined chemical vapor deposition (CVD)/radio frequency (RF) sputtering synthetic strategy for the controlled surface modification of ZnO nanostructures by Ti-containing species. Specifically, the proposed approach consists in the CVD of grown-on-tip ZnO nanopyramids, followed by titanium RF sputtering under mild conditions. The results obtained by a thorough characterization demonstrate the successful ZnO surface functionalization with dispersed Ti-containing species in low amounts. This phenomenon, in turn, yields a remarkable enhancement of photoactivated superhydrophilic behavior, self-cleaning ability, and photocatalytic performances in comparison to bare ZnO. The reasons accounting for such an improvement are unravelled by a multitechnique analysis, elucidating the interplay between material chemico-physical properties and the corresponding functional behavior. Overall, the proposed strategy stands as an amenable tool for the mastering of semiconductor-based functional nanoarchitectures through ad hoc engineering of the system surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466988800078 Publication Date 2019-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links  
  Impact Factor 7.504 Times cited 1 Open Access Not_Open_Access  
  Notes The research leading to these results has received financial support from Padova University ACTION postdoc fellowship, DOR 2016-2018, P-DiSC #03BIRD2016-UNIPD projects, and HERALD COST Action MP1402-37831. The support from EPSRC (awards EP/R008841/1 and EP/M024938/1) as well as from the Slovenian Research Agency (research core funding No. P1-0134) is also recognized. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). The authors are grateful to Dr. Sebastiano Pianta (Department of Chemical Sciences, Padova University, Italy) for experimental assistance. Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @ Serial 5185  
Permanent link to this record
 

 
Author Tonkikh, A.A.; Tsebro, V.I.; Obraztsova, E.A.; Rybkovskiy, D.V.; Orekhov, A.S.; Kondrashov, I.I.; Kauppinen, E.I.; Chuvilin, A.L.; Obraztsova, E.D. url  doi
openurl 
  Title Films of filled single-wall carbon nanotubes as a new material for high-performance air-sustainable transparent conductive electrodes operating in a wide spectral range Type A1 Journal article
  Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) 11 Issue 14 Pages 6755-6765  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this paper we show the advantages of transparent high conductive films based on filled single-wall carbon nanotubes. The nanotubes with internal channels filled with acceptor molecules (copper chloride or iodine) form networks demonstrating significantly improved characteristics. Due to the charge transfer between the nanotubes and filler, the doped-nanotube films exhibit a drop in electrical sheet resistance of an order of magnitude together with a noticeable increase of film transparency in the visible and near-infrared spectral range. The thermoelectric power measurements show a significant improvement of air-stability of the nanotube network in the course of the filling procedure. For the nanotube films with an initial transparency of 87% at 514 nm and electrical sheet resistance of 862 Ohm sq(-1) we observed an improvement of transparency up to 91% and a decrease of sheet resistance down to 98 Ohm sq(-1). The combination of the nanotube synthesis technique and molecules for encapsulation has been optimized for applications in optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464454400024 Publication Date 2019-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 2 Open Access Not_Open_Access: Available from 06.09.2019  
  Notes ; The work was supported by the RFBR project 18-29-19113-mk, grant no. 311533 of Academy of Finland, Russian Federation President Program for young scientist MK-3140.2018.2. Also, the reported study was funded by RFBR and Moscow city Government according to the research project no. 19-32-70004. TEM measurements were performed with financial support from the Ministry of Science and Higher Education of the Russian Federation within the state assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences. ; Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:159339 Serial 5249  
Permanent link to this record
 

 
Author Yu, S.; Sankaran, K.J.; Korneychuk, S.; Verbeeck, J.; Haenen, K.; Jiang, X.; Yang, N. url  doi
openurl 
  Title High-performance supercabatteries using graphite@diamond nano-needle capacitor electrodes and redox electrolytes Type A1 Journal article
  Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) 11 Issue 38 Pages 17939-17946  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Supercabatteries have the characteristics of supercapacitors and batteries, namely high power and energy densities as well as long cycle life. To construct them, capacitor electrodes with wide potential windows and/or redox electrolytes are required. Herein, graphite@diamond nano-needles and an aqueous solution of Fe(CN)(6)(3-/4-) are utilized as the capacitor electrode and the electrolyte, respectively. This diamond capacitor electrode has a nitrogen-doped diamond core and a nano-graphitic shell. In 0.05 M Fe(CN)(6)(3-/4-) + 1.0 M Na2SO4 aqueous solution, the fabricated supercabattery has a capacitance of 66.65 mF cm(-2) at a scan rate of 10 mV s(-1). It is stable over 10 000 charge/discharge cycles. The symmetric supercabattery device assembled using a two-electrode system possesses energy and power densities of 10.40 W h kg(-1) and 6.96 kW kg(-1), respectively. These values are comparable to those of other energy storage devices. Therefore, diamond supercabatteries are promising for many industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489646900036 Publication Date 2019-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 26 Open Access  
  Notes ; S. Yu and K. J. Sankaran contributed equally to this work. N. Yang acknowledges funding from the German Science Foundation under the project of YA344/1-1. J. Verbeeck and S. Korneychuk acknowledge the funding from the GOA project “Solarpaint” of the University of Antwerp. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. K. J. Sankaran and K. Haenen like to acknowledge the financial support of the Methusalem “NANO” network. S. Yu likes to acknowledge the financial support from fundamental research funds for the central universities (Grant No. SWU019001). ; Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:163723 Serial 5388  
Permanent link to this record
 

 
Author Retuerto, M.; Calle-Vallejo, F.; Pascual, L.; Lumbeeck, G.; Fernandez-Diaz, M.T.; Croft, M.; Gopalakrishnan, J.; Pena, M.A.; Hadermann, J.; Greenblatt, M.; Rojas, S. pdf  doi
openurl 
  Title La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity Type A1 Journal article
  Year 2019 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume (up) 11 Issue 24 Pages 21454-21464  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Perovskites (ABO(3)) with transition metals in active B sites are considered alternative catalysts for the water oxidation to oxygen through the oxygen evolution reaction (OER) and for the oxygen reduction through the oxygen reduction reaction (ORR) back to water. We have synthesized a double perovskite (A(2)BB'O-6) with different cations in A, B, and B' sites, namely, ((La15Sr0.5)-Sr-.)(A)(Ni0.5Mn0.5)(B)(Ni0.5Ru0.5)(B)O-6 (LSNMR), which displays an outstanding OER/ORR bifunctional performance. The composition and structure of the oxide has been determined by powder X-ray diffraction, powder neutron diffraction, and transmission electron microscopy to be monoclinic with the space group P2(1)/n and with cationic ordering between the ions in the B and B' sites. X-ray absorption near-edge spectroscopy suggests that LSNMR presents a configuration of similar to Ni2+, similar to Mn4+, and similar to Ru5+. This bifunctional catalyst is endowed with high ORR and OER activities in alkaline media, with a remarkable bifunctional index value of similar to 0.83 V (the difference between the potentials measured at -1 mA cm(-2) for the ORR and +10 mA cm(-2) for the OER). The ORR onset potential (E-onset) of 0.94 V is among the best reported to date in alkaline media for ORR-active perovskites. The ORR mass activity of LSNMR is 1.1 A g(-1) at 0.9 V and 7.3 A g(-1) at 0.8 V. Furthermore, LSNMR is stable in a wide potential window down to 0.05 V. The OER potential to achieve a current density of 10 mA cm(-2) is 1.66 V. Density functional theory calculations demonstrate that the high ORR/OER activity of LSNMR is related to the presence of active Mn sites for the ORR- and Ru-active sites for the OER by virtue of the high symmetry of the respective reaction steps on those sites. In addition, the material is stable to ORR cycling and also considerably stable to OER cycling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472683300019 Publication Date 2019-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 12 Open Access  
  Notes ; This work was supported by the ENE2016-77055-C3-3-R project from the Spanish Ministry of Economy and Competitiveness (MINECO) and PIE 201480E122 from CSIC. M.R. thanks MINECO's Juan de la Cierva program for a grant (FPDI-2013-17582). F.C.-V. thanks the Spanish MEC for a Ramon y Cajal research contract (RYC-2015-18996). M.G. acknowledges the support from NSF-DMR-1507252 grant, NJ, USA. ; Approved Most recent IF: 7.504  
  Call Number UA @ admin @ c:irua:161320 Serial 5400  
Permanent link to this record
 

 
Author Liu, P.; Wu, T.; Madsen, J.; Schiotz, J.; Wagner, J.B.; Hansen, T.W. pdf  doi
openurl 
  Title Transformations of supported gold nanoparticles observed by in situ electron microscopy Type A1 Journal article
  Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) 11 Issue 24 Pages 11885-11891  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxide supported metal nanoparticles play an important role in heterogeneous catalysis. However, understanding the metal/oxide interface and their evolution under reaction conditions remains challenging. Herein, we investigate the interface between Au nanoparticles and a CeO2 substrate by environmental transmission electron microscopy with atomic resolution. We find that the Au nanoparticles have two preferential epitaxial relationships with the substrate, i.e. Type I (111)[-110]CeO2//(111)[-110]Au and Type II (111)[-110]CeO2//(111)[1-10]Au orientation relationships, where Type I is preferred. In situ observations in the presence of O-2 show that the gas can stimulate the supported Au nanoparticles to transform between these two orientations even at room temperature. Moreover, when increasing the temperature to 973 K, the transformation of an Au nanoparticle between the two orientation states and a non-crystalline state in the presence of O-2 is also observed. DFT calculations of the binding between Au and CeO2 in the two relationships are strongly influenced by the presence of oxygen vacancies. For a given position of a vacancy, there is a significant energy difference between the energy of the two types. However, for some positions, Type I is preferred, and for others, Type II, but the most favourable position of the vacancy for the two types has a very similar energy. This is consistent with the observation of both types of adhesion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472559800049 Publication Date 2019-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:161313 Serial 5402  
Permanent link to this record
 

 
Author Van Loenhout, J.; Flieswasser, T.; Freire Boullosa, L.; De Waele, J.; Van Audenaerde, J.; Marcq, E.; Jacobs, J.; Lin, A.; Lion, E.; Dewitte, H.; Peeters, M.; Dewilde, S.; Lardon, F.; Bogaerts, A.; Deben, C.; Smits, E. url  doi
openurl 
  Title Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells Type A1 Journal article
  Year 2019 Publication Cancers Abbreviated Journal Cancers  
  Volume (up) 11 Issue 10 Pages 1597  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)  
  Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a low response to treatment and a five-year survival rate below 5%. The ineffectiveness of treatment is partly because of an immunosuppressive tumor microenvironment, which comprises tumor-supportive pancreatic stellate cells (PSCs). Therefore, new therapeutic strategies are needed to tackle both the immunosuppressive PSC and pancreatic cancer cells (PCCs). Recently, physical cold atmospheric plasma consisting of reactive oxygen and nitrogen species has emerged as a novel treatment option for cancer. In this study, we investigated the cytotoxicity of plasma-treated phosphate-buffered saline (pPBS) using three PSC lines and four PCC lines and examined the immunogenicity of the induced cell death. We observed a decrease in the viability of PSC and PCC after pPBS treatment, with a higher efficacy in the latter. Two PCC lines expressed and released damage-associated molecular patterns characteristic of the induction of immunogenic cell death (ICD). In addition, pPBS-treated PCC were highly phagocytosed by dendritic cells (DCs), resulting in the maturation of DC. This indicates the high potential of pPBS to trigger ICD. In contrast, pPBS induced no ICD in PSC. In general, pPBS treatment of PCCs and PSCs created a more immunostimulatory secretion profile (higher TNF-α and IFN-γ, lower TGF-β) in coculture with DC. Altogether, these data show that plasma treatment via pPBS has the potential to induce ICD in PCCs and to reduce the immunosuppressive tumor microenvironment created by PSCs. Therefore, these data provide a strong experimental basis for further in vivo validation, which might potentially open the way for more successful combination strategies with immunotherapy for PDAC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000498826000194 Publication Date 2019-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 6 Open Access  
  Notes Universiteit Antwerpen, NA ; Fonds Wetenschappelijk Onderzoek, 11E7719N 1121016N 1S32316N 12S9218N 12E3916N ; Agentschap Innoveren en Ondernemen, 141433 ; Kom op tegen Kanker, NA ; Stichting Tegen Kanker, STK2014-155 ; The authors express their gratitude to Christophe Hermans, Céline Merlin, Hilde Lambrechts, and Hans de Reu for technical assistance; and to VITO for the use of the MSD reader (Mol, Belgium). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:163328 Serial 5436  
Permanent link to this record
 

 
Author González-Rubio, G.; Milagres de Oliveira, T.; Albrecht, W.; Díaz-Núñez, P.; Castro-Palacio, J.C.; Prada, A.; González, R.I.; Scarabelli, L.; Bañares, L.; Rivera, A.; Liz-Marzán, L.M.; Peña-Rodríguez, O.; Bals, S.; Guerrero-Martínez, A. pdf  url
doi  openurl
  Title Formation of Hollow Gold Nanocrystals by Nanosecond Laser Irradiation Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume (up) 11 Issue 11 Pages 670-677  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The irradiation of spherical gold nanoparticles (AuNPs) with nanosecond laser pulses induces shape transformations yielding nanocrystals with an inner cavity. The concentration of the stabilizing surfactant, the use of moderate pulse fluences, and the size of the irradiated AuNPs determine the efficiency of the process and the nature of the void. Hollow nanocrystals are obtained when molecules from the surrounding medium (e.g., water and organic matter derived from the surfactant) are trapped during laser pulse irradiation. These experimental observations suggest the existence of a subtle balance between the heating and cooling processes experienced by the nanocrystals, which induce their expansion and subsequent recrystallization keeping exogenous matter inside. The described approach provides valuable insight into the mechanism of interaction of pulsed nanosecond laser with AuNPs, along with interesting prospects for the development of hollow plasmonic nanoparticles with potential applications related to gas and liquid storage at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000512223400012 Publication Date 2020-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited 15 Open Access OpenAccess  
  Notes This work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grants RTI2018-095844-B-I00, PGC2018-096444-B-I00, ENE2015-70300-C3-3, and MAT2017-86659-R), the EUROfusion Consortium (Grant ENR-IFE19.CCFE-01) and the Madrid Regional Government (Grants P2018/NMT-4389 and P2018/EMT-4437). This project has received funding from the European Commission (grant 731019, EUSMI & grant 823717, ESTEEM3). The publication is based also upon work from COST Action TUMIEE (CA17126). The facilities provided by the Center for Ultrafast Lasers at Complutense University of Madrid are gratefully acknowledged. The authors also acknowledge the computer resources and technical assistance provided by the Centro de Supercomputacion y Visualizacion de Madrid (CeSViMa). L.M.L.-M. acknowledges the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant MDM-2017-0720). This project has also received funding from the European Research Council (ERC Consolidator Grant 815128, REALNANO). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (Grant 797153, SOPMEN). A.P. and R.I.G. acknowledge the support of FONDECYT under Grants 3190123 and 11180557 and Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB-0807. This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number EMAT @ emat @c:irua:166504 Serial 6334  
Permanent link to this record
 

 
Author Quan, L.N.; Ma, D.; Zhao, Y.; Voznyy, O.; Yuan, H.; Bladt, E.; Pan, J.; de Arquer, F.P.G.; Sabatini, R.; Piontkowski, Z.; Emwas, A.-H.; Todorovic, P.; Quintero-Bermudez, R.; Walters, G.; Fan, J.Z.; Liu, M.; Tan, H.; Saidaminov, M., I; Gao, L.; Li, Y.; Anjum, D.H.; Wei, N.; Tang, J.; McCamant, D.W.; Roeffaers, M.B.J.; Bals, S.; Hofkens, J.; Bakr, O.M.; Lu, Z.-H.; Sargent, E.H. url  doi
openurl 
  Title Edge stabilization in reduced-dimensional perovskites Type A1 Journal article
  Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume (up) 11 Issue 1 Pages 170  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Reduced-dimensional perovskites are attractive light-emitting materials due to their efficient luminescence, color purity, tunable bandgap, and structural diversity. A major limitation in perovskite light-emitting diodes is their limited operational stability. Here we demonstrate that rapid photodegradation arises from edge-initiated photooxidation, wherein oxidative attack is powered by photogenerated and electrically-injected carriers that diffuse to the nanoplatelet edges and produce superoxide. We report an edge-stabilization strategy wherein phosphine oxides passivate unsaturated lead sites during perovskite crystallization. With this approach, we synthesize reduced-dimensional perovskites that exhibit 97 +/- 3% photoluminescence quantum yields and stabilities that exceed 300 h upon continuous illumination in an air ambient. We achieve green-emitting devices with a peak external quantum efficiency (EQE) of 14% at 1000 cd m(-2); their maximum luminance is 4.5 x 10(4) cd m(-2) (corresponding to an EQE of 5%); and, at 4000 cd m(-2), they achieve an operational half-lifetime of 3.5 h.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000551458200001 Publication Date 2020-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 147 Open Access OpenAccess  
  Notes ; This publication is based in part on work supported by an award (KUS-11-009-21) from the King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, by the Ontario Research Fund (ORF), by the Natural Sciences and Engineering Research Council (NSERC) of Canada, and by the US Department of Navy, Office of Naval Research (Grant Award No. N00014-17-12524). H.Y. acknowledges the Research Foundation-Flanders (FWO Vlaanderen) for a postdoctoral fellowship. E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #815128-REALNANO). M.B.J.R. and J.H. acknowledge the Research Foundation-Flanders (FWO, Grants G.0962.13, G.0B39.15, AKUL/11/14 and G0H6316N), KU Leuven Research Fund (C14/15/053) and the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ ERC Grant Agreement No. [307523], ERC-Stg LIGHT to M.B.J.R. DFT calculations were performed on the IBM BlueGene Q supercomputer with support from the Southern Ontario Smart Computing Innovation Platform (SOSCIP). M.I.S. acknowledges the Banting Postdoctoral Fellowship program from the Natural Sciences and Engineering Research Council of Canada (NSERC). H.T. acknowledges the Netherlands Organisation for Scientific Research (NWO) for a Rubicon grant (680-50-1511). ; sygma Approved Most recent IF: 16.6; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:171327 Serial 6496  
Permanent link to this record
 

 
Author Choisez, L.; Ding, L.; Marteleur, M.; Idrissi, H.; Pardoen, T.; Jacques, P.J. url  doi
openurl 
  Title High temperature rise dominated cracking mechanisms in ultra-ductile and tough titanium alloy Type A1 Journal article
  Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume (up) 11 Issue 1 Pages 2110  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Extensive use of titanium alloys is partly hindered by a lack of ductility, strain hardening, and fracture toughness. Recently, several beta -metastable titanium alloys were designed to simultaneously activate both transformation-induced plasticity and twinning-induced plasticity effects, resulting in significant improvements to their strain hardening capacity and resistance to plastic localization. Here, we report an ultra-large fracture resistance in a Ti-12Mo alloy (wt.%), that results from a high resistance to damage nucleation, with an unexpected fracture phenomenology under quasi-static loading. Necking develops at a large uniform true strain of 0.3 while fracture initiates at a true fracture strain of 1.0 by intense through-thickness shear within a thin localized shear band. Transmission electron microscopy reveals that dynamic recrystallization occurs in this band, while local partial melting is observed on the fracture surface. Shear band temperatures of 1250-2450 degrees C are estimated by the fusible coating method. The reported high ductility combined to the unconventional fracture process opens alternative avenues toward Ti alloys toughening. Specific titanium alloys combine transformation-induced plasticity and twinning-induced plasticity for improved work hardening. Here, the authors show that these alloys also have an ultra-large fracture resistance and an unexpected fracture mechanism via dynamic recrystallization and local melting in a deformation band.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558816700010 Publication Date 2020-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 1 Open Access OpenAccess  
  Notes ; The Fonds National de Recherche Scientifique FNRS is gratefully acknowledged for the grant no. T.0127.19, the research grant of L.C. and the research mandate of H.I. The authors are thankful to J. Adrien and E. Maire for their help with the X-ray tomography analysis, to J.D. Embury for the fruitful discussions and to F. Prima for provisioning the material. ; Approved Most recent IF: 16.6; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:171318 Serial 6536  
Permanent link to this record
 

 
Author Bourgeois, L.; Zhang, Y.; Zhang, Z.; Chen, Y.; Medhekar, N., V url  doi
openurl 
  Title Transforming solid-state precipitates via excess vacancies Type A1 Journal article
  Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume (up) 11 Issue 1 Pages 1248  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Many phase transformations associated with solid-state precipitation look structurally simple, yet, inexplicably, take place with great difficulty. A classic case of difficult phase transformations is the nucleation of strengthening precipitates in high-strength lightweight aluminium alloys. Here, using a combination of atomic-scale imaging, simulations and classical nucleation theory calculations, we investigate the nucleation of the strengthening phase theta' onto a template structure in the aluminium-copper alloy system. We show that this transformation can be promoted in samples exhibiting at least one nanoscale dimension, with extremely high nucleation rates for the strengthening phase as well as for an unexpected phase. This template-directed solid-state nucleation pathway is enabled by the large influx of surface vacancies that results from heating a nanoscale solid. Template-directed nucleation is replicated in a bulk alloy as well as under electron irradiation, implying that this difficult transformation can be facilitated under the general condition of sustained excess vacancy concentrations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000549162600025 Publication Date 2020-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 5 Open Access OpenAccess  
  Notes ; The authors are indebted to Matthew Weyland for his expert advice on aberrationcorrected scanning transmission electron microscopy. L.B. would like to acknowledge initial discussions with B.C. Muddle and J.F. Nie many years ago regarding the possible thermodynamic role of vacancies in solid-state precipitation. The authors acknowledge funding from the Australian Research Council (LE0454166, LE110100223), the Victorian State Government and Monash University for instrumentation, and use of the facilities within the Monash Centre for Electron Microscopy. The authors thank Flame Burgmann, Dougal McCulloch and Edwin Mayes for access to and assistance at the Microscopy and Microanalysis Facility at RMIT University. L.B. and N.M. acknowledge the financial support of the Australian Research Council (DP150100558). Authors also gratefully acknowledge the computational support from MonARCH, MASSIVE and the National Computing Infrastructure and Pawsey Supercomputing Centre. ZZ and YZ are thankful to Monash University for a Monash Graduate Scholarship, a Monash International Postgraduate Research Scholarship. Z.Z. is grateful for a Monash Centre for Electron Microscopy Postgraduate Scholarship. The authors are grateful to Anita Hill for advice. ; Approved Most recent IF: 16.6; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:170797 Serial 6635  
Permanent link to this record
 

 
Author Leemans, J.; Singh, S.; Li, C.; Ten Brinck, S.; Bals, S.; Infante, I.; Moreels, I.; Hens, Z. url  doi
openurl 
  Title Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplatelets Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume (up) 11 Issue 9 Pages 3339-3344  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We address the relation between surface chemistry and optoelectronic properties in semiconductor nanocrystals using core/crown CdSe/CdS nanoplatelets passivated by cadmium oleate (Cd(Ol)2) as model systems. We show that addition of butylamine to a nanoplatelet (NPL) dispersion maximally displaces ∼40% of the original Cd(Ol)2 capping. On the basis of density functional theory simulations, we argue that this behavior reflects the preferential displacement of Cd(Ol)2 from (near)-edge surface sites. Opposite from CdSe core NPLs, core/crown NPL dispersions can retain 45% of their initial photoluminescence efficiency after ligand displacement, while radiative exciton recombination keeps dominating the luminescent decay. Using electron microscopy observations, we assign this robust photoluminescence to NPLs with a complete CdS crown, which prevents charge carrier trapping in the near-edge surface sites created by ligand displacement. We conclude that Z-type ligands such as cadmium carboxylates can provide full electronic passivation of (100) facets yet are prone to displacement from (near)-edge surface sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535177500024 Publication Date 2020-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited 24 Open Access OpenAccess  
  Notes Universiteit Gent, GOA 01G01019 ; Fonds Wetenschappelijk Onderzoek, 17006602 FWO17/PDO/184 ; H2020 European Research Council, 714876 Phocona 815128 Realnano ; SIM-Flanders, SBO-QDOCCO ; Z.H. and S.B. acknowledge support by SIM-Flanders (SBO-QDOCCO). Z.H. acknowledges support by FWO-Vlaanderen (research project 17006602). Z.H. and I.M. acknowledge support by Ghent University (GOA n◦ 01G01019). J.L. acknowledges FWO-vlaanderen for a fellowship (SB PhD fellow at FWO). Sh.S acknowledges FWO postdoctoral funding (FWO17/PDO/184). This project has further received funding from the European Research Counsil under the European Union’s Horizon 2020 research and innovation programme (ERC Consolidator grant no. 815128 REALNANO and starting grant no. 714876 PHOCONA).; sygma Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number EMAT @ emat @c:irua:173994 Serial 6657  
Permanent link to this record
 

 
Author Kashiwar, A.; Hahn, H.; Kubel, C. url  doi
openurl 
  Title In situ TEM observation of cooperative grain rotations and the Bauschinger effect in nanocrystalline palladium Type A1 Journal article
  Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume (up) 11 Issue 2 Pages 432  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report on cooperative grain rotation accompanied by a strong Bauschinger effect in nanocrystalline (nc) palladium thin film. A thin film of nc Pd was subjected to cyclic loading-unloading using in situ TEM nanomechanics, and the evolving microstructural characteristics were investigated with ADF-STEM imaging and quantitative ACOM-STEM analysis. ADF-STEM imaging revealed a partially reversible rotation of nanosized grains with a strong out-of-plane component during cyclic loading-unloading experiments. Sets of neighboring grains were shown to rotate cooperatively, one after the other, with increasing/decreasing strain. ACOM-STEM in conjunction with these experiments provided information on the crystallographic orientation of the rotating grains at different strain levels. Local Nye tensor analysis showed significantly different geometrically necessary dislocation (GND) density evolution within grains in close proximity, confirming a locally heterogeneous deformation response. The GND density analysis revealed the formation of dislocation pile-ups at grain boundaries (GBs), indicating the generation of back stresses during unloading. A statistical analysis of the orientation changes of individual grains showed the rotation of most grains without global texture development, which fits to both dislocation- and GB sliding-based mechanisms. Overall, our quantitative in situ experimental approach explores the roles of these different deformation mechanisms operating in nanocrystalline metals during cyclic loading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000622951500001 Publication Date 2021-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.553  
  Call Number UA @ admin @ c:irua:176770 Serial 6729  
Permanent link to this record
 

 
Author Van Cauwenbergh, P.; Samaee, V.; Thijs, L.; Nejezchlebova, J.; Sedlak, P.; Ivekovic, A.; Schryvers, D.; Van Hooreweder, B.; Vanmeensel, K. url  doi
openurl 
  Title Unravelling the multi-scale structure-property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg Type A1 Journal article
  Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume (up) 11 Issue 1 Pages 6423  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Tailoring heat treatments for Laser Powder Bed Fusion (LPBF) processed materials is critical to ensure superior and repeatable material properties for high-end applications. This tailoring requires in-depth understanding of the LPBF-processed material. Therefore, the current study aims at unravelling the threefold interrelationship between the process (LPBF and heat treatment), the microstructure at different scales (macro-, meso-, micro-, and nano-scale), and the macroscopic material properties of AlSi10Mg. A similar solidification trajectory applies at different length scales when comparing the solidification of AlSi10Mg, ranging from mould-casting to rapid solidification (LPBF). The similarity in solidification trajectories triggers the reason why the Brody-Flemings cellular microsegregation solidification model could predict the cellular morphology of the LPBF as-printed microstructure. Where rapid solidification occurs at a much finer scale, the LPBF microstructure exhibits a significant grain refinement and a high degree of silicon (Si) supersaturation. This study has identified the grain refinement and Si supersaturation as critical assets of the as-printed microstructure, playing a vital role in achieving superior mechanical and thermal properties during heat treatment. Next, an electrical conductivity model could accurately predict the Si solute concentration in LPBF-processed and heat-treated AlSi10Mg and allows understanding the microstructural evolution during heat treatment. The LPBF-processed and heat-treated AlSi10Mg conditions (as-built (AB), direct-aged (DA), stress-relieved (SR), preheated (PH)) show an interesting range of superior mechanical properties (tensile strength: 300-450 MPa, elongation: 4-13%) compared to the mould-cast T6 reference condition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632047000003 Publication Date 2021-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.259  
  Call Number UA @ admin @ c:irua:177634 Serial 6791  
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Coincidence Detection of EELS and EDX Spectral Events in the Electron Microscope Type A1 Journal article
  Year 2021 Publication Applied Sciences-Basel Abbreviated Journal Appl Sci-Basel  
  Volume (up) 11 Issue 19 Pages 9058  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Recent advances in the development of electron and X-ray detectors have opened up the possibility to detect single events from which its time of arrival can be determined with nanosecond resolution. This allows observing time correlations between electrons and X-rays in the transmission electron microscope. In this work, a novel setup is described which measures individual events using a silicon drift detector and digital pulse processor for the X-rays and a Timepix3 detector for the electrons. This setup enables recording time correlation between both event streams while at the same time preserving the complete conventional electron energy loss (EELS) and energy dispersive X-ray (EDX) signal. We show that the added coincidence information improves the sensitivity for detecting trace elements in a matrix as compared to conventional EELS and EDX. Furthermore, the method allows the determination of the collection efficiencies without the use of a reference sample and can subtract the background signal for EELS and EDX without any prior knowledge of the background shape and without pre-edge fitting region. We discuss limitations in time resolution arising due to specificities of the silicon drift detector and discuss ways to further improve this aspect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000710160300001 Publication Date 2021-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.679 Times cited 9 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G042920 ; Horizon 2020 Framework Programme, 101017720 ; Helmholtz-Fonds, VH-NG-1317 ; Approved Most recent IF: 1.679  
  Call Number EMAT @ emat @c:irua:183336 Serial 6821  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: