|   | 
Details
   web
Records
Author Sun, C.; Liao, X.; Xia, F.; Zhao, Y.; Zhang, L.; Mu, S.; Shi, S.; Li, Y.; Peng, H.; Van Tendeloo, G.; Zhao, K.; Wu, J.
Title High-voltage cycling induced thermal vulnerability in LiCoO₂ cathode : cation loss and oxygen release driven by oxygen vacancy migration Type A1 Journal article
Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano
Volume (down) 14 Issue 5 Pages 6181-6190
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The release of the lattice oxygen due to the thermal degradation of layered lithium transition metal oxides is one of the major safety concerns in Li-ion batteries. The oxygen release is generally attributed to the phase transitions from the layered structure to spinel and rocksalt structures that contain less lattice oxygen. Here, a different degradation pathway in LiCoO2 is found, through oxygen vacancy facilitated cation migration and reduction. This process leaves undercoordinated oxygen that gives rise to oxygen release while the structure integrity of the defect-free region is mostly preserved. This oxygen release mechanism can be called surface degradation due to the kinetic control of the cation migration but has a slow surface to bulk propagation with continuous loss of the surface cation ions. It is also strongly correlated with the high-voltage cycling defects that end up with a significant local oxygen release at low temperatures. This work unveils the thermal vulnerability of high-voltage Li-ion batteries and the critical role of the surface fraction as a general mitigating approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000537682300101 Publication Date 2020-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited 8 Open Access Not_Open_Access
Notes ; C.S., X.L., and F.X. contributed equally to this work. This work was supported by the National Natural Science Foundation of China (21905169). The S/TEM work was performed at the Nanostructure Research Center (NRC), which is supported by the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX), the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and the State Key Laboratory of Silicate Materials for Architectures (all of the laboratories are at Wuhan University of Technology). ; Approved Most recent IF: 17.1; 2020 IF: 13.942
Call Number UA @ admin @ c:irua:170246 Serial 6537
Permanent link to this record
 

 
Author Griffin, E.; Mogg, L.; Hao, G.-P.; Kalon, G.; Bacaksiz, C.; Lopez-Polin, G.; Zhou, T.Y.; Guarochico, V.; Cai, J.; Neumann, C.; Winter, A.; Mohn, M.; Lee, J.H.; Lin, J.; Kaiser, U.; Grigorieva, I., V; Suenaga, K.; Ozyilmaz, B.; Cheng, H.-M.; Ren, W.; Turchanin, A.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M.
Title Proton and Li-Ion permeation through graphene with eight-atom-ring defects Type A1 Journal article
Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano
Volume (down) 14 Issue 6 Pages 7280-7286
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Defect-free graphene is impermeable to gases and liquids but highly permeable to thermal protons. Atomic-scale defects such as vacancies, grain boundaries, and Stone-Wales defects are predicted to enhance graphene's proton permeability and may even allow small ions through, whereas larger species such as gas molecules should remain blocked. These expectations have so far remained untested in experiment. Here, we show that atomically thin carbon films with a high density of atomic-scale defects continue blocking all molecular transport, but their proton permeability becomes similar to 1000 times higher than that of defect-free graphene. Lithium ions can also permeate through such disordered graphene. The enhanced proton and ion permeability is attributed to a high density of eight-carbon-atom rings. The latter pose approximately twice lower energy barriers for incoming protons compared to that of the six-atom rings of graphene and a relatively low barrier of similar to 0.6 eV for Li ions. Our findings suggest that disordered graphene could be of interest as membranes and protective barriers in various Li-ion and hydrogen technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000543744100086 Publication Date 2020-05-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited 34 Open Access
Notes ; The work was supported by the Lloyd's Register Foundation, EPSRC-EP/N010345/1, the European Research Council, the Graphene Flagship, the Deutsche Forschungsgemeinschaft project TRR 234 “CataLight” (Project B7, Grant No. 364549901), and the research infrastructure Grant No. INST 275/25 7-1 FUGG. E.G. and L.M. acknowledge the EPSRC NowNANO programme for funding. ; Approved Most recent IF: 17.1; 2020 IF: 13.942
Call Number UA @ admin @ c:irua:170708 Serial 6586
Permanent link to this record
 

 
Author Frolov, A.S.; Sanchez-Barriga, J.; Callaert, C.; Hadermann, J.; Fedorov, A., V; Usachov, D.Y.; Chaika, A.N.; Walls, B.C.; Zhussupbekov, K.; Shvets, I., V.; Muntwiler, M.; Amati, M.; Gregoratti, L.; Varykhalov, A.Y.; Rader, O.; Yashina, L., V.
Title Atomic and electronic structure of a multidomain GeTe crystal Type A1 Journal article
Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano
Volume (down) 14 Issue 12 Pages 16576-16589
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Renewed interest in the ferroelectric semi-conductor germanium telluride was recently triggered by the direct observation of a giant Rashba effect and a 30-year-old dream about a functional spin field-effect transistor. In this respect, all-electrical control of the spin texture in this material in combination with ferroelectric properties at the nanoscale would create advanced functionalities in spintronics and data information processing. Here, we investigate the atomic and electronic properties of GeTe bulk single crystals and their (111) surfaces. We succeeded in growing crystals possessing solely inversion domains of similar to 10 nm thickness parallel to each other. Using HAADF-TEM we observe two types of domain boundaries, one of them being similar in structure to the van der Waals gap in layered materials. This structure is responsible for the formation of surface domains with preferential Te-termination (similar to 68%) as we determined using photoelectron diffraction and XPS. The lateral dimensions of the surface domains are in the range of similar to 10-100 nm, and both Ge- and Te-terminations reveal no reconstruction. Using spin-ARPES we establish an intrinsic quantitative relationship between the spin polarization of pure bulk states and the relative contribution of different terminations, a result that is consistent with a reversal of the spin texture of the bulk Rashba bands for opposite configurations of the ferroelectric polarization within individual nanodomains. Our findings are important for potential applications of ferroelectric Rashba semiconductors in nonvolatile spintronic devices with advanced memory and computing capabilities at the nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000603308800022 Publication Date 2020-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 17.1; 2020 IF: 13.942
Call Number UA @ admin @ c:irua:175027 Serial 6716
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L.
Title From the Birkeland–Eyde process towards energy-efficient plasma-based NOXsynthesis: a techno-economic analysis Type A1 Journal article
Year 2021 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci
Volume (down) 14 Issue 5 Pages 2520-2534
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-based NO<sub>X</sub>synthesis<italic>via</italic>the Birkeland–Eyde process was one of the first industrial nitrogen fixation methods. However, this technology never played a dominant role for nitrogen fixation, due to the invention of the Haber–Bosch process. Recently, nitrogen fixation by plasma technology has gained significant interest again, due to the emergence of low cost, renewable electricity. We first present a short historical background of plasma-based NO<sub>X</sub>synthesis. Thereafter, we discuss the reported performance for plasma-based NO<sub>X</sub>synthesis in various types of plasma reactors, along with the current understanding regarding the reaction mechanisms in the plasma phase, as well as on a catalytic surface. Finally, we benchmark the plasma-based NO<sub>X</sub>synthesis process with the electrolysis-based Haber–Bosch process combined with the Ostwald process, in terms of the investment cost and energy consumption. This analysis shows that the energy consumption for NO<sub>X</sub>synthesis with plasma technology is almost competitive with the commercial process with its current best value of 2.4 MJ mol N<sup>−1</sup>, which is required to decrease further to about 0.7 MJ mol N<sup>−1</sup>in order to become fully competitive. This may be accomplished through further plasma reactor optimization and effective plasma–catalyst coupling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000639255800001 Publication Date 2021-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.518 Times cited Open Access OpenAccess
Notes H2020 European Research Council; Horizon 2020, 810182 ; Ministerie van Economische Zaken en Klimaat; This research was supported by the TKI-Energie from Toeslag voor Topconsortia voor Kennis en Innovatie (TKI) from the Ministry of Economic Affairs and Climate Policy, the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). Approved Most recent IF: 29.518
Call Number PLASMANT @ plasmant @c:irua:178173 Serial 6763
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
Title Ab-initio study of magnetically intercalated platinum diselenide : the impact of platinum vacancies Type A1 Journal article
Year 2021 Publication Materials Abbreviated Journal Materials
Volume (down) 14 Issue 15 Pages 4167
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We study the magnetic properties of platinum diselenide (PtSe2) intercalated with Ti, V, Cr, and Mn, using first-principle density functional theory (DFT) calculations and Monte Carlo (MC) simulations. First, we present the equilibrium position of intercalants in PtSe2 obtained from the DFT calculations. Next, we present the magnetic groundstates for each of the intercalants in PtSe2 along with their critical temperature. We show that Ti intercalants result in an in-plane AFM and out-of-plane FM groundstate, whereas Mn intercalant results in in-plane FM and out-of-plane AFM. V intercalants result in an FM groundstate both in the in-plane and the out-of-plane direction, whereas Cr results in an AFM groundstate both in the in-plane and the out-of-plane direction. We find a critical temperature of <0.01 K, 111 K, 133 K, and 68 K for Ti, V, Cr, and Mn intercalants at a 7.5% intercalation, respectively. In the presence of Pt vacancies, we obtain critical temperatures of 63 K, 32 K, 221 K, and 45 K for Ti, V, Cr, and Mn-intercalated PtSe2, respectively. We show that Pt vacancies can change the magnetic groundstate as well as the critical temperature of intercalated PtSe2, suggesting that the magnetic groundstate in intercalated PtSe2 can be controlled via defect engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000682047700001 Publication Date 2021-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.654 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.654
Call Number UA @ admin @ c:irua:180540 Serial 6966
Permanent link to this record
 

 
Author Wang, Y.; Sztranyovszky, Z.; Zilli, A.; Albrecht, W.; Bals, S.; Borri, P.; Langbein, W.
Title Quantitatively linking morphology and optical response of individual silver nanohedra Type A1 Journal article
Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale
Volume (down) 14 Issue 30 Pages 11028-11037
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The optical response of metal nanoparticles is governed by plasmonic resonances, which are dictated by the particle morphology. A thorough understanding of the link between morphology and optical response requires quantitatively measuring optical and structural properties of the same particle. Here we present such a study, correlating electron tomography and optical micro-spectroscopy. The optical measurements determine the scattering and absorption cross-section spectra in absolute units, and electron tomography determines the 3D morphology. Numerical simulations of the spectra for the individual particle geometry, and the specific optical set-up used, allow for a quantitative comparison including the cross-section magnitude. Silver nanoparticles produced by photochemically driven colloidal synthesis, including decahedra, tetrahedra and bi-tetrahedra are investigated. A mismatch of measured and simulated spectra is found in some cases when assuming pure silver particles, which is explained by the presence of a few atomic layers of tarnish on the surface, not evident in electron tomography. The presented method tightens the link between particle morphology and optical response, supporting the predictive design of plasmonic nanomaterials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000828704000001 Publication Date 2022-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 1 Open Access OpenAccess
Notes Z.S. acknowledges the UK Engineering and Physical Sciences Research Council (EPSRC) for his Ph.D. studentship award (grant EP/R513003/1). Y.W. acknowledges Iwan Moreels (University of Ghent) for training in nanoparticle synthesis. Y.W. acknowledges the Biotechnology and Biological Sciences Research Council (BBSRC) for his Ph.D. studentship award (grant BB/L015889/1). This work was supported by the UK EPSRC (grants EP/I005072/1 and EP/M028313/1), and by the European Commission (EUSMI E191000350). W.A. acknowledges an Individual Fellowship from the Marie Skodowska-Curie actions (MSCA) under the EU's Horizon 2020 program (Grant 797153, SOPMEN). We thank Lukas Payne and Iestyn Pope for contributions to the development of the hardware and software used for the optical measurements. Approved Most recent IF: 6.7
Call Number UA @ admin @ c:irua:189578 Serial 7092
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title Arresting aqueous swelling of layered graphene-oxide membranes with H3O+ and OH- ions Type A1 Journal article
Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume (down) 14 Issue 30 Pages 34946-34954
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling. KEYWORDS: layered graphene-oxide membrane, aqueous stability, H3O+ and OH- ions, external electric field, molecular dynamics
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000835946500001 Publication Date 2022-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 9.5
Call Number UA @ admin @ c:irua:189467 Serial 7127
Permanent link to this record
 

 
Author Bekaert, J.; Sevik, C.; Milošević, M.V.
Title Enhancing superconductivity in MXenes through hydrogenation Type A1 Journal article
Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale
Volume (down) 14 Issue 27 Pages 9918-9924
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Two-dimensional transition metal carbides and nitrides (MXenes) are an emerging class of atomically-thin superconductors, whose characteristics are highly prone to tailoring by surface functionalization. Here we explore the use of hydrogen adatoms to enhance phonon-mediated superconductivity in MXenes, based on first-principles calculations combined with Eliashberg theory. We first demonstrate the stability of three different structural models of hydrogenated Mo- and W-based MXenes. Particularly high critical temperatures of over 30 K are obtained for hydrogenated Mo2N and W2N. Several mechanisms responsible for the enhanced electron-phonon coupling are uncovered, namely (i) hydrogen-induced changes in the phonon spectrum of the host MXene, (ii) emerging hydrogen-based phonon modes, and (iii) charge transfer from hydrogen to the MXene layer, boosting the density of states at the Fermi level. Finally, we demonstrate that hydrogen adatoms are moreover able to induce superconductivity in MXenes that are not superconducting in pristine form, such as Nb2C.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000820350600001 Publication Date 2022-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 6.7
Call Number UA @ admin @ c:irua:189580 Serial 7155
Permanent link to this record
 

 
Author Li, Y.; Quinn, B.K.; Gielis, J.; Li, Y.; Shi, P.
Title Evidence that supertriangles exist in nature from the vertical projections of Koelreuteria paniculata fruit Type A1 Journal article
Year 2022 Publication Symmetry Abbreviated Journal Symmetry-Basel
Volume (down) 14 Issue 1 Pages 23
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Many natural radial symmetrical shapes (e.g., sea stars) follow the Gielis equation (GE) or its twin equation (TGE). A supertriangle (three triangles arranged around a central polygon) represents such a shape, but no study has tested whether natural shapes can be represented as/are supertriangles or whether the GE or TGE can describe their shape. We collected 100 pieces of Koelreuteria paniculata fruit, which have a supertriangular shape, extracted the boundary coordinates for their vertical projections, and then fitted them with the GE and TGE. The adjusted root mean square errors (RMSEadj) of the two equations were always less than 0.08, and >70% were less than 0.05. For 57/100 fruit projections, the GE had a lower RMSEadj than the TGE, although overall differences in the goodness of fit were non-significant. However, the TGE produces more symmetrical shapes than the GE as the two parameters controlling the extent of symmetry in it are approximately equal. This work demonstrates that natural supertriangles exist, validates the use of the GE and TGE to model their shapes, and suggests that different complex radially symmetrical shapes can be generated by the same equation, implying that different types of biological symmetry may result from the same biophysical mechanisms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000746030100001 Publication Date 2021-12-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7
Call Number UA @ admin @ c:irua:186453 Serial 7158
Permanent link to this record
 

 
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M.
Title Indentation of graphene nano-bubbles Type A1 Journal article
Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale
Volume (down) 14 Issue 15 Pages 5876-5883
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations are used to investigate the effect of an AFM tip when indenting graphene nano bubbles filled by a noble gas (i.e. He, Ne and Ar) up to the breaking point. The failure points resemble those of viral shells as described by the Foppl-von Karman (FvK) dimensionless number defined in the context of elasticity theory of thin shells. At room temperature, He gas inside the bubbles is found to be in the liquid state while Ne and Ar atoms are in the solid state although the pressure inside the nano bubble is below the melting pressure of the bulk. The trapped gases are under higher hydrostatic pressure at low temperatures than at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000776763000001 Publication Date 2022-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.7
Call Number UA @ admin @ c:irua:187924 Serial 7171
Permanent link to this record
 

 
Author Frolov, A.S.; Callaert, C.; Batuk, M.; Hadermann, J.; Volykhov, A.A.; Sirotina, A.P.; Amati, M.; Gregoratti, L.; Yashina, L.V.
Title Nanoscale phase separation in the oxide layer at GeTe (111) surfaces Type A1 Journal article
Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale
Volume (down) 14 Issue 35 Pages 12918-12927
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract As a semiconductor ferroelectric, GeTe has become a focus of renewed attention due to the recent discovery of giant Rashba splitting. It already has a wide range of applications, from thermoelectricity to data storage. Its stability in ambient air, as well as the structure and properties of an oxide layer, define the processing media for device production and operation. Here, we studied a reaction between the GeTe (111) surface and molecular oxygen for crystals having solely inversion domains. We evaluated the reaction kinetics both ex situ and in situ using NAP XPS. The structure of the oxide layer is extensively discussed, where, according to HAADF-STEM and STEM-EDX, nanoscale phase separation of GeO2 and Te is observed, which is unusual for semiconductors. We believe that such behaviour is closely related to the ferroelectric properties and the domain structure of GeTe.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000847743300001 Publication Date 2022-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.7
Call Number UA @ admin @ c:irua:190665 Serial 7181
Permanent link to this record
 

 
Author Abedi, S.; Sisakht, E.T.; Hashemifar, S.J.; Cherati, N.G.; Sarsari, I.A.; Peeters, F.M.
Title Prediction of novel two-dimensional Dirac nodal line semimetals in Al₂B₂ and AlB₄ monolayers Type A1 Journal article
Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale
Volume (down) 14 Issue 31 Pages 11270-11283
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Topological semimetal phases in two-dimensional (2D) materials have gained widespread interest due to their potential applications in novel nanoscale devices. Despite the growing number of studies on 2D topological nodal lines (NLs), candidates with significant topological features that combine nontrivial topological semimetal phase with superconductivity are still rare. Herein, we predict Al2B2 and AlB4 monolayers as new 2D nonmagnetic Dirac nodal line semimetals with several novel features. Our extensive electronic structure calculations combined with analytical studies reveal that, in addition to multiple Dirac points, these 2D configurations host various highly dispersed NLs around the Fermi level, all of which are semimetal states protected by time-reversal and in-plane mirror symmetries. The most intriguing NL in Al2B2 encloses the K point and crosses the Fermi level, showing a considerable dispersion and thus providing a fresh playground to explore exotic properties in dispersive Dirac nodal lines. More strikingly, for the AlB4 monolayer, we provide the first evidence for a set of 2D nonmagnetic open type-II NLs coexisting with superconductivity at a rather high transition temperature. The coexistence of superconductivity and nontrivial band topology in AlB4 not only makes it a promising material to exhibit novel topological superconducting phases, but also a rather large energy dispersion of type-II nodal lines in this configuration may offer a platform for the realization of novel topological features in the 2D limit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000831003900001 Publication Date 2022-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.7
Call Number UA @ admin @ c:irua:189505 Serial 7196
Permanent link to this record
 

 
Author Cunha, D.M.; Gauquelin, N.; Xia, R.; Verbeeck, J.; Huijben, M.
Title Self-assembled epitaxial cathode-electrolyte nanocomposites for 3D microbatteries Type A1 Journal article
Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume (down) 14 Issue 37 Pages 42208-42214
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The downscaling of electronic devices requires rechargeable microbatteries with enhanced energy and power densities. Here, we evaluate self-assembled vertically aligned nano-composite (VAN) thin films as a platform to create high-performance three-dimensional (3D) microelectrodes. This study focuses on controlling the VAN formation to enable interface engineering between the LiMn2O4 cathode and the (Li,La)TiO3 solid electrolyte. Electrochemical analysis in a half cell against lithium metal showed the absence of sharp redox peaks due to the confinement in the electrode pillars at the nanoscale. The (100)-oriented VAN thin films showed better rate capability and stability during extensive cycling due to the better alignment to the Li-diffusion channels. However, an enhanced pseudocapacitive contribution was observed for the increased total surface area within the (110)-oriented VAN thin films. These results demonstrate for the first time the electrochemical behavior of cathode-electrolyte VANs for lithium-ion 3D microbatteries while pointing out the importance of control over the vertical interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000852647100001 Publication Date 2022-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 4 Open Access OpenAccess
Notes This research was carried out with the support from the Netherlands Organization for Scientific Research (NWO) under VIDI grant no. 13456. Approved Most recent IF: 9.5
Call Number UA @ admin @ c:irua:190619 Serial 7206
Permanent link to this record
 

 
Author Yang, S.; An, H.; Anastasiadou, D.; Xu, W.; Wu, L.; Wang, H.; de Ruiter, J.; Arnouts, S.; Figueiredo, M.C.; Bals, S.; Altantzis, T.; van der Stam, W.; Weckhuysen, B.M.
Title Waste-derived copper-lead electrocatalysts for CO₂ reduction Type A1 Journal article
Year 2022 Publication ChemCatChem Abbreviated Journal Chemcatchem
Volume (down) 14 Issue 18 Pages e202200754-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract It remains a real challenge to control the selectivity of the electrocatalytic CO2 reduction (eCO(2)R) reaction to valuable chemicals and fuels. Most of the electrocatalysts are made of non-renewable metal resources, which hampers their large-scale implementation. Here, we report the preparation of bimetallic copper-lead (CuPb) electrocatalysts from industrial metallurgical waste. The metal ions were extracted from the metallurgical waste through simple chemical treatment with ammonium chloride, and CuxPby electrocatalysts with tunable compositions were fabricated through electrodeposition at varying cathodic potentials. X-ray spectroscopy techniques showed that the pristine electrocatalysts consist of Cu-0, Cu1+ and Pb2+ domains, and no evidence for alloy formation was found. We found a volcano-shape relationship between eCO(2)R selectivity toward two electron products, such as CO, and the elemental ratio of Cu and Pb. A maximum Faradaic efficiency towards CO was found for Cu9.00Pb1.00, which was four times higher than that of pure Cu, under the same electrocatalytic conditions. In situ Raman spectroscopy revealed that the optimal amount of Pb effectively improved the reducibility of the pristine Cu1+ and Pb2+ domains to metallic Cu and Pb, which boosted the selectivity towards CO by synergistic effects. This work provides a framework of thinking to design and tune the selectivity of bimetallic electrocatalysts for CO2 reduction through valorization of metallurgical waste.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000853941300001 Publication Date 2022-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.5 Times cited 7 Open Access OpenAccess
Notes S.Y and B.M.W. acknowledge support from the EU Framework Programme for Research and Innovation Horizon 2020 (SOCRATES-721385; project website: http://etn-socrates.eu/). W.v.d.S., M.C.F. and B.M.W. acknowledge support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research'. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). The Beijing Synchrotron Radiation Facility (1W1B, BSRF) is acknowledged for the beamtime. We are grateful to Annelies van der Bok and Bas Salzmann (Condensed Matter and Interfaces, Utrecht University, UU) for the support with the ICP-OES measurements. The authors thank dr. Robin Geitenbeek, Nikos Nikolopoulos, Ioannis Nikolopoulos, Jochem Wijten and Joris Janssens (Inorganic Chemistry and Catalysis, UU) for helpful discussions and technical support. The authors also thank Yuang Piao (Materials Chemistry and Catalysis, UU) for the help in the preparation of the figures of the article. Approved Most recent IF: 4.5
Call Number UA @ admin @ c:irua:190703 Serial 7226
Permanent link to this record
 

 
Author Vlasov, E.; Denisov, N.; Verbeeck, J.
Title Low-cost electron detector for scanning electron microscope Type A1 Journal article
Year 2023 Publication HardwareX Abbreviated Journal HardwareX
Volume (down) 14 Issue Pages e00413
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron microscopy is an indispensable tool for the characterization of (nano) materials. Electron microscopes are typically very expensive and their internal operation is often shielded from the user. This situation can provide fast and high quality results for researchers focusing on e.g. materials science if they have access to the relevant instruments. For researchers focusing on technique development, wishing to test novel setups, however, the high entry price can lead to risk aversion and deter researchers from innovating electron microscopy technology further. The closed attitude of commercial entities about how exactly the different parts of electron microscopes work, makes it even harder for newcomers in this field. Here we propose an affordable, easy-to-build electron detector for use in a scanning electron microscope (SEM). The aim of this project is to shed light on the functioning of such detectors as well as show that even a very modest design can lead to acceptable performance while providing high flexibility for experimentation and customization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001042486000001 Publication Date 2023-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0672 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access OpenAccess
Notes The authors acknowledge the financial support of the Research Foundation Flanders (FWO, Belgium) project SBO [Grant No. S000121N]. JV acknowledges funding from the HORIZON-INFRA-2022-TECH-01-01 project IMPRESS [Grant No. 101094299]. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:195886 Serial 7252
Permanent link to this record
 

 
Author Wang, L.; Ratkowsky, D.A.; Gielis, J.; Ricci, P.E.; Shi, P.
Title Effects of the numerical values of the parameters in the Gielis equation on its geometries Type A1 Journal article
Year 2022 Publication Symmetry Abbreviated Journal Symmetry-Basel
Volume (down) 14 Issue 12 Pages 2475-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The Lamé curve is an extension of an ellipse, the latter being a special case. Dr. Johan Gielis further extended the Lamé curve in the polar coordinate system by introducing additional parameters (n1, n2, n3; m): rφ=1Acosm4φn2+1Bsinm4φn3−1/n1, which can be applied to model natural geometries. Here, r is the polar radius corresponding to the polar angle φ; A, B, n1, n2 and n3 are parameters to be estimated; m is the positive real number that determines the number of angles of the Gielis curve. Most prior studies on the Gielis equation focused mainly on its applications. However, the Gielis equation can also generate a large number of shapes that are rotationally symmetric and axisymmetric when A = B and n2 = n3, interrelated with the parameter m, with the parameters n1 and n2 determining the shapes of the curves. In this paper, we prove the relationship between m and the rotational symmetry and axial symmetry of the Gielis curve from a theoretical point of view with the condition A = B, n2 = n3. We also set n1 and n2 to take negative real numbers rather than only taking positive real numbers, then classify the curves based on extremal properties of r(φ) at φ = 0, π/m when n1 and n2 are in different intervals, and analyze how n1, n2 precisely affect the shapes of Gielis curves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000904525700001 Publication Date 2022-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.7
Call Number UA @ admin @ c:irua:191860 Serial 7301
Permanent link to this record
 

 
Author Tessema, G.A.; van der Borg, J.; Van Rompaey, A.; Van Passel, S.; Adgo, E.; Minale, A.S.; Asrese, K.; Frankl, A.; Poesen, J.
Title Benefit segmentation of tourists to geosites and its implications for sustainable development of geotourism in the Southern Lake Tana Region, Ethiopia Type A1 Journal article
Year 2022 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume (down) 14 Issue 6 Pages 3411-3425
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Geotourism is a sustainable type of tourism that focuses on the geological and geomorphological heritages of an area, and the associated cultural and biodiversity features. Though the popularity of geotourism is rapidly growing, research on the demand side, particularly on segmenting tourists to geosites and understanding their profiles, is limited. This obviously makes the designing of effective tourism policies that aim at developing geotourism sustainably very difficult. Hence, the main objectives of this study were to segment and profile tourists to geosites based on the benefits sought, and to show its implications for sustainable development of geotourism. With a survey of 415 tourists, this study clustered tourists to geosites in the southern Lake Tana region in Ethiopia based on the benefits sought. A factor-cluster method was applied to segment the tourists. The study identified four distinct segments: Activity-Nature Lovers, Culture Lovers, Nature-Culture Lovers, and Want-It-Alls. These segments differed in their demographic, trip, and behavioral characteristics. The findings implied that for sustainable development, destination managers and marketers need to customize their geotourism product development and marketing strategies based on the needs and characteristics of each market segment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000774527600001 Publication Date 2022-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9
Call Number UA @ admin @ c:irua:188043 Serial 7353
Permanent link to this record
 

 
Author Dehhaghi, S.; Choobchian, S.; Ghobadian, B.; Farhadian, H.; Viira, A.-H.; Stefanie, H.I.; Van Passel, S.; Azadi, H.
Title Five-year development plans of renewable energy policies in Iran : a content analysis Type A1 Journal article
Year 2022 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume (down) 14 Issue 3 Pages 1501
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Renewable energy (RE) policies can play an effective role in the development of renewable resources. The main goal of this paper was to conduct a content analysis on RE development policies in Iran's five-year National Development Plan (NDP) by investigating upstream national documents. To achieve the goal, 29 upstream documents related to RE were identified and analyzed through a systematic literature review. Then, a qualitative content analysis was applied to analyze the documents. The results showed that Iran's current RE policies need to be reviewed, reformed, and strengthened. For example, lack of sufficient attention to renewable heat and fuel was one of the deficiencies of RE policies in Iran's five-year NDP. The decentralization of policymaking in the unified organization was also one of the weaknesses in the policymaking process of the RE. Iran can develop sustainable and clean RE policies by using sources such as solar, wind, geothermal, hydropower, wave, and tidal power. The paper concludes that, although RE policies have the potential for development in Iran due to environmental, social, and economic advantages, they could face some infrastructural, managerial, socio-cultural, and economic challenges. Accordingly, effective and innovative policymaking is required to meet such challenges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000754912800001 Publication Date 2022-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9
Call Number UA @ admin @ c:irua:186501 Serial 7358
Permanent link to this record
 

 
Author Balashova, I.O.; Tolbin, A.Y.; Tarakanov, P.A.; Krot, A.R.; Fedorova, K., V; Sergeeva, I.A.; Trashin, S.A.; De Wael, K.; Pushkarev, V.E.; Koifman, M.O.; Ponomarev, G., V.
Title A covalently linked dyad based on zinc phthalocyanine and methylpheophorbide α : synthetic and physicochemical study Type A1 Journal article
Year 2021 Publication Macroheterocycles Abbreviated Journal
Volume (down) 14 Issue 1 Pages 40-50
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The first covalently linked conjugate of metal phthalocyaninate and chlorin e(6) derivative has been obtained by transesterification of alpha-ketomethyl ester in methylpheophorbide a with zinc(II) 2-(2-hydroxymethylbenzyloxy)-9(10),16(17),23(24)-tri-tert-butylphthalocyaninate under mild conditions. The dyad exhibits a panchromatic nature revealing both the phthalocyanine and pheophorbide derived bands in the UV-Vis absorption spectrum. The H-1 NMR spectroscopy data combined with theoretical calculations indicate the presence of spatial intramolecular interactions between the phthalocyanine, pheophorbide and spacer fragments of the dyad allowing to forecast its enhanced nonlinear optical properties, as well as the characteristic energy transfer from the excited pheophorbide subunit to the phthalocyanine core. Indeed, when excited in the UV-Vis range, the conjugate shows red fluorescence with the spectral maximum at 686 nm, which is close to the one of the initial zinc phthalocyaninate. Furthermore, the dyad effectively generates singlet oxygen and, in the presence of polyvinylpyrrolidone (PVP) as biocompatible solubilizer, forms stable micellar saline solutions with the particles ranged in size between 40 and 100 nm. These nanoparticles represent promising third-generation photosensitizing systems for application in theranostics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000659682000003 Publication Date 2021-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:179196 Serial 7386
Permanent link to this record
 

 
Author Bernardi, A.; Becherini, F.; Verità, M.; Godoi, R.H.M.; Kontozova-Deutsch, V.; Van Grieken, R.; et al.
Title Conservation of stained glass windows with protective glazing : main results from the European VIDRIO research programme Type A1 Journal article
Year 2013 Publication Journal of cultural heritage Abbreviated Journal
Volume (down) 14 Issue 6 Pages 527-536
Keywords A1 Journal article; Art; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The methodology of protecting the European stained glass windows against environmental risk (e.g. meteorological factors, air pollution, microorganisms) by means of an external glazing is not new. In spite of many scientific studies carried out in the last 20 years, some questions were still up for discussion. The European VIDRIO (20022005) project gave an answer to these questions. The research carried out by the different project partners established a new multidisciplinary approach aimed at evaluating the efficiency of the protective glazing systems and their effects on stained glass windows conservation, and finally at assessing the most appropriate strategy to preserve stained glass windows. Scientific results showed that the so-called isothermal glazing (i.e. ventilation by the air coming from the inside of the building) protected efficiently the ancient stained glass window from environmental attack (i.e. rain, pollutants, condensation, thermal shocks) with very limited secondary effects. The scientific research highlighted that its efficiency was strongly related to the technical design of the protective system. In particular, the ventilation and the size of the interspace had to be carefully considered. The research developed within the VIDRIO project was turned into general recommendations to the owners and practitioners on the best practice for the stained glass windows future conservation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326937800009 Publication Date 2013-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1296-2074 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:111817 Serial 7726
Permanent link to this record
 

 
Author Niklas, K.J.; Shi, P.; Gielis, J.; Schrader, J.; Niinemets, U.
Title Editorial: leaf functional traits : ecological and evolutionary implications Type Editorial
Year 2023 Publication Frontiers in plant science Abbreviated Journal
Volume (down) 14 Issue Pages 1169558-5
Keywords Editorial; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000964122500001 Publication Date 2023-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-462x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.6; 2023 IF: 4.298
Call Number UA @ admin @ c:irua:196076 Serial 7834
Permanent link to this record
 

 
Author Tsuji, K.; Nullens, R.; Wagatsuma, K.; Van Grieken, R.E.
Title Elemental x-ray images obtained by grazing-exit electron probe microanalysis (GE-EPMA) Type A1 Journal article
Year 1999 Publication Journal of analytical atomic spectrometry Abbreviated Journal
Volume (down) 14 Issue Pages 1711-1713
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000083208000009 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:34103 Serial 7896
Permanent link to this record
 

 
Author Chen, H.; Xiong, Y.; Li, J.; Abed, J.; Wang, D.; Pedrazo-Tardajos, A.; Cao, Y.; Zhang, Y.; Wang, Y.; Shakouri, M.; Xiao, Q.; Hu, Y.; Bals, S.; Sargent, E.H.H.; Su, C.-Y.; Yang, Z.
Title Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal Nat Commun
Volume (down) 14 Issue 1 Pages 1719-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Despite the natural abundance and promising properties of Si, there are few examples of crystalline Si-based catalysts. Here, the authors report an epitaxial growth method to construct Co single atoms on Si for light driven CO2 reduction to syngas. Improving the dispersion of active sites simultaneous with the efficient harvest of photons is a key priority for photocatalysis. Crystalline silicon is abundant on Earth and has a suitable bandgap. However, silicon-based photocatalysts combined with metal elements has proved challenging due to silicon's rigid crystal structure and high formation energy. Here we report a solid-state chemistry that produces crystalline silicon with well-dispersed Co atoms. Isolated Co sites in silicon are obtained through the in-situ formation of CoSi2 intermediate nanodomains that function as seeds, leading to the production of Co-incorporating silicon nanocrystals at the CoSi2/Si epitaxial interface. As a result, cobalt-on-silicon single-atom catalysts achieve an external quantum efficiency of 10% for CO2-to-syngas conversion, with CO and H-2 yields of 4.7 mol g((Co))(-1) and 4.4 mol g((Co))(-1), respectively. Moreover, the H-2/CO ratio is tunable between 0.8 and 2. This photocatalyst also achieves a corresponding turnover number of 2 x 10(4) for visible-light-driven CO2 reduction over 6 h, which is over ten times higher than previously reported single-atom photocatalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000962607600018 Publication Date 2023-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 6 Open Access OpenAccess
Notes This work was supported by the National Natural Science Foundation of China (21821003, 21890380, 21905316), Guangdong Natural Science Foundation (2019A1515011748), the Science and Technology Planning Project of Guangdong Province (2019A050510018), Pearl River Recruitment Program of Talent (2019QN01C108), the EU Infrastructure Project EUSMI (Grant No. E190700310), and Sun Yat-sen University. D.W. acknowledges an Individual Fellowship funded by the Marie-Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by grant no. 731019 (EUSMI) and ERC Consolidator grant no. 815128 (REALNANO). This project has received funding from the European Commission Grant (EUSMI E190700310). Synchrotron XAS data described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC), the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number UA @ admin @ c:irua:196062 Serial 7932
Permanent link to this record
 

 
Author De Schepper, V.C.J.; Holvoet, K.M.A.; Benedetti, L.; Seuntjens, P.; Vanrolleghem, P.A.
Title Extension of the river water quality model no. 1 with the fate of pesticides Type A1 Journal article
Year 2012 Publication Journal of hydroinformatics Abbreviated Journal
Volume (down) 14 Issue 1 Pages 48-64
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The existing River Water Quality Model No. 1 (RWQM1) was extended with processes determining the fate of non-volatile pesticides in the water phase and sediments. The exchange of pesticides between the water column and the sediment is described by three transport processes: diffusion, sedimentation and resuspension. Burial of sediments is also included. The modified model was used to simulate the concentrations of diuron and chloridazon in the river Nil. A good agreement was found between the simulated pesticide concentrations and measured values resulting from a four-month intensive monitoring campaign. The simulation results indicate that pesticide concentrations in the bulk water are not sensitive to the selected biochemical model parameters. it seems that these concentrations are mainly determined by the imposed upstream concentrations, run-off and direct losses. The high concentrations in the bulk water were not observed in the sediment pore water due to a limited exchange between the water column and the sediment. According to a sensitivity analysis, the observed pesticide concentrations are highly sensitive to the diffusion and sorption coefficients. Therefore, model users should determine these parameters with accuracy in order to reduce the degree of uncertainty in their results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298618300004 Publication Date 2011-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1464-7141 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:96257 Serial 7954
Permanent link to this record
 

 
Author Van Dyck, P.; Markowicz, A.; Van Grieken, R.
Title Influence of sample thickness, excitation energy and geometry on particle size effects in XRF Type A1 Journal article
Year 1985 Publication X-ray spectrometry Abbreviated Journal
Volume (down) 14 Issue 4 Pages 183-187
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Expressions are presented for calculating the matrix effect and the pure particle size effect in the XRF analysis of particulate samples with a discrete particle size. The equations are based on the absorption-weighted radiometric diameter concept. Two excitationdetection geometries are considered, with the angles between the sample plane and both the incident and emerging radiation being either 90° (π geometry) or 45° (π/2 geometry). Calculations were made for different sample loadings and exciting radiation energies. The influence of these parameters on the matrix and pure particle size effects is shown. From the results, it is possible to predict the performances of alternative experimental correction procedures for the particle size effect, involving dual measurements at different excitation energies or in different excitationdetection geometries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1985ATB6100007 Publication Date 2005-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116486 Serial 8097
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Wilcop, M.; Anderson, R.; Wendt, D.; Barden, R.; Kavich, G.M.
Title Investigation of volatile organic compounds in museum storage areas Type A1 Journal article
Year 2021 Publication Air Quality Atmosphere And Health Abbreviated Journal Air Qual Atmos Hlth
Volume (down) 14 Issue 11 Pages 1797-1809
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract This study investigates the complex mixture of volatile organic compounds (VOCs) released by and accumulated within a collection of historic medicinal, pharmaceutical, and cosmetic artifacts housed at the National Museum of American History (Smithsonian Institution). In recent years, staff have become concerned, both for the safety of the objects and for personnel working in the collection, about strong unremediated odors accumulating within several storage cabinets. Museum staff also wondered if non-odorous off-gassing might need remediation. Solid-phase microextraction combined with gas chromatography–mass spectrometry analysis (SPME–GC–MS) was used to identify VOCs present in the storage room housing the collection. Over 160 compounds were detected and identified overall. Among these, 49 appeared to be directly related to ingredients used in the manufacture of many collection items. The results of the study suggest that SPME–GC–MS can be a strong tool for the rapid screening of multicomponent museum collections exhibiting off-gassing problems, before the pursuit of other more tedious analytical approaches. Additionally, the study reveals valuable insight into the characteristic volatile emission of historic medicinal, pharmaceutical, and cosmetic artifacts, increasing understanding of, and decision-making for, similar collections of objects. Eventually, it is hoped that this information can be used to inform mitigation strategies for the capture and reduction of VOCs in collections storage areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000659058300001 Publication Date 2021-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1873-9318 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.184 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.184
Call Number UA @ admin @ c:irua:181923 Serial 8129
Permanent link to this record
 

 
Author Gielis, J.; Ricci, P.E.; Tavkhelidze, I.
Title The Möbius phenomenon in Generalized Möbius-Listing surfaces and bodies, and Arnold's Cat phenomenon Type A1 Journal article
Year 2021 Publication Advanced Studies : Euro-Tbilisi Mathematical Journal Abbreviated Journal
Volume (down) 14 Issue 4 Pages 17-35
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Möbius bands have been studied extensively, mainly in topology. Generalized Möbius-Listing surfaces and bodies providing a full geometrical generalization, is a quite new field, motivated originally by solutions of boundary value problems. Analogous to cutting of the original Möbius band, for this class of surfaces and bodies, results have been obtained when cutting such bodies or surfaces. In general, cutting leads to interlinked and intertwined different surfaces or bodies, resulting in very complex systems. However, under certain conditions, the result of cutting can be a single surface or body, which reduces complexity considerably. Our research is motivated by this reduction of complexity. In the study of cutting Generalized Möbius-Listing bodies with polygons as cross section, the conditions under which a single body results, displaying the Möbius phenomenon of a one-sided body, have been determined for even and odd polygons. These conditions are based on congruence and rotational symmetry of the resulting cross sections after cutting, and on the knife cutting the origin. The Möbius phenomenon is important, since the process of cutting (or separation of zones in a GML body in general) then results in a single body, not in different, intertwined domains. In all previous works it was assumed that the cross section of the GML bodies is constant, but the main result of this paper is that it is sufficient that only one cross section on the whole GML structure meets the conditions for the Möbius phenomenon to occur. Several examples are given to illustrate this.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000774655100002 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:183081 Serial 8258
Permanent link to this record
 

 
Author Vijayakumar, J.; Savchenko, T.M.; Bracher, D.M.; Lumbeeck, G.; Béché, A.; Verbeeck, J.; Vajda, Š.; Nolting, F.; Vaz, Ca.f.; Kleibert, A.
Title Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal Nat Commun
Volume (down) 14 Issue 1 Pages 174
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Understanding chemical reactivity and magnetism of 3<italic>d</italic>transition metal nanoparticles is of fundamental interest for applications in fields ranging from spintronics to catalysis. Here, we present an atomistic picture of the early stage of the oxidation mechanism and its impact on the magnetism of Co nanoparticles. Our experiments reveal a two-step process characterized by (i) the initial formation of small CoO crystallites across the nanoparticle surface, until their coalescence leads to structural completion of the oxide shell passivating the metallic core; (ii) progressive conversion of the CoO shell to Co<sub>3</sub>O<sub>4</sub>and void formation due to the nanoscale Kirkendall effect. The Co nanoparticles remain highly reactive toward oxygen during phase (i), demonstrating the absence of a pressure gap whereby a low reactivity at low pressures is postulated. Our results provide an important benchmark for the development of theoretical models for the chemical reactivity in catalysis and magnetism during metal oxidation at the nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000955726400021 Publication Date 2023-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 1 Open Access OpenAccess
Notes Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021160186 2002153540 ; EC | Horizon 2020 Framework Programme, 810310 823717 ; University of Basel | Swiss Nanoscience Institute, P1502 ; This work is funded by Swiss National Foundation (SNF) (Grants. No 200021160186 and 2002153540) and the Swiss Nanoscience Institut (SNI) (Grant No. SNI P1502). S.V. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 810310, which corresponds to the J. Heyrovsky Chair project (“ERA Chair at J. Heyrovský Institute of Physical Chemistry AS CR – The institutional approach towards ERA”). The funders had no role in the preparation of the article. Part of this work was performed at the Surface/Interface: Microscopy (SIM) beamline of the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland. We kindly acknowledge Anja Weber and Elisabeth Müller from PSI for their help in fabricating the sample markers. A.B. and J. Verbeeck received funding from the European Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No. 823717 – ESTEEM3 reported Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number EMAT @ emat @c:irua:196738 Serial 8804
Permanent link to this record
 

 
Author Arteaga Cardona, F.; Jain, N.; Popescu, R.; Busko, D.; Madirov, E.; Arús, B.A.; Gerthsen, D.; De Backer, A.; Bals, S.; Bruns, O.T.; Chmyrov, A.; Van Aert, S.; Richards, B.S.; Hudry, D.
Title Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal Nat Commun
Volume (down) 14 Issue 1 Pages 4462
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF<sub>4</sub>) or heterogeneous (CaF<sub>2</sub>) shell domains on optically-active α-NaYF<sub>4</sub>:Yb:Er (with and without Ce<sup>3+</sup>co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm<sup>2</sup>; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001037058500022 Publication Date 2023-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 1 Open Access OpenAccess
Notes D.H. would like to thank Dominique Ectors (Bruker AXS GmbH, Karlsruhe, Germany) for assistance and discussion on the PXRD data and TOPAS evaluations. The authors would like to acknowledge the financial support provided by the Helmholtz Association via: i) the Professorial Recruitment Initiative Funding (B.S.R.); ii) the Research Field Energy – Program Materials and Technologies for the Energy Transition – Topic 1 Photovoltaics (F.A.C., D.B., E.M., B.S.R., D.H.). This project received funding from the European Union’s Horizon 2020 innovation programme under grant agreement 823717. This work was supported by the European Research Council (grant 770887-PICOMETRICS to S.V.A. and Grant 815128-REALNANO to S.B.). The authors acknowledge financial support from the ResearchFoundation Flanders (FWO, Belgium) through project fundings (G.0346.21 N to S.V.A. and S.B.) and a postdoctoral grant (A.D.B.). The authors (B.A.A., O.T.B. and A.C.) acknowledge funding from the Helmholtz Zentrum München, the DFG-Emmy Noether program (BR 5355/2-1) and from the CZI Deep Tissue Imaging (DTI-0000000248). The authors (O.T.B. and D.H.) would like to thank the Helmholtz Imaging (ZT-I-PF-4-038-BENIGN). Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number EMAT @ emat @c:irua:198158 Serial 8808
Permanent link to this record
 

 
Author Sasaki, S.; Giri, S.; Cassidy, S.J.; Dey, S.; Batuk, M.; Vandemeulebroucke, D.; Cibin, G.; Smith, R.I.; Holdship, P.; Grey, C.P.; Hadermann, J.; Clarke, S.J.
Title Anion redox as a means to derive layered manganese oxychalcogenides with exotic intergrowth structures Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal
Volume (down) 14 Issue 1 Pages 2917-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Topochemistry enables step-by-step conversions of solid-state materials often leading to metastable structures that retain initial structural motifs. Recent advances in this field revealed many examples where relatively bulky anionic constituents were actively involved in redox reactions during (de)intercalation processes. Such reactions are often accompanied by anion-anion bond formation, which heralds possibilities to design novel structure types disparate from known precursors, in a controlled manner. Here we present the multistep conversion of layered oxychalcogenides Sr(2)MnO(2)Cu(1.5)Ch(2) (Ch=S, Se) into Cu-deintercalated phases where antifluorite type [Cu(1.5)Ch(2)](2.5-) slabs collapsed into two-dimensional arrays of chalcogen dimers. The collapse of the chalcogenide layers on deintercalation led to various stacking types of Sr(2)MnO(2)Ch(2) slabs, which formed polychalcogenide structures unattainable by conventional high-temperature syntheses. Anion-redox topochemistry is demonstrated to be of interest not only for electrochemical applications but also as a means to design complex layered architectures. Low temperature chemical transformations of solids using high-energy intermediates have enabled the synthesis of a new series of layered oxide chalcogenide containing oxidised chalcogenide dimers promising a new range of solids.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001024186000011 Publication Date 2023-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number UA @ admin @ c:irua:199281 Serial 8832
Permanent link to this record