|   | 
Details
   web
Records
Author Moshnyaga, V.; Damaschke, B.; Shapoval, O.; Belenchuk, A.; Faupel, J.; Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Mücksch, M.; Tsurkan, V.; Tidecks, R.; Samwer, K.
Title Corrigendum: Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x:(MgO)x nanocomposite films Type A1 Journal article
Year 2005 Publication Nature materials Abbreviated Journal Nat Mater
Volume (up) 4 Issue Pages 104
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited Open Access
Notes Approved Most recent IF: 39.737; 2005 IF: 15.941
Call Number UA @ lucian @ c:irua:54856 Serial 530
Permanent link to this record
 

 
Author Philippaerts, A.; Goossens, S.; Vermandel, W.; Tromp, M.; Turner, S.; Geboers, J.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F.
Title Design of Ru-zeolites for hydrogen-free production of conjugated linoleic acid Type A1 Journal article
Year 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem
Volume (up) 4 Issue 6 Pages 757-767
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract While conjugated vegetable oils are currently used as additives in the drying agents of oils and paints, they are also attractive molecules for making bio-plastics. Moreover, conjugated oils will soon be accepted as nutritional additives for functional food products. While current manufacture of conjugated vegetable oils or conjugated linoleic acids (CLAs) uses a homogeneous base as isomerisation catalyst, a heterogeneous alternative is not available today. This contribution presents the direct production of CLAs over Ru supported on different zeolites, varying in topology (ZSM-5, BETA, Y), Si/Al ratio and countercation (H+, Na+, Cs+). Ru/Cs-USY, with a Si/Al ratio of 40, was identified as the most active and selective catalyst for isomerisation of methyl linoleate (cis-9,cis-12 (C18:2)) to CLA at 165 °C. Interestingly, no hydrogen pre-treatment of the catalyst or addition of hydrogen donors is required to achieve industrially relevant isomerisation productivities, namely, 0.7 g of CLA per litre of solvent per minute. Moreover, the biologically most active CLA isomers, namely, cis-9,trans-11, trans-10,cis-12 and trans-9,trans-11, were the main products, especially at low catalyst concentrations. Ex situ physicochemical characterisation with CO chemisorption, extended X-ray absorption fine structure measurements, transmission electron microscopy analysis, and temperature-programmed oxidation reveals the presence of highly dispersed RuO2 species in Ru/Cs-USY(40).
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000292214000009 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.226 Times cited 24 Open Access
Notes Fwo Approved Most recent IF: 7.226; 2011 IF: 6.827
Call Number UA @ lucian @ c:irua:90352 Serial 660
Permanent link to this record
 

 
Author Zarenia, M.; Perali, A.; Neilson, D.; Peeters, F.M.
Title Enhancement of electron-hole superfluidity in double few-layer graphene Type A1 Journal article
Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume (up) 4 Issue 4 Pages 7319
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We propose two coupled electron-hole sheets of few-layer graphene as a new nanostructure to observe superfluidity at enhanced densities and enhanced transition temperatures. For ABC stacked few-layer graphene we show that the strongly correlated electron-hole pairing regime is readily accessible experimentally using current technologies. We find for double trilayer and quadlayer graphene sheets spatially separated by a nano-thick hexagonal boron-nitride insulating barrier, that the transition temperature for electron-hole superfluidity can approach temperatures of 40 K.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000346272900001 Publication Date 2014-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 38 Open Access
Notes ; We thank L. Benfatto, S. De Palo, and G. Senatore for helpful comments. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (POLATOM). ; Approved Most recent IF: 4.259; 2014 IF: 5.578
Call Number UA @ lucian @ c:irua:122743 Serial 1062
Permanent link to this record
 

 
Author Sankaran, K.; Clima, S.; Mees, M.; Pourtois, G.
Title Exploring alternative metals to Cu and W for interconnects applications using automated first-principles simulations Type A1 Journal article
Year 2015 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc
Volume (up) 4 Issue 4 Pages N3127-N3133
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The bulk properties of elementary metals and copper based binary alloys have been investigated using automated first-principles simulations to evaluate their potential to replace copper and tungsten as interconnecting wires in the coming CMOS technology nodes. The intrinsic properties of the screened candidates based on their cohesive energy and on their electronic properties have been used as a metrics to reflect their resistivity and their sensitivity to electromigration. Using these values, the 'performances' of the alloys have been benchmarked with respect to the Cu and W ones. It turns out that for some systems, alloying Cu with another element leads to a reduced tendency to electromigration. This is however done at the expense of a decrease of the conductivity of the alloy with respect to the bulk metal. (C) 2014 The Electrochemical Society. All rights reserved.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000349547900018 Publication Date 2014-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769;2162-8777; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.787 Times cited 19 Open Access
Notes Approved Most recent IF: 1.787; 2015 IF: 1.558
Call Number c:irua:125296 Serial 1150
Permanent link to this record
 

 
Author Pospisilova, A.; Filippov, S.K.; Bogomolova, A.; Turner, S.; Sedlacek, O.; Matushkin, N.; Cernochova, Z.; Stepanek, P.; Hruby, M.
Title Glycogen-graft-poly(2-alkyl-2-oxazolines) – the new versatile biopolymer-based thermoresponsive macromolecular toolbox Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume (up) 4 Issue 106 Pages 61580-61588
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study is focused on thermoresponsive glycogen-graft-poly(2-alkyl-2-oxazolines), a new group of nanostructured hybrid dendrimeric stimuli-responsive polymers connecting the body's own biodegradable polysaccharidic dendrimer glycogen with the widely tuneable thermoresponsive behavior of polypeptide-analogic poly(2-alkyl-2-oxazolines), which are known to be biocompatible. Glycogen-graft-poly(2-alkyl-2-oxazolines) were prepared by a simple one-pot two-step procedure involving cationic ring-opening polymerization of 2-alkyl-2-oxazolines followed by termination of the living cationic ends with sodium glycogenate. As confirmed by light and X-ray scattering, as well as cryo-transmission electron microscopy, the grafted dendrimer structure allows easy adjustment of the cloud point temperature, the concentration dependence and nanostructure of the self-assembled phase separated polymer by crosstalk during graft composition, the graft length and the grafting density, in a very wide range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345656600045 Publication Date 2014-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 15 Open Access
Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:122222 Serial 1355
Permanent link to this record
 

 
Author Castelano, L.K.; Hai, G.-Q.; Partoens, B.; Peeters, F.M.
Title Ground state configurations of vertically coupled quantum rings Type A1 Journal article
Year 2007 Publication Physica status solidi: C: conferences and critical reviews Abbreviated Journal
Volume (up) 4 Issue 2 Pages 560-562
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000245877200097 Publication Date 2007-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1610-1634;1610-1642; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:69665 Serial 1386
Permanent link to this record
 

 
Author Yan, Y.; Wang, L.-X.; Ke, X.; Van Tendeloo, G.; Wu, X.-S.; Yu, D.-P.; Liao, Z.-M.
Title High-mobility Bi2Se3 nanoplates manifesting quantum oscillations of surface states in the sidewalls Type A1 Journal article
Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume (up) 4 Issue Pages 3817-7
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Magnetotransport measurements of topological insulators are very important to reveal the exotic topological surface states for spintronic applications. However, the novel properties related to the surface Dirac fermions are usually accompanied by a large linear magnetoresistance under perpendicular magnetic field, which makes the identification of the surface states obscure. Here, we report prominent Shubnikov-de Haas (SdH) oscillations under an in-plane magnetic field, which are identified to originate from the surface states in the sidewalls of topological insulator Bi2Se3 nanoplates. Importantly, the SdH oscillations appear with a dramatically weakened magnetoresistance background, offering an easy path to probe the surface states directly when the coexistence of surface states and bulk conduction is inevitable. Moreover, under a perpendicular magnetic field, the oscillations in Hall conductivity have peak-to-valley amplitudes of 2 e(2)/h, giving confidence to achieve a quantum Hall effect in this system. A cross-section view of the nanoplate shows that the sidewall is (015) facet dominant and therefore forms a 586 angle with regard to the top/ bottom surface instead of being perpendicular; this gives credit to the surface states' behavior as two-dimensional transport.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000330044700008 Publication Date 2014-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 31 Open Access
Notes ERC grant Nu246791 – COUNTATOMS Approved Most recent IF: 4.259; 2014 IF: 5.578
Call Number UA @ lucian @ c:irua:114815 Serial 1436
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M.
Title Influence of vacancy defects on the thermal stability of silicene: a reactive molecular dynamics study Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume (up) 4 Issue 3 Pages 1133-1137
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of vacancy defects on the structural properties and the thermal stability of free standing silicene – a buckled structure of hexagonally arranged silicon atoms – is studied using reactive molecular dynamics simulations. Pristine silicene is found to be stable up to 1500 K, above which the system transits to a three-dimensional amorphous configuration. Vacancy defects result in local structural changes in the system and considerably reduce the thermal stability of silicene: depending on the size of the vacancy defect, the critical temperature decreases by more than 30%. However, the system is still found to be stable well above room temperature within our simulation time of 500 ps. We found that the, stability of silicene can be increased by saturating the dangling bonds at the defect edges by foreign atoms (e.g., hydrogen).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000327868400015 Publication Date 2013-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 62 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. The authors are grateful to Prof. Adri van Duin for his support with the ReaxFF force field. ; Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:112829 Serial 1658
Permanent link to this record
 

 
Author Teodorescu, V.S.; Mihailescu, I.N.; Dinescu, M.; Chitica, N.; Nistor, L.C.; van Landuyt, J.; Barborica, A.
Title Laser induced phase transition in iron thin films Type A1 Journal article
Year 1994 Publication Journal de physique: 3: applied physics, materials science, fluids, plasma and instrumentation Abbreviated Journal
Volume (up) 4 Issue Pages 127-130
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Les Ulis Editor
Language Wos A1994NT08700028 Publication Date 2007-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:10003 Serial 1787
Permanent link to this record
 

 
Author Claereboudt, J.; Claeys, M.; Geise, H.; Gijbels, R.; Vertes, A.
Title Laser microprobe mass spectrometry of quaternary phosphonium salts: direct versus matrix-assisted laser desorption Type A1 Journal article
Year 1993 Publication Journal of the American Society for Mass Spectrometry Abbreviated Journal J Am Soc Mass Spectr
Volume (up) 4 Issue Pages 798-819
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1993LZ48800007 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-0305;1879-1123; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.945 Times cited 17 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:5424 Serial 1796
Permanent link to this record
 

 
Author Quintana, M.; Ke, X.; Van Tendeloo, G.; Meneghetti, M.; Bittencourt, C.; Prato, M.
Title Light-induced selective deposition of Au nanoparticles on single-wall carbon nanotubes Type A1 Journal article
Year 2010 Publication ACS nano Abbreviated Journal Acs Nano
Volume (up) 4 Issue 10 Pages 6105-6113
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Novel applications of single-walled carbon nanotubes (SWNT) rely on the development of new strategies to make them easier to handle without affecting their structural properties. In this work, we have selectively deposited Au nanoparticles (Au NP) on SWNT assisted by UV light irradiation. XPS analysis and UV-vis spectroscopy indicate that the deposition occurs at the defects generated after oxidation of the SWNT. By addition of n-dodecylthiol, the separation of oxidized tubes with Au NP (Au-ox-SWNT) from tubes devoid of Au NP (bare tubes, b-SWNT) was achieved. Raman and UV-vis-NIR spectra indicate that UV irradiation induces a faster nucleation of Au NP on metallic SWNT. This new technique can be useful for the preparation of nanohybrid composites with enhanced properties, as increased thermal stability, and to obtain purified SWNT.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000283453700081 Publication Date 2010-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 26 Open Access
Notes Approved Most recent IF: 13.942; 2010 IF: 9.865
Call Number UA @ lucian @ c:irua:99202 Serial 1819
Permanent link to this record
 

 
Author Felten, A.; Gillon, X.; Gulas, M.; Pireaux, J.-J.; Ke, X.; Van Tendeloo, G.; Bittencourt, C.; Najafi, E.; Hitchcock, A.P.
Title Measuring point defect density in individual carbon nanotubes using polarization-dependent X-ray microscopy Type A1 Journal article
Year 2010 Publication ACS nano Abbreviated Journal Acs Nano
Volume (up) 4 Issue 8 Pages 4431-4436
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The presence of defects in carbon nanotubes strongly modifies their electrical, mechanical, and chemical properties. It was long thought undesirable, but recent experiments have shown that introduction of structural defects using ion or electron irradiation can lead to novel nanodevices. We demonstrate a method for detecting and quantifying point defect density in individual carbon nanotubes (CNTs) based on measuring the polarization dependence (linear dichroism) of the C 1s → π* transition at specific locations along individual CNTs with a scanning transmission X-ray microscope (STXM). We show that STXM can be used to probe defect density in individual CNTs with high spatial resolution. The quantitative relationship between ion dose, nanotube diameter, and defect density was explored by purposely irradiating selected sections of nanotubes with kiloelectronvolt (keV) Ga+ ions. Our results establish polarization-dependent X-ray microscopy as a new and very powerful characterization technique for carbon nanotubes and other anisotropic nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281052700014 Publication Date 2010-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 26 Open Access
Notes Approved Most recent IF: 13.942; 2010 IF: 9.865
Call Number UA @ lucian @ c:irua:84734 Serial 1966
Permanent link to this record
 

 
Author Hervieu, M.; Michel, C.; Martin, C.; Huvé, M.; Van Tendeloo, G.; Maignan, A.; Pelloquin, D.; Goutenoire, F.; Raveau, B.
Title Mécanismes de la non-stoechiométrie dans les nouveaux supraconducteurs à haute Tc Type A1 Journal article
Year 1994 Publication Journal de physique: 3: applied physics, materials science, fluids, plasma and instrumentation Abbreviated Journal
Volume (up) 4 Issue Pages 2057-2067
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Les Ulis Editor
Language Wos A1994PT17900002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4320 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:10041 Serial 1973
Permanent link to this record
 

 
Author Zhang, J.; Ke, X.; Gou, G.; Seidel, J.; Xiang, B.; Yu, P.; Liang, W.I.; Minor, A.M.; Chu, Y.h.; Van Tendeloo, G.; Ren, X.; Ramesh, R.;
Title A nanoscale shape memory oxide Type A1 Journal article
Year 2013 Publication Nature communications Abbreviated Journal Nat Commun
Volume (up) 4 Issue Pages 2768-8
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Stimulus-responsive shape-memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechanical devices, materials with large mechanical strain, particularly at nanoscale level, are therefore desired. Here we report on the discovery of a large shape-memory effect in bismuth ferrite at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density of ~600±90 J cm−3 can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, microcracking and so on have to be taken into consideration for real devices, the large shape-memory effect in this oxide surpasses most alloys and, therefore, demonstrates itself as an extraordinary material for potential use in state-of-art nanosystems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328023900006 Publication Date 2013-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 67 Open Access
Notes Countatoms Approved Most recent IF: 12.124; 2013 IF: 10.742
Call Number UA @ lucian @ c:irua:111431 Serial 2271
Permanent link to this record
 

 
Author Rehor, I.; Lee, K.L.; Chen, K.; Hajek, M.; Havlik, J.; Lokajova, J.; Masat, M.; Slegerova, J.; Shukla, S.; Heidari, H.; Bals, S.; Steinmetz, N.F.; Cigler, P.
Title Plasmonic nanodiamonds : targeted coreshell type nanoparticles for cancer cell thermoablation Type A1 Journal article
Year 2015 Publication Advanced healthcare materials Abbreviated Journal Adv Healthc Mater
Volume (up) 4 Issue 4 Pages 460-468
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, coreshell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell are designed and synthesized. The architecture of particles is analyzed and confirmed in detail using electron tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor are demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000349961600014 Publication Date 2015-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2192-2640; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.11 Times cited 30 Open Access OpenAccess
Notes 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 5.11; 2015 IF: 5.797
Call Number c:irua:125375 Serial 2647
Permanent link to this record
 

 
Author van Cleempoel, A.; Gijbels, R.; Zhu, D.; Claeys, M.; Richter, H.; Fonseca, A.
Title Quantitative determination of C60 and C70 in soot extracts by high performance liquid chromatography and mass spectrometric characterization Type A1 Journal article
Year 1996 Publication Fullerene science and technology Abbreviated Journal Fuller Nanotub Car N
Volume (up) 4 Issue Pages 1001-1017
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A quantitative HPLC method was applied to determine the amounts of C-60 and C-70 present in extracts of soot produced in the electric arc reactor and in flames. The combustion method was found to yield a higher C-70/C-60 ratio (0.67) compared with the evaporation experiment where the C-70/C-60 ratio amounts to 0.27.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos A1996VK45000015 Publication Date 2007-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1536-383X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.836 Times cited 6 Open Access
Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #
Call Number UA @ lucian @ c:irua:15612 Serial 2751
Permanent link to this record
 

 
Author Lin, S.-H.; Milošević, M.V.; Covaci, L.; Janko, B.; Peeters, F.M.
Title Quantum rotor in nanostructured superconductors Type A1 Journal article
Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume (up) 4 Issue Pages 4542-4546
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000333555300007 Publication Date 2014-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 4 Open Access
Notes ; The work was supported by the Flemish Science Foundation (FWO-Vl), the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract W-31-109-Eng-38, and the US National Science Foundation via NSF-NIRT ECS-0609249. ; Approved Most recent IF: 4.259; 2014 IF: 5.578
Call Number UA @ lucian @ c:irua:116848 Serial 2785
Permanent link to this record
 

 
Author Cheng, K.; Degroote, S.; Leys, M.; van Daele, B.; Germain, M.; Van Tendeloo, G.; Borghs, G.
Title Single crystalline GaN grown on porous Si(111) by MOVPE Type P1 Proceeding
Year 2007 Publication Physica status solidi: C: conferences and critical reviews Abbreviated Journal
Volume (up) 4 Issue 6 Pages 1908-1912
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract In this work, GaN growth on porous Si(111) will be reported. The porosity of the substrates was 30% or 50%. In the latter case, various thicknesses, from 0.6 mu m to 10 mu m, were investigated. The morphology of the GaN surfaces was analyzed by optical interference microscopy. The crystalline quality of the epitaxial layers was characterized by High Resolution X-Ray Diffraction (HR-XRD) and cross-sectional Transmission Electron Microscopy (TEM). A Full Width at Half Maximum (FWHM) of the X-ray symmetric rocking curve (0002) 2 theta – omega scan of 290 arc see was obtained for a 1 mu m thick GaN layer, which is comparable with that of GaN grown on bulk Si(111) substrates. (c) 2007 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000247421800020 Publication Date 2007-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1610-1634;1610-1642; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94664 Serial 3019
Permanent link to this record
 

 
Author Kerkhofs, S.; Leroux, F.; Allouche, L.; Mellaerts, R.; Jammaer, J.; Aerts, A.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Martens, J.A.;
Title Single-step alcohol-free synthesis of coreshell nanoparticles of \gamma-casein micelles and silica Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume (up) 4 Issue 49 Pages 25650-25657
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new, single-step protocol for wrapping individual nanosized β-casein micelles with silica is presented. This biomolecule-friendly synthesis proceeds at low protein concentration at almost neutral pH, and makes use of sodium silicate instead of the common silicon alkoxides. This way, formation of potentially protein-denaturizing alcohols can be avoided. The pH of the citrate-buffered synthesis medium is close to the isoelectric point of β-casein, which favours micelle formation. A limited amount of sodium silicate is added to the protein micelle suspension, to form a thin silica coating around the β-casein micelles. The size distribution of the resulting proteinsilica structures was characterized using DLS and SAXS, as well as 1H NMR DOSY with a dedicated pulsed-field gradient cryo-probehead to cope with the low protein concentration. The degree of silica-condensation was investigated by 29Si MAS NMR, and the nanostructure was revealed by advanced electron microscopy techniques such as ESEM and HAADF-STEM. As indicated by the combined characterization results, a silica shell of 2 nm is formed around individual β-casein micelles giving rise to separate protein coresilica shell nanoparticles of 17 nm diameter. This alcohol-free method at mild temperature and pH is potentially suited for packing protein molecules into bio-compatible silica nanocapsules for a variety of applications in biosensing, therapeutic protein delivery and biocatalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000338434500025 Publication Date 2014-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 3 Open Access OpenAccess
Notes Fwo; 262348 Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:125382 Serial 3027
Permanent link to this record
 

 
Author Lobanov, M.V.; Abakumov, A.M.; Sidorova, A.V.; Rozova, M.G.; D'yachenko, O.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.
Title Synthesis and investigation of novel Mn-based oxyfluoride Sr2Mn2O5-xF1+x Type A1 Journal article
Year 2002 Publication Solid state sciences Abbreviated Journal Solid State Sci
Volume (up) 4 Issue Pages 19-22
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000174141100004 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 21 Open Access
Notes Approved Most recent IF: 1.811; 2002 IF: 1.667
Call Number UA @ lucian @ c:irua:40346 Serial 3432
Permanent link to this record
 

 
Author Rizzo, F.; Augieri, A.; Angrisani Armenio, A.; Galluzzi, V.; Mancini, A.; Pinto, V.; Rufoloni, A.; Vannozzi, A.; Bianchetti, M.; Kursumovic, A.; MacManus-Driscoll, J.L.; Meledin, A.; Van Tendeloo, G.; Celentano, G.
Title Enhanced 77K vortex-pinning in YBa2Cu3O7−x films with Ba2YTaO6 and mixed Ba2YTaO6 + Ba2YNbO6 nano-columnar inclusions with irreversibility field to 11T Type A1 Journal article
Year 2016 Publication APL materials Abbreviated Journal Apl Mater
Volume (up) 4 Issue 4 Pages 061101
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Pulsed laser deposited thin YBa2Cu3O7−x (YBCO) films with pinning additions of 5at.% Ba2YTaO6 (BYTO) were compared to films with 2.5at.% Ba2YTaO6 + 2.5at.% Ba2YNbO6 (BYNTO) additions. Excellent magnetic flux-pinning at 77 K was obtained with remarkably high irreversibility fields greater than 10T (YBCO-BYTO) and 11T (YBCO-BYNTO), representing the highest ever achieved values in YBCO films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379042400002 Publication Date 2016-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 19 Open Access
Notes This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007-2013) under Grant Agreement no. 280432 Approved Most recent IF: 4.335
Call Number c:irua:133785 Serial 4077
Permanent link to this record
 

 
Author Neubert, S.; Mitoraj, D.; Shevlin, S.A.; Pulisova, P.; Heimann, M.; Du, Y.; Goh, G.K.L.; Pacia, M.; Kruczała, K.; Turner, S.; Macyk, W.; Guo, Z.X.; Hocking, R.K.; Beranek, R.;
Title Highly efficient rutile TiO2 photocatalysts with single Cu(II) and Fe(III) surface catalytic sites Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume (up) 4 Issue 4 Pages 3127-3138
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Highly active photocatalysts were obtained by impregnation of nanocrystalline rutile TiO2 powders with small amounts of Cu(II) and Fe(III) ions, resulting in the enhancement of initial rates of photocatalytic degradation of 4-chlorophenol in water by factors of 7 and 4, compared to pristine rutile, respectively. Detailed structural analysis by EPR and X-ray absorption spectroscopy (EXAFS) revealed that Cu(II) and Fe(III) are present as single species on the rutile surface. The mechanism of the photoactivity enhancement was elucidated by a combination of DFT calculations and detailed experimental mechanistic studies including photoluminescence measurements, photocatalytic experiments using scavengers, OH radical detection, and photopotential transient measurements. The results demonstrate that the single Cu(II) and Fe(III) ions act as effective cocatalytic sites, enhancing the charge separation, catalyzing “dark” redox reactions at the interface, thus improving the normally very low quantum yields of UV light-activated TiO2 photocatalysts. The exact mechanism of the photoactivity enhancement differs depending on the nature of the cocatalyst. Cu(II)-decorated samples exhibit fast transfer of photogenerated electrons to Cu(II/I) sites, followed by enhanced catalysis of dioxygen reduction, resulting in improved charge separation and higher photocatalytic degradation rates. At Fe(III)-modified rutile the rate of dioxygen reduction is not improved and the photocatalytic enhancement is attributed to higher production of highly oxidizing hydroxyl radicals produced by alternative oxygen reduction pathways opened by the presence of catalytic Fe(III/II) sites. Importantly, it was demonstrated that excessive heat treatment (at 450 degrees C) of photocatalysts leads to loss of activity due to migration of Cu(II) and Fe(III) ions from TiO2 surface to the bulk, accompanied by formation of oxygen vacancies. The demonstrated variety of mechanisms of photoactivity enhancement at single site catalyst-modified photocatalysts holds promise for developing further tailored photocatalysts for various applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000371077300040 Publication Date 2015-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 44 Open Access
Notes Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:132322 Serial 4191
Permanent link to this record
 

 
Author Heyne, M.H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I.P.; Caymax, M.; de Marneffe, J.F.; Neyts, E.C.; De Gendt, S.;
Title Multilayer MoS2 growth by metal and metal oxide sulfurization Type A1 Journal article
Year 2016 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume (up) 4 Issue 4 Pages 1295-1304
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We investigated the deposition of MoS2 multilayers on large area substrates. The pre-deposition of metal or metal oxide with subsequent sulfurization is a promising technique to achieve layered films. We distinguish a different reaction behavior in metal oxide and metallic films and investigate the effect of the temperature, the H2S/H-2 gas mixture composition, and the role of the underlying substrate on the material quality. The results of the experiments suggest a MoS2 growth mechanism consisting of two subsequent process steps. At first, the reaction of the sulfur precursor with the metal or metal oxide occurs, requiring higher temperatures in the case of metallic film compared to metal oxide. At this stage, the basal planes assemble towards the diffusion direction of the reaction educts and products. After the sulfurization reaction, the material recrystallizes and the basal planes rearrange parallel to the substrate to minimize the surface energy. Therefore, substrates with low roughness show basal plane assembly parallel to the substrate. These results indicate that the substrate character has a significant impact on the assembly of low dimensional MoS2 films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370723300020 Publication Date 2016-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited Open Access
Notes Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:132327 Serial 4211
Permanent link to this record
 

 
Author Naik, P.V.; Wee, L.H.; Meledina, M.; Turner, S.; Li, Y.; Van Tendeloo, G.; Martens, J.A.; Vankelecom, I.F.J.
Title PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume (up) 4 Issue 4 Pages 12790-12798
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The design of functional micro- and mesostructured composite materials is significantly important for separation processes. Mesoporous silica is an attractive material for fast diffusion, while microporous zeolitic imidazolate frameworks (ZIFs) are beneficial for selective adsorption and diffusion. In this work, ZIF-71 and ZIF-8 nanocrystals were grown on the surface of mesoporous silica spheres (MSS) via the seeding and regrowth approach in order to obtain monodispersed MSS-ZIF-71 and MSS-ZIF-8 spheres with a particle size of 2-3 mm. These MSS-ZIF spheres were uniformly dispersed into a polydimethylsiloxane (PDMS) matrix to prepare mixed matrix membranes (MMMs). These MMMs were evaluated for the separation of ethanol from water via pervaporation. The pervaporation results reveal that the MSS-ZIF filled MMMs substantially improve the ethanol recovery in both aspects viz. flux and separation factor. These MMMs outperforms the unfilled PDMS membranes and the conventional carbon and zeolite filled MMMs. As expected, the mesoporous silica core allows very fast flow of the permeating compound, while the hydrophobic ZIF coating enhances the ethanol selectivity through its specific pore structure, hydrophobicity and surface chemistry. It can be seen that ZIF-8 mainly has a positive impact on the selectivity, while ZIF-71 enhances fluxes more significantly.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000382015100012 Publication Date 2016-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 26 Open Access
Notes Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:137188 Serial 4395
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Gulseren, O.; Peeters, F.M.
Title Mo2C as a high capacity anode material: a first-principles study Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume (up) 4 Issue 16 Pages 6029-6035
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g(-1) by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000374790700033 Publication Date 2016-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 202 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C. S. acknowledges the support from Turkish Academy of Sciences (TUBA-GEBIP). C. S acknowledges the support from Anadolu University (Grant No. 1407F335). We acknowledge the support from TUBITAK, The Scientific and Technological Research Council of Turkey (Grant No. 115F024). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:144763 Serial 4669
Permanent link to this record
 

 
Author Sevik, C.; Wallbank, J.R.; Gulseren, O.; Peeters, F.M.; Çakir, D.
Title Gate induced monolayer behavior in twisted bilayer black phosphorus Type A1 Journal article
Year 2017 Publication 2D materials Abbreviated Journal 2D Mater
Volume (up) 4 Issue 3 Pages 035025
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90 degrees. These calculations are complemented with a simple (k) over right arrow . (p) over right arrow model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90 degrees twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90 degrees simply by changing the direction of the applied electric field. In particular, a +0.4 (-0.4) V angstrom(1) out-of-plane electric field results in a similar to 60% increase in the hole effective mass along the y (x) axis and enhances the m(y)*/m(x)* (m(x)*/m(y)*) ratio as much as by a factor of 40. Our DFT and (k) over right arrow . (p) over right arrow simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000406926600001 Publication Date 2017-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 13 Open Access
Notes ; This work was supported by the bilateral project between the The Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from TUBITAK (Grant No. 115F024), ERC Synergy grant Hetero2D and the EU Graphene Flagship Project. We also thank Vladimir Fal'ko for helpful discussions. ; Approved Most recent IF: 6.937
Call Number UA @ lucian @ c:irua:145151 Serial 4717
Permanent link to this record
 

 
Author Ata, I.; Ben Dkhil, S.; Pfannmoeller, M.; Bals, S.; Duche, D.; Simon, J.-J.; Koganezawa, T.; Yoshimoto, N.; Videlot-Ackermann, C.; Margeat, O.; Ackermann, J.; Baeuerle, P.
Title The influence of branched alkyl side chains in A-D-A oligothiophenes on the photovoltaic performance and morphology of solution-processed bulk-heterojunction solar cells Type A1 Journal article
Year 2017 Publication Organic chemistry frontiers : an international journal of organic chemistry Abbreviated Journal Org Chem Front
Volume (up) 4 Issue 4 Pages 1561-1573
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Besides providing sufficient solubility, branched alkyl chains also affect the film-forming and packing properties of organic semiconductors. In order to avoid steric hindrance as it is present in wide-spread alkyl chains comprising a branching point position at the C2-position, i.e., 2-ethylhexyl, the branching point can be moved away from the pi-conjugated backbone. In this report, we study the influence of the modification of the branching point position from the C2-position in 2-hexyldecylamine (1) to the C4-position in 4-hexyldecylamine (2) connected to the central dithieno[3,2-b: 2', 3'-d] pyrrole (DTP) moiety in a well-studied A-D-A oligothiophene on the optoelectronic properties and photovoltaic performance in solution- processed bulk heterojunction solar cells (BHJSCs) with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor material. Post-treatment of the photoactive layers is performed via solvent vapor annealing (SVA) in order to improve the film microstructure of the bulk heterojunction. The time evolution of nanoscale morphological changes is followed by combining scanning transmission electron microscopy with low-energy-loss spectroscopic imaging (STEM-SI), solid-state absorption spectroscopy, and two-dimensional grazing incidence X-ray diffraction (2D-GIXRD). Our results show an improvement of the photovoltaic performance that is dependent on the branching point position in the donor oligomer. Optical spacers are utilized to increase light absorption inside the co-oligomer 2-based BHJSCs leading to increased power conversion efficiencies (PCEs) of 8.2% when compared to the corresponding co-oligomer 1-based devices. A STEM-SI analysis of the respective device cross-sections of active layers containing 1 and 2 as donor materials indeed reveals significant differences in their respective active layer morphologies.
Address
Corporate Author Thesis
Publisher RSC Publishing Place of Publication London Editor
Language Wos 000406374800013 Publication Date 2017-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-4129 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.955 Times cited 24 Open Access OpenAccess
Notes ; We acknowledge financial support by the European Commission under the project “SUNFLOWER” (FP7-ICT-2011-7, grant number: 287594) and S.B. acknowledges the ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 4.955
Call Number UA @ lucian @ c:irua:145176UA @ admin @ c:irua:145176 Serial 4727
Permanent link to this record
 

 
Author Peymanirad, F.; Singh, S.K.; Ghorbanfekr-Kalashami, H.; Novoselov, K.S.; Peeters, F.M.; Neek-Amal, M.
Title Thermal activated rotation of graphene flake on graphene Type A1 Journal article
Year 2017 Publication 2D materials Abbreviated Journal 2D Mater
Volume (up) 4 Issue 2 Pages 025015
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The self rotation of a graphene flake over graphite is controlled by the size, initial misalignment and temperature. Using both ab initio calculations and molecular dynamics simulations, we investigate annealing effects on the self rotation of a graphene flake on a graphene substrate. The energy barriers for rotation and drift of a graphene flake over graphene is found to be smaller than 25 meV/atom which is comparable to thermal energy. We found that small flakes (of about similar to 4 nm) are more sensitive to temperature and initial misorientation angles than larger one (beyond 10 nm). The initial stacking configuration of the flake is found to be important for its dynamics and time evolution of misalignment. Large flakes, which are initially in the AA-or AB-stacking state with small misorientation angle, rotate and end up in the AB-stacking configuration. However small flakes can they stay in an incommensurate state specially when the initial misorientation angle is larger than 2 degrees. Our results are in agreement with recent experiments.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000424399600005 Publication Date 2017-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 16 Open Access
Notes ; We would like to acknowledge Annalisa Fasolino and MM van Wijk for providing us with the implemented parameters of REBO-KC [5] in LAMMPS. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation. ; Approved Most recent IF: 6.937
Call Number UA @ lucian @ c:irua:149364 Serial 4984
Permanent link to this record
 

 
Author Bercx, M.; Slap, L.; Partoens, B.; Lamoen, D.
Title First-Principles Investigation of the Stability of the Oxygen Framework of Li-Rich Battery Cathodes Type A1 Journal article
Year 2019 Publication MRS advances Abbreviated Journal MRS Adv.
Volume (up) 4 Issue 14 Pages 813-820
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Lithium-rich layered oxides such as Li<sub>2</sub>MnO<sub>3</sub>have shown great potential as cathodes in Li-ion batteries, mainly because of their large capacities. However, these materials still suffer from structural degradation as the battery is cycled, reducing the average voltage and capacity of the cell. The voltage fade is believed to be related to the migration of transition metals into the lithium layer, linked to the formation of O-O dimers with a short bond length, which in turn is driven by the presence of oxygen holes due to the participation of oxygen in the redox process. We investigate the formation of O-O dimers for partially charged O1-Li<sub>2</sub>MnO<sub>3</sub>using a first-principles density functional theory approach by calculating the reaction energy and kinetic barriers for dimer formation. Next, we perform similar calculations for partially charged O1-Li<sub>2</sub>IrO<sub>3</sub>, a Li-rich material for which the voltage fade was not observed during cycling. When we compare the stability of the oxygen framework, we conclude that the formation of O-O dimers is both thermodynamically and kinetically viable for O1-Li<sub>0.5</sub>MnO<sub>3</sub>. For O1-Li<sub>0.5</sub>IrO<sub>3</sub>, we observe that the oxygen lattice is much more stable, either returning to its original state when perturbed, or resulting in a structure with an O-O dimer that is much higher in energy. This can be explained by the mixed redox process for Li<sub>2</sub>IrO<sub>3</sub>, which is also shown from the calculated magnetic moments. The lack of O-O dimer formation in O1-Li<sub>0.5</sub>IrO<sub>3</sub>provides valuable insight as to why Li<sub>2</sub>IrO<sub>3</sub>does not demonstrate a voltage fade as the battery is cycled, which can be used to design Li-rich battery cathodes with an improved cycling performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000466846700004 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2059-8521 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access Not_Open_Access: Available from 22.02.2020
Notes We acknowledge the financial support of FWO-Vlaanderen through project G040116N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:160121 Serial 5179
Permanent link to this record
 

 
Author Rezvani, S.J.; Perali, A.; Fretto, M.; De Leo, N.; Flammia, L.; Milošević, M.; Nannarone, S.; Pinto, N.
Title Substrate-induced proximity effect in superconducting niobium nanofilms Type A1 Journal article
Year 2018 Publication Condensed Matter Abbreviated Journal
Volume (up) 4 Issue 1 Pages 4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Structural and superconducting properties of high-quality niobium nanofilms with different thicknesses are investigated on silicon oxide (SiO2) and sapphire substrates. The role played by the different substrates and the superconducting properties of the Nb films are discussed based on the defectivity of the films and on the presence of an interfacial oxide layer between the Nb film and the substrate. The X-ray absorption spectroscopy is employed to uncover the structure of the interfacial layer. We show that this interfacial layer leads to a strong proximity effect, especially in films deposited on a SiO2 substrate, altering the superconducting properties of the Nb films. Our results establish that the critical temperature is determined by an interplay between quantum-size effects, due to the reduction of the Nb film thicknesses, and proximity effects. The detailed investigation here provides reference characterizations and has direct and important implications for the fabrication of superconducting devices based on Nb nanofilms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000464289300001 Publication Date 2018-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes ; This project was financially supported by University of Camerino, FAR project CESEMN. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:159463 Serial 5233
Permanent link to this record