|   | 
Details
   web
Records
Author Müller, A.; Milošević, M.V.; Dale, S.E.C.; Engbarth, M.A.; Bending, S.J.
Title Magnetization measurements and Ginzburg-Landau simulations of micron-size \beta-tin samples : evidence for an unusual critical behavior of mesoscopic type-I superconductors Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume (down) 109 Issue 19 Pages 197003
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We describe investigations of the largely unexplored field of mesoscopic type-I superconductors. Micromagnetometry and 3D Ginzburg-Landau simulations of our single crystal β-tin samples in this regime reveal size- and temperature-dependent supercritical fields whose behavior is radically different from the bulk critical field HcB. We find that complete suppression of the intermediate state in medium-size samples can result in a surprising reduction of the critical field significantly below HcB. We also reveal an evolution of the superconducting-to-normal phase transition from the expected irreversible first order at low temperatures through the previously unobserved reversible first-order to a second-order transition close to Tc, where the critical field can be many times larger than HcB. Finally, we have identified striking correlations between the mesoscopic Hc3 for nucleation of surface superconductivity and the thermodynamic Hc near Tc. All these observations are entirely unexpected in the conventional type-I picture.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000310853100017 Publication Date 2012-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 21 Open Access
Notes ; This work was supported by the EPSRC-UK under Grant No. EP/E039944/1, and the Flemish Science Foundation (FWO). ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:102401 Serial 1893
Permanent link to this record
 

 
Author Szumniak, P.; Bednarek, S.; Partoens, B.; Peeters, F.M.
Title Spin-orbit-mediated manipulation of heavy-hole spin qubits in gated semiconductor nanodevices Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume (down) 109 Issue 10 Pages 107201
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A novel spintronic nanodevice is proposed that is able to manipulate the single heavy-hole spin state in a coherent manner. It can act as a single quantum logic gate. The heavy-hole spin transformations are realized by transporting the hole around closed loops defined by metal gates deposited on top of the nanodevice. The device exploits Dresselhaus spin-orbit interaction, which translates the spatial motion of the hole into a rotation of the spin. The proposed quantum gate operates on subnanosecond time scales and requires only the application of a weak static voltage which allows for addressing heavy-hole spin qubits individually. Our results are supported by quantum mechanical time-dependent calculations within the four-band Luttinger-Kohn model.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000308295700015 Publication Date 2012-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 41 Open Access
Notes ; This work was supported by the Grant No. NN202 128337 from the Ministry of Science and Higher Education, as well as by the “Krakow Interdisciplinary PhD-Project in Nanoscience and Advances Nanostructures” operated within the Foundation for Polish Science MPD Programme and cofinanced by European Regional Development Fund, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:101849 Serial 3094
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Unconventional vortex states in nanoscale superconductors due to shape-induced resonances in the inhomogeneous Cooper-pair condensate Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume (down) 109 Issue 10 Pages 107001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Vortex matter in mesoscopic superconductors is known to be strongly affected by the geometry of the sample. Here we show that in nanoscale superconductors with coherence length comparable to the Fermi wavelength the shape resonances of the order parameter results in an additional contribution to the quantum topological confinement-leading to unconventional vortex configurations. Our Bogoliubov-de Gennes calculations in a square geometry reveal a plethora of asymmetric, giant multivortex, and vortex-antivortex structures, stable over a wide range of parameters and which are very different from those predicted by the Ginzburg-Landau theory. These unconventional states are relevant for high-T-c nanograins, confined Bose-Einstein condensates, and graphene flakes with proximity-induced superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000308295700014 Publication Date 2012-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 31 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:101850 Serial 3801
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Peeters, F.M.
Title Position-dependent effect of non-magnetic impurities on superconducting properties of nanowires Type A1 Journal article
Year 2015 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume (down) 109 Issue 109 Pages 17010
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Anderson's theorem states that non-magnetic impurities do not change the bulk properties of conventional superconductors. However, as the dimensionality is reduced, the effect of impurities becomes more significant. Here we investigate superconducting nanowires with diameter comparable to the Fermi wavelength $\lambda_F$ (which is less than the superconducting coherence length) by using a microscopic description based on the Bogoliubov-de Gennes method. We find that: 1) impurities strongly affect the superconducting properties, 2) the effect is impurity position dependent, and 3) it exhibits opposite behavior for resonant and off-resonant wire widths. We show that this is due to the interplay between the shape resonances of the order parameter and the subband energy spectrum induced by the lateral quantum confinement. These effects can be used to manipulate the Josephson current, filter electrons by subband and investigate the symmetries of the superconducting subband gaps.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000348592100029 Publication Date 2015-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 7 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 1.957; 2015 IF: 2.095
Call Number UA @ lucian @ c:irua:128424 Serial 4227
Permanent link to this record
 

 
Author Milovanović, S.P.; Peeters, F.M.
Title Strain controlled valley filtering in multi-terminal graphene structures Type A1 Journal article
Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume (down) 109 Issue 109 Pages 203108
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Valley-polarized currents can be generated by local straining of multi-terminal graphene devices. The pseudo-magnetic field created by the deformation allows electrons from only one valley to transmit, and a current of electrons from a single valley is generated at the opposite side of the locally strained region. We show that valley filtering is most effective with bumps of a certain height and width. Despite the fact that the highest contribution to the polarized current comes from electrons from the lowest sub-band, contributions of other sub-bands are not negligible and can significantly enhance the output current. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000388000000049 Publication Date 2016-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 50 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:139165 Serial 4463
Permanent link to this record
 

 
Author Janyavula, S.; Lawson, N.; Çakir, D.; Beck, P.; Ramp, L.C.; Burgess, J.O.
Title The wear of polished and glazed zirconia against enamel Type A1 Journal article
Year 2013 Publication Journal Of Prosthetic Dentistry Abbreviated Journal J Prosthet Dent
Volume (down) 109 Issue 1 Pages 22-29
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Statement of problem. The wear of tooth structure opposing anatomically contoured zirconia crowns requires further investigation. Purpose. The purpose of this in vitro study was to measure the roughness and wear of polished, glazed, and polished then reglazed zirconia against human enamel antagonists and compare the measurements to those of veneering porcelain and natural enamel. Material and methods. Zirconia specimens were divided into polished, glazed, and polished then reglazed groups (n=8). A veneering porcelain (Ceramco3) and enamel were used as controls. The surface roughness of all pretest specimens was measured. Wear testing was performed in the newly designed Alabama wear testing device. The mesiobuccal cusps of extracted molars were standardized and used as antagonists. Three-dimensional (3D) scans of the specimens and antagonists were obtained at baseline and after 200 000 and 400 000 cycles with a profilometer. The baseline scans were superimposed on the posttesting scans to determine volumetric wear. Data were analyzed with a 1-way ANOVA and Tukey Honestly Significant Difference (HSD) post hoc tests (alpha=.05) Results. Surface roughness ranked in order of least rough to roughest was: polished zirconia, glazed zirconia, polished then reglazed zirconia, veneering porcelain, and enamel. For ceramic, there was no measureable loss on polished zirconia, moderate loss on the surface of enamel, and significant loss on glazed and polished then reglazed zirconia. The highest ceramic wear was exhibited by the veneering ceramic. For enamel antagonists, polished zirconia caused the least wear, and enamel caused moderate wear. Glazed and polished then reglazed zirconia showed significant opposing enamel wear, and veneering porcelain demonstrated the most. Conclusions. Within the limitations of the study, polished zirconia is wear-friendly to the opposing tooth. Glazed zirconia causes more material and antagonist wear than polished zirconia. The surface roughness of the zirconia aided in predicting the wear of the opposing dentition. (J Prosthet Dent 2013;109:22-29)
Address
Corporate Author Thesis
Publisher Place of Publication St. Louis, Mo. Editor
Language Wos 000313934900004 Publication Date 2013-01-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3913 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.095 Times cited 89 Open Access
Notes ; ; Approved Most recent IF: 2.095; 2013 IF: 1.419
Call Number UA @ lucian @ c:irua:128327 Serial 4612
Permanent link to this record
 

 
Author Wang, J.; Zhao, W.-S.; Hu, Y.; Filho, R.N.C.; Peeters, F.M.
Title Charged vacancy in graphene : interplay between Landau levels and atomic collapse resonances Type A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume (down) 109 Issue 10 Pages 104103-104106
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interplay between a magnetic field and the Coulomb potential from a charged vacancy on the electron states in graphene is investigated within the tight-binding model. The Coulomb potential removes locally Landau level degeneracy, while the vacancy introduces a satellite level next to the normal Landau level. These satellite levels are found throughout the positive-energy region, but in the negative-energy region, they turn into atomic collapse resonances. Crossings between Landau levels with different angular quantum number m are found. Unlike the point impurity system in which an anticrossing occurs between Landau levels of the same m, in this work anticrossing is found between the normal Landau level and the vacancy-induced level. The atomic collapse resonance hybridizes with the Landau levels. The charge at which the lowest Landau level m = -1, N = 1 crosses E = 0 increases with enhancing magnetic field. A Landau level scaling anomaly occurs when the charge is larger than the critical charge beta 0.6 and this critical charge is independent of the magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001199561900008 Publication Date 2024-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205508 Serial 9137
Permanent link to this record
 

 
Author Pascucci, F.; Conti, S.; Perali, A.; Tempère, J.; Neilson, D.
Title Effects of intralayer correlations on electron-hole double-layer superfluidity Type A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume (down) 109 Issue 9 Pages 094512-94515
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract We investigate the intralayer correlations acting within the layers in a superfluid system of electron -hole spatially separated layers. In this system, superfluidity is predicted to be almost exclusively confined to the Bose-Einstein condensate (BEC) and crossover regimes where the electron -hole pairs are well localized. In this case, Hartree-Fock is an excellent approximation for the intralayer correlations. We find in the BEC regime that the effect of the intralayer correlations on superfluid properties is negligible but in the BCS-BEC crossover regime the superfluid gap is significantly weakened by the intralayer correlations. This is caused by the intralayer correlations boosting the number of low -energy particle -hole excitations that drive the screening. We further find that the intralayer correlations suppress the predicted phenomenon in which the average pair size passes through a minimum as the crossover regime is traversed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001199662600001 Publication Date 2024-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205476 Serial 9145
Permanent link to this record
 

 
Author Moura, V.N.; Chaves, A.; Peeters, F.M.; Milošević, M.V.
Title McMillan-Ginzburg-Landau theory of singularities and discommensurations in charge density wave states of transition metal dichalcogenides Type A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume (down) 109 Issue 9 Pages 094507-94511
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The McMillan-Ginzburg-Landau (MGL) model for charge density waves (CDW) is employed in a systematic phenomenological study of the different phases that have been probed in recent experiments involving transition metal dichalcogenides. We implemented an efficient imaginary time evolution method to solve the MGL equations, which enabled us to investigate the role of different coupling parameters on the CDW patterns and to perform calculations with different energy functionals that lead to several experimentally observed singularities in the CDW phase profiles. In particular, by choosing the appropriate energy functionals, we were able to obtain phases that go beyond the well-known periodic phase slips (discommensurations), exhibiting also topological defects (i.e., vortex-antivortex pairs), domain walls where the CDW order parameter is suppressed, and even CDW with broken rotational symmetry. Finally, we briefly discuss the effect of these different CDW phases on the profile and critical temperature of the competing superconducting state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001199651500001 Publication Date 2024-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:205491 Serial 9158
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V.
Title Tailoring weak and metallic phases in a strong topological insulator by strain and disorder : conductance fluctuations signatures Type A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume (down) 109 Issue 4 Pages 045129-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Transport measurements are readily used to probe different phases in disordered topological insulators (TIs), where determining topological invariants explicitly is challenging. On that note, universal conductance fluctuations (UCF) theory asserts the conductance G for an ensemble has a Gaussian distribution, and that standard deviation 8G depends solely on the symmetries and dimensions of the system. Using a real-space tight -binding Hamiltonian on a system with Anderson disorder, we explore conductance fluctuations in a thin Bi2Se3 film and demonstrate the agreement of their behavior with UCF hypotheses. We further show that magnetic field applied out-of-plane breaks the time -reversal symmetry and transforms the system's Wigner-Dyson class from root symplectic to unitary, increasing 8G by 2. Finally, we reveal that while Bi2Se3 is a strong TI, weak TI and metallic phases can be stabilized in presence of strain and disorder, and detected by monitoring the conductance fluctuations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001173938400008 Publication Date 2024-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:204765 Serial 9177
Permanent link to this record
 

 
Author Nikolaev, A.V.; Prassides, K.; Michel, K.H.
Title Charge transfer and polymer phases in AC60 (A=K, Rb, Cs) fullerides Type A1 Journal article
Year 1998 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume (down) 108 Issue Pages 4912-4923
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000072588400025 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 14 Open Access
Notes Approved Most recent IF: 2.965; 1998 IF: 3.147
Call Number UA @ lucian @ c:irua:23985 Serial 338
Permanent link to this record
 

 
Author Croitoru, M.D.; van Dyck, D.; Liu, Y.Z.; Zhang, Z.
Title Measurement of specimen thickness by phase change determination in TEM Type A1 Journal article
Year 2008 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume (down) 108 Issue 12 Pages 1616-1622
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT); Vision lab
Abstract A non-destructive method for measuring the thickness of thin amorphous films composed of light elements has been developed. The method employs the statistics of the phase of the electron exit wave function. The accuracy of this method has been checked numerically by the multislice method and compared with that based on the mean inner potential.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000260808300016 Publication Date 2008-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 2 Open Access
Notes Approved Most recent IF: 2.843; 2008 IF: 2.629
Call Number UA @ lucian @ c:irua:75643 Serial 1961
Permanent link to this record
 

 
Author Carrillo-Nuñez, H.; Magnus, W.; Peeters, F.M.
Title A simplified quantum mechanical model for nanowire transistors based on non-linear variational calculus Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume (down) 108 Issue 6 Pages 063708,1-063708,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A simplified quantum mechanical model is developed to investigate quantum transport features such as the electron concentration and the current flowing through a silicon nanowire metal-oxide-semiconductor field-effect transistor (MOSFET). In particular, the electron concentration is extracted from a self-consistent solution of the Schrödinger and Poisson equations as well as the ballistic Boltzmann equation which have been solved by exploiting a nonlinear variational principle within the framework of the generalized local density approximation. A suitable action functional has been minimized and details of the implementation and its numerical minimization are given. The current density and its related current-voltage characteristics are calculated from the one-dimensional ballistic steady-state Boltzmann transport equation which is solved analytically by using the method of characteristic curves. The straightforward implementation, the computational speed and the good qualitative behavior of the transport characteristics observed in our approach make it a promising simulation method for modeling quantum transport in nanowire MOSFETs.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000282646400067 Publication Date 2010-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 7 Open Access
Notes ; This work was supported by Flemish Science Foundation (FWO-VI) and the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC. ; Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:84943 Serial 3006
Permanent link to this record
 

 
Author Komendová, L.; Chen, Y.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.
Title Two-band superconductors : hidden criticality deep in the superconducting state Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume (down) 108 Issue 20 Pages 207002-207002,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show that two-band superconductors harbor hidden criticality deep in the superconducting state, stemming from the critical temperature of the weaker band taken as an independent system. For sufficiently small interband coupling gamma the coherence length of the weaker band exhibits a remarkable deviation from the conventional monotonic increase with temperature, namely, a pronounced peak close to the hidden critical point. The magnitude of the peak scales as proportional to gamma(-mu), with the Landau critical exponent mu = 1/3, the same as found for the mean-field critical behavior with respect to the source field in ferromagnets and ferroelectrics. Here reported hidden criticality of multiband superconductors can be experimentally observed by, e.g., imaging of the variations of the vortex core in a broader temperature range. Similar effects are expected for the superconducting multilayers.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000304064000017 Publication Date 2012-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 75 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Useful discussions with A. V. Vagov are acknowledged. ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:98945 Serial 3770
Permanent link to this record
 

 
Author Zha, G.-Q.; Peeters, F.M.; Zhou, S.-P.
Title Vortex-antivortex dynamics in mesoscopic symmetric and asymmetric superconducting loops with an applied ac current Type A1 Journal article
Year 2014 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume (down) 108 Issue 5 Pages 57001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In the framework of the time-dependent Ginzburg-Landau formalism, we study the dynamics of vortex-antivortex (V-Av) pairs in mesoscopic symmetric and asymmetric superconducting loops under an applied ac current. In contrast to the case of a constant biasing dc current, the process of the V-Av collision and annihilation is strongly affected by the time-periodic ac signal. As the direction of the applied ac current is reversed, the existed V-Av pair moves backward and then collides with a new created Av-V pair in a symmetric loop. In the presence of an appropriate external magnetic field, a novel sinusoidal-like oscillatory mode of the magnetization curve is observed, and the periodic dynamical process of the V-Av annihilation occurs in both branches of the sample. Moreover, for the asymmetric sample with an off-centered hole the creation point of the V-Av pair shifts away from the center of the sample, and the creation and annihilation dynamics of V-Av pairs turns out to be very different from the symmetric case. Copyright (C) EPLA, 2014
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000346792400027 Publication Date 2014-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 4 Open Access
Notes ; We are grateful to GOLIBJON BERDIYOROV for useful discussions. This work was supported by NSF China under Grant Nos. 61371020 and 61271163, by Visiting Scholar Program of Shanghai Municipal Education Commission, by Innovation Program of Shanghai Municipal Education Commission under Grant No. 13YZ006, and by Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.957; 2014 IF: 2.095
Call Number UA @ lucian @ c:irua:122800 Serial 3851
Permanent link to this record
 

 
Author Agarwal, T.; Sorée, B.; Radu, I.; Raghavan, P.; Fiori, G.; Iannaccone, G.; Thean, A.; Heyns, M.; Dehaene, W.
Title Comparison of short-channel effects in monolayer MoS2 based junctionless and inversion-mode field-effect transistors Type A1 Journal article
Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume (down) 108 Issue 108 Pages 023506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Conventional junctionless (JL) multi/gate (MuG) field-effect transistors (FETs) require extremely scaled channels to deliver high on-state current with low short-channel effect related leakage. In this letter, using ultra-thin 2D materials (e.g., monolayer MoS2), we present comparison of short-channel effects in JL, and inversion-mode (IM) FETs. We show that JL FETs exhibit better sub-threshold slope (S.S.) and drain-induced-barrier-lowering (DIBL) in comparison to IM FETs due to reduced peak electric field at the junctions. But, threshold voltage (VT) roll-off with channel length downscaling is found to be significantly higher in JL FETs than IM FETs, due to higher source/drain controlled charges (dE/dx) in the channel. Further, we show that although VT roll-off in JL FETs improves by increasing the gate control, i.e., by scaling the oxide, or channel thickness, the sensitivity of threshold voltage on structural parameters is found out to be high. (C) 2016 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000370258400056 Publication Date 2016-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 13 Open Access
Notes ; ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:132318 Serial 4152
Permanent link to this record
 

 
Author Claes, J.; Partoens, B.; Lamoen, D.
Title Decoupled DFT-1/2 method for defect excitation energies Type A1 Journal Article
Year 2023 Publication Physical Review B Abbreviated Journal Phys. Rev. B
Volume (down) 108 Issue 12 Pages 125306
Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;
Abstract The DFT-1/2 method is a band-gap correction with GW precision at a density functional theory (DFT) computational cost. The method was also extended to correct the gap between defect levels, allowing for the calculation of optical transitions. However, this method fails when the atomic character of the occupied and unoccupied defect levels is similar as we illustrate by two examples, the tetrahedral hydrogen interstitial and the negatively charged vacancy in diamond. We solve this problem by decoupling the effect of the occupied and unoccupied defect levels and call this the decoupled DFT-1/2 method for defects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001089302800003 Publication Date 2023-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access Not_Open_Access
Notes This work was supported by the FWO (Research Foundation-Flanders), Project No. G0D1721N. This work was performed in part using HPC resources from the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government department EWI (Economie, Wetenschap & Innovatie). Approved Most recent IF: 3.7; 2023 IF: 3.836
Call Number CMT @ cmt @c:irua:201287 Serial 8976
Permanent link to this record
 

 
Author Bekaert, J.
Title Phonon-mediated superconductivity in ternary silicides X₄ CoSi (X = Nb, Ta) Type A1 Journal article
Year 2023 Publication Physical review B Abbreviated Journal
Volume (down) 108 Issue 13 Pages 134504-134507
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The superconducting properties of two recently synthesized ternary silicides with unit formula X<sub>4</sub>CoSi (X = Nb, Ta) are investigated through ab initio calculations combined with Eliashberg theory. Interestingly, their crystal structure comprises interlocking honeycomb networks of Nb/Ta atoms. Nb<sub>4</sub>CoSi is found to harbor better conditions for phonon-mediated superconductivity, as it possesses a higher density of states at the Fermi level, fostering stronger electron-phonon coupling. The superconducting critical temperatures (T<sub>c</sub>) follow the same trend, with Nb<sub>4</sub>CoSi having a twice higher value than Ta<sub>4</sub>CoSi. Furthermore, the calculated T<sub>c</sub> values (5.9 K vs 3.1 K) agree excellently with the experimentally obtained ones, establishing superconductivity in this new materials class as mediated by the electron-phonon coupling. Furthermore, my calculations show that the superconducting properties of these compounds do not simply correlate with the parameters of their honeycomb networks, contrary to proposals raised in the literature. Rather, their complete fermiology and phonon spectrum should be taken into account in order to explain their respective superconducting properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001140080300003 Publication Date 2023-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access
Notes Approved Most recent IF: 3.7; 2023 IF: 3.836
Call Number UA @ admin @ c:irua:201445 Serial 9071
Permanent link to this record
 

 
Author Santos-Castro, G.; Pandey, T.; Bruno, C.H.V.; Santos Caetano, E.W.; Milošević, M.V.; Chaves, A.; Freire, V.N.
Title Silicon and germanium adamantane and diamantane monolayers as two-dimensional anisotropic direct-gap semiconductors Type A1 Journal article
Year 2023 Publication Physical review B Abbreviated Journal
Volume (down) 108 Issue 3 Pages 035302-35310
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Structural and electronic properties of silicon and germanium monolayers with two different diamondoid crystal structures are detailed ab initio. Our results show that, despite Si and Ge being well-known indirect gap semiconductors in their bulk form, their adamantane and diamantane monolayers can exhibit optically active direct gap in the visible frequency range, with highly anisotropic effective masses, depending on the monolayer crystal structure. Moreover, we reveal that gaps in these materials are highly tunable with applied strain. These stable monolayer forms of Si and Ge are therefore expected to help bridging the gap between the fast growing area of opto-electronics in two-dimensional materials and the established silicon-based technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001074455300012 Publication Date 2023-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access
Notes Approved Most recent IF: 3.7; 2023 IF: 3.836
Call Number UA @ admin @ c:irua:200348 Serial 9089
Permanent link to this record
 

 
Author Lima, I.L.C.; Milošević, M.V.; Peeters, F.M.; Chaves, A.
Title Tuning of exciton type by environmental screening Type A1 Journal article
Year 2023 Publication Physical review B Abbreviated Journal
Volume (down) 108 Issue 11 Pages 115303-115308
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the binding energy and electron-hole (e-h) overlap of excitonic states confined at the interface between two-dimensional materials with type-II band alignment, i.e., with lowest conduction and highest valence band edges placed in different materials, arranged in a side-by-side planar heterostructure. We propose a variational procedure within the effective mass approximation to calculate the exciton ground state and apply our model to a monolayer MoS2/WS2 heterostructure. The role of nonabrupt interfaces between the materials is accounted for in our model by assuming a WxMo1-xS2 alloy around the interfacial region. Our results demonstrate that (i) interface-bound excitons are energetically favorable only for small interface thickness and/or for systems under high dielectric screening by the materials surrounding the monolayer, and that (ii) the interface exciton binding energy and its e-h overlap are controllable by the interface width and dielectric environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001077758300002 Publication Date 2023-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access
Notes Approved Most recent IF: 3.7; 2023 IF: 3.836
Call Number UA @ admin @ c:irua:200356 Serial 9110
Permanent link to this record
 

 
Author da Silva, A.L.C.; Candido, L.; Teixeira Rabelo, J.N.; Hai, G.-Q.; Peeters, F.M.
Title Anharmonic effects on thermodynamic properties of a graphene monolayer Type A1 Journal article
Year 2014 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume (down) 107 Issue 5 Pages 56004
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We extend the unsymmetrized self-consistent-field method (USF) for anharmonic crystals to layered non-Bravais crystals to investigate structural, dynamical and thermodynamic properties of a free-standing graphene monolayer. In this theory, the main anharmonicity of the crystal lattice has been included and the quantum corrections are taken into account in an h-expansion for the one-particle density matrix. The obtained result for the thermal expansion coefficient (TEC) of graphene shows a strong temperature dependence and agrees with experimental results by Bao et al. (Nat. Nanotechnol., 4 (2009) 562). The obtained value of TEC at room temperature (300 K) is -6.4 x 10(- 6) K- 1 and it becomes positive for T > T-alpha = 358K. We find that quantum effects are significant for T < 1000 K. The interatomic distance, effective amplitudes of the graphene lattice vibrations, adiabatic and isothermal bulk moduli, isobaric and isochoric heat capacities are also calculated and their temperature dependences are determined. Copyright (C) EPLA, 2014
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000341559900020 Publication Date 2014-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 23 Open Access
Notes ; This research was supported by the Brazilian agencies CNPq, FAPEG and FAPESP, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 1.957; 2014 IF: 2.095
Call Number UA @ lucian @ c:irua:119289 Serial 118
Permanent link to this record
 

 
Author Anisimovas, E.; Matulis, A.; Peeters, F.M.
Title Classical nature of quantum dots in a magnetic field Type A1 Journal article
Year 2005 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal Acta Phys Pol A
Volume (down) 107 Issue 1 Pages 188-192
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A quasiclassical theory of few-electron quantum dots in a strong magnetic field is developed. The ground state energy and the corresponding many-electron wave function are obtained and used to derive a universal relation of critical magnetic fields and calculate the currents and the density-current correlation function.
Address
Corporate Author Thesis
Publisher Place of Publication Warszawa Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record;
Impact Factor 0.469 Times cited Open Access
Notes Approved Most recent IF: 0.469; 2005 IF: 0.394
Call Number UA @ lucian @ c:irua:94749 Serial 369
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Lin, S.-H.; Peeters, F.M.; Jankó, B.
Title Formation of multiple-flux-quantum vortices in mesoscopic superconductors from simulations of calorimetric, magnetic, and transport properties Type A1 Journal article
Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume (down) 107 Issue 5 Pages 057002,1-057002,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Because of strong flux confinement in mesoscopic superconductors, a giant vortex may appear in the ground state of the system in an applied magnetic field. This multiquanta vortex can then split into individual vortices (and vice versa) as a function of, e.g., applied current, magnetic field, or temperature. Here we show that such transitions can be identified by calorimetry, as the formation or splitting of a giant vortex results in a clear jump in measured heat capacity versus external drive. We attribute this phenomenon to an abrupt change in the density of states of the quasiparticle excitations in the vortex core(s), and further link it to a sharp change of the magnetic susceptibility at the transitionproving that the formation of a giant vortex can also be detected by magnetometry.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000293333100006 Publication Date 2011-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 26 Open Access
Notes ; We thank O. Bourgeois, T. Yokoyama, M. Eschrig, and M. Ichioka for discussions. This work was supported by FWO-Vlaanderen, the Belgian Science Policy (IAP), the bilateral project Flanders-USA, NSF NIRT, ECS-0609249, and Institute of Theoretical Sciences, Notre Dame. ; Approved Most recent IF: 8.462; 2011 IF: 7.370
Call Number UA @ lucian @ c:irua:91237 Serial 1263
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M.
Title Magnetoresistance in a hybrid ferromagnetic/semiconductor device Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume (down) 107 Issue 6 Pages 063718,1-063718,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ballistic transport of a two-dimensional electron gas (2DEG) in a rectangle shaped wire, subjected to a local nonhomogeneous magnetic field that results from an in-plane magnetized ferromagnetic (FM) strip deposited above the 2DEG, is investigated theoretically. We found a positive magnetoresistance (MR), which exhibits hysteresis behavior with respect to the direction of the magnetic field sweep, in agreement with a recent experiment. This positive MR can be tuned by applying a gate voltage to the FM strip.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000276210800063 Publication Date 2010-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 10 Open Access
Notes ; ; Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:82281 Serial 1927
Permanent link to this record
 

 
Author Verberck, B.; Michel, K.H.
Title Nanotube field of C60 and C70 molecules in carbon nanotubes Type A1 Journal article
Year 2007 Publication International journal of quantum chemistry Abbreviated Journal Int J Quantum Chem
Volume (down) 107 Issue 13 Pages 2294-2319
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000249459800002 Publication Date 2007-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-7608;1097-461X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.92 Times cited 6 Open Access
Notes Approved Most recent IF: 2.92; 2007 IF: 1.368
Call Number UA @ lucian @ c:irua:65785 Serial 2282
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Covaci, L.; Peeters, F.M.
Title Rectification by an imprinted phase in a Josephson junction Type A1 Journal article
Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume (down) 107 Issue 17 Pages 177008-177008,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A Josephson phase shift can be induced in a Josephson junction by a strategically nearby pinned Abrikosov vortex (AV). For an asymmetric distribution of an imprinted phase along the junction (controlled by the position of the AV) such a simple system is capable of rectification of ac current in a broad and tunable frequency range. The resulting rectified voltage is a consequence of the directed motion of a Josephson antivortex which forms a pair with the AV when at local equilibrium. The proposed realization of the ratchet potential by an imprinted phase is more efficient than the asymmetric geometry of the junction itself, is easily realizable experimentally, and provides rectification even in the absence of an applied magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000296985000008 Publication Date 2011-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 28 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). G. R. B. and L. C. acknowledge individual support from FWO-Vlaanderen. ; Approved Most recent IF: 8.462; 2011 IF: 7.370
Call Number UA @ lucian @ c:irua:93715 Serial 2847
Permanent link to this record
 

 
Author Pathangi, H.; Cherman, V.; Khaled, A.; Sorée, B.; Groeseneken, G.; Witvrouw, A.
Title Towards CMOS-compatible single-walled carbon nanotube resonators Type A1 Journal article
Year 2013 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume (down) 107 Issue Pages 219-222
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We report a totally CMOS-compatible fabrication technique to assemble horizontally suspended single-walled carbon nanotube (SWCNT) resonators. Individual SWCNTs are assembled in parallel at multiple sites by a technique called dielectrophoresis. The mechanical resonance frequencies of the suspended SWCNTs are in the range of 2035 MHz as determined from the piezoresistive response of the resonators during electrostatic actuation. The resistance of the suspended SWCNT either remains unchanged or increases or decreases significantly as a function of the actuation frequency. This can be explained by the effect the nanotube chirality has on the piezoresistive gauge factor.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000319855800040 Publication Date 2012-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 1.806; 2013 IF: 1.338
Call Number UA @ lucian @ c:irua:109260 Serial 3685
Permanent link to this record
 

 
Author Vandenberghe, W.; Sorée, B.; Magnus, W.; Groeseneken, G.
Title Zener tunneling in semiconductors under nonuniform electric fields Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume (down) 107 Issue 5 Pages 054520,1-054520,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, a renewed interest in Zener tunneling has arisen because of its increasing impact on semiconductor device performance at nanometer dimensions. In this paper we evaluate the tunnel probability under the action of a nonuniform electric field using a two-band model and arrive at significant deviations from the commonly used Kanes model, valid for weak uniform fields only. A threshold on the junction bias where Kanes model for Zener tunneling breaks down is determined. Comparison with Kanes model particularly shows that our calculation yields a higher tunnel probability for intermediate electric fields and a lower tunnel probability for high electric fields. When performing a current calculation comparing to the WKB approximation for the case of an abrupt p-n junction significant differences concerning the shape of the I-V curve are demonstrated.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000275657500136 Publication Date 2010-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 22 Open Access
Notes ; William Vandenberghe gratefully acknowledges the support of a Ph. D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). These authors acknowledge the support from IMEC's Industrial Affiliation Program and the authors would like to thank Anne Verhulst for useful comments. ; Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:82450 Serial 3929
Permanent link to this record
 

 
Author Homm, P.; Dillemans, L.; Menghini, M.; Van Bilzen, B.; Bakalov, P.; Su, C.Y.; Lieten, R.; Houssa, M.; Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.; Seo, J.W.; Locquet, J.P.;
Title Collapse of the low temperature insulating state in Cr-doped V2O3 thin films Type A1 Journal article
Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume (down) 107 Issue 107 Pages 111904
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have grown epitaxial Cr-doped V2O3 thin films with Cr concentrations between 0% and 20% on (0001)-Al2O3 by oxygen-assisted molecular beam epitaxy. For the highly doped samples (>3%), a regular and monotonous increase of the resistance with decreasing temperature is measured. Strikingly, in the low doping samples (between 1% and 3%), a collapse of the insulating state is observed with a reduction of the low temperature resistivity by up to 5 orders of magnitude. A vacuum annealing at high temperature of the films recovers the low temperature insulating state for doping levels below 3% and increases the room temperature resistivity towards the values of Cr-doped V2O3 single crystals. It is well-know that oxygen excess stabilizes a metallic state in V2O3 single crystals. Hence, we propose that Cr doping promotes oxygen excess in our films during deposition, leading to the collapse of the low temperature insulating state at low Cr concentrations. These results suggest that slightly Cr-doped V2O3 films can be interesting candidates for field effect devices. (C) 2015 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000361639200020 Publication Date 2015-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes ; The authors acknowledge financial support from the FWO Project No. G052010N10 as well as the EU-FP7 SITOGA Project. P.H. acknowledges support from Becas Chile-CONICYT. ; Approved Most recent IF: 3.411; 2015 IF: 3.302
Call Number UA @ lucian @ c:irua:128728 Serial 4149
Permanent link to this record
 

 
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M.
Title Cation-controlled permeation of charged polymers through nanocapillaries Type A1 Journal article
Year 2023 Publication Physical review E Abbreviated Journal Phys Rev E
Volume (down) 107 Issue 3 Pages 034501-34510
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations are used to study the effects of different cations on the permeation of charged polymers through flat capillaries with heights below 2 nm. Interestingly, we found that, despite being monovalent, Li+ , Na+ , and K+ cations have different effects on polymer permeation, which consequently affects their transmission speed throughout those capillaries. We attribute this phenomenon to the interplay of the cations' hydration free energies and the hydrodynamic drag in front of the polymer when it enters the capillary. Different alkali cations exhibit different surface versus bulk preferences in small clusters of water under the influence of an external electric field. This paper presents a tool to control the speed of charged polymers in confined spaces using cations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000955986000006 Publication Date 2023-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0053 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.4; 2023 IF: 2.366
Call Number UA @ admin @ c:irua:196089 Serial 7586
Permanent link to this record