|   | 
Details
   web
Records
Author Asapu, R.; Claes, N.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W.
Title Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis Type A1 Journal article
Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume (up) 200 Issue 200 Pages 31-38
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Affordable silver-polymer core-shell nanoparticles are prepared using the layer-by-layer (LbL) technique. The metallic silver core is encapsulated with an ultra-thin protective shell that prevents oxidation and clustering without compromising the plasmonic properties. The core-shell nanoparticles retain their plasmonic near field enhancement effect, as studied from finite element numerical simulations. Control over the shell thickness up to the sub-nanometer level is there for key. The particles are used to prepare a plasmonic Ag-TiO2 photocatalyst of which the gas phase photocatalytic activity is monitored over a period of four months. The described system outperforms pristine TiO2 and retains its plasmonic enhancement in contrast to TiO2 modified with bare silver nanoparticles. With this an important step is made toward the development of long-term stable plasmonic (photocatalytic) applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384775600004 Publication Date 2016-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 45 Open Access OpenAccess
Notes CD, SL and SWV acknowledge the Research Foundation − Flanders (FWO) for financial support. CD further acknowledges BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014). SB acknowledges the European Research Council for the ERC Starting Grant #335078-COLOURATOM.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446
Call Number c:irua:134384 c:irua:134384UA @ admin @ c:irua:134384 Serial 4104
Permanent link to this record
 

 
Author Krishnamurthy, S.C.; Arseenko, M.; Kashiwar, A.; Dufour, P.; Marchal, Y.; Delahaye, J.; Idrissi, H.; Pardoen, T.; Mertens, A.; Simar, A.
Title Controlled precipitation in a new Al-Mg-Sc alloy for enhanced corrosion behavior while maintaining the mechanical performance Type A1 Journal article
Year 2023 Publication Materials characterization Abbreviated Journal
Volume (up) 200 Issue Pages 112886-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The hot working of 5xxx series alloys with Mg ≥3.5 wt% is a concern due to the precipitation of β (Al3Mg2) phase at grain boundaries favoring Inter Granular Corrosion (IGC). The mechanical and corrosion properties of a new 5028-H116 Al-Mg-Sc alloy under various β precipitates distribution is analyzed by imposing different cooling rates from the hot forming temperature (i.e. 325 °C). The mechanical properties are maintained regardless of the heat treatment. However, the different nucleation sites and volume fractions of β precipitates for different cooling rates critically affect IGC. Controlled furnace cooling after the 325 °C heat treatment is ideal in 5028-H116 alloy to reduce susceptibility to IGC after sensitization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000977059100001 Publication Date 2023-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.7; 2023 IF: 2.714
Call Number UA @ admin @ c:irua:195598 Serial 7291
Permanent link to this record
 

 
Author Nistor, L.C.; Van Tendeloo, G.; Dincã, G.
Title HRTEM studies of dislocations in cubic BN Type A1 Journal article
Year 2004 Publication Physica status solidi: A: applied research Abbreviated Journal Phys Status Solidi A
Volume (up) 201 Issue 11 Pages 2578-2582
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000224152700034 Publication Date 2004-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 8 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54849 Serial 1516
Permanent link to this record
 

 
Author Antipov, E.V.; Abakumov, A.M.; Alekseeva, A.M.; Rozova, M.G.; Hadermann, J.; Lebedev, O.I.; Van Tendeloo, G.
Title Oxygen and fluorine doping in Sr2MnGaO5 brownmillerite Type A1 Journal article
Year 2004 Publication Physica status solidi: A: applied research Abbreviated Journal Phys Status Solidi A
Volume (up) 201 Issue 7 Pages 1403-1409
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000221836300008 Publication Date 2004-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:49464 Serial 2544
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.
Title A technique for the sp2/sp3 characterization of carbon materials Type A1 Journal article
Year 2004 Publication Physica status solidi: A: applied research Abbreviated Journal Phys Status Solidi A
Volume (up) 201 Issue Pages 2492
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000224152700019 Publication Date 2004-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:49656 Serial 3472
Permanent link to this record
 

 
Author Chemchuen, S.; Zhou, K.; Kabir, N.A.; Chen, Y.; Ke, X.; Van Tendeloo, G.; Verpoort, F.
Title Tuning metal sites of DABCO MOF for gas purification at ambient conditions Type A1 Journal article
Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume (up) 201 Issue 201 Pages 277-285
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Metalorganic frameworks (MOFs) have emerged as new porous materials for capture and separation of binary gas mixtures. Tuning the metal sites in MOF structures has an impact on properties, which enhance affinity of gas adsorption and selectivity (e.g., surface area, cavity, electric field, etc.). The synthesis and characterization of a M-DABCO series (M = Ni, Co, Cu, Zn) of MOFs are described in this study. The experiments were conducted using multicomponent gas mixtures and the Ideal Adsorbed Solution Theory (IAST) was applied to determine the CO2/CH4 selectivity. Experimental adsorption isotherms were fitted with a model equation to evaluate the characteristic adsorption energy (Isosteric, Qst) of this series. The Ni metal in the M-DABCO series reveals the best performance concerning CO2 adsorption and CH4/CO2 selectivity at ambient conditions based on IAST calculations. The combination of characterizations, calculations and adsorption experiments were used to discuss the metal impact on the adsorption sites in the M-DABCO series at ambient conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000345185200030 Publication Date 2014-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 38 Open Access
Notes 246791-Countatoms Approved Most recent IF: 3.615; 2015 IF: 3.453
Call Number c:irua:120473 Serial 3748
Permanent link to this record
 

 
Author Willems, B.; de Corte, K.; Van Tendeloo, G.
Title Why does polycrystalline natural diamond turn black after annealing? Type A1 Journal article
Year 2004 Publication Physica status solidi: A: applied research Abbreviated Journal Phys Status Solidi A
Volume (up) 201 Issue 11 Pages 2486-2491
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000224152700018 Publication Date 2004-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 10 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54848 Serial 3917
Permanent link to this record
 

 
Author Leus, K.; Perez, J.P.H.; Folens, K.; Meledina, M.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P.
Title UiO-66-(SH)2 as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions Type A1 Journal article
Year 2017 Publication Faraday discussions Abbreviated Journal Faraday Discuss
Volume (up) 201 Issue Pages 145-161
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The dithiol functionalized UiO-66-(SH)(2) is developed as an efficient adsorbent for the removal of mercury in aqueous media. Important parameters for the application of MOFs in real-life circumstances include: stability and recyclability of the adsorbents, selectivity for the targeted Hg species in the presence of much higher concentrations of interfering species, and ability to purify wastewater below international environmental limits within a short time. We show that UiO-66-(SH)(2) meets all these criteria.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000409366000009 Publication Date 2017-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.588 Times cited 18 Open Access Not_Open_Access
Notes ; J. P. H. P. is grateful for the funding from the Vlaamse Interuniversitaire Raad-Universitaire Ontwikkelingssamenwerking (VLIR-UOS). K. L. acknowledges the financial support from the Ghent University BOF Postdoctoral Grant (01P06813T). ; Approved Most recent IF: 3.588
Call Number UA @ lucian @ c:irua:145653 Serial 4757
Permanent link to this record
 

 
Author Fatermans, J.; Van Aert, S.; den Dekker, A.J.
Title The maximum a posteriori probability rule for atom column detection from HAADF STEM images Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume (up) 201 Issue Pages 81-91
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Recently, the maximum a posteriori (MAP) probability rule has been proposed as an objective and quantitative method to detect atom columns and even single atoms from high-resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images. The method combines statistical parameter estimation and model-order selection using a Bayesian framework and has been shown to be especially useful for the analysis of the structure of beam-sensitive nanomaterials. In order to avoid beam damage, images of such materials are usually acquired using a limited incoming electron dose resulting in a low contrast-to-noise ratio (CNR) which makes visual inspection unreliable. This creates a need for an objective and quantitative approach. The present paper describes the methodology of the MAP probability rule, gives its step-by-step derivation and discusses its algorithmic implementation for atom column detection. In addition, simulation results are presented showing that the performance of the MAP probability rule to detect the correct number of atomic columns from HAADF STEM images is superior to that of other model-order selection criteria, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Moreover, the MAP probability rule is used as a tool to evaluate the relation between STEM image quality measures and atom detectability resulting in the introduction of the so-called integrated CNR (ICNR) as a new image quality measure that better correlates with atom detectability than conventional measures such as signal-to-noise ratio (SNR) and CNR.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000466343800009 Publication Date 2019-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 1 Open Access OpenAccess
Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (No. W.O.010.16N, No. G.0368.15N, No. G.0502.18N). This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 770887). Approved Most recent IF: 2.843
Call Number EMAT @ emat @UA @ admin @ c:irua:157176 Serial 5153
Permanent link to this record
 

 
Author Major, L.; Tirry, W.; Van Tendeloo, G.
Title Microstructure and defect characterization at interfaces in TiN/CrN multilayer coatings Type A1 Journal article
Year 2008 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech
Volume (up) 202 Issue 24 Pages 6075-6080
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Microstructures of TiN/CrN multilayer coatings deposited on austenite steel (Cr Ni 18 8) by pulsed laser deposition (PLD) are characterized using transmission electron microscopy while their mechanical properties were assessed in a ball-on-disk test. All coatings have the same total thickness of about 1 ìm. The individual layers show a highly defective columnar structure, which is characterized by conventional electron microscopy (TEM) as well as by high resolution TEM. These techniques, combined with measurements of the local chemical composition through EDS prove that PLD allows to produce fully separated CrN and TiN layers. The friction, and consequently the wear, are lowered by increasing the total number of layers in the coating.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000260267100042 Publication Date 2008-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.589 Times cited 23 Open Access
Notes Approved Most recent IF: 2.589; 2008 IF: 1.860
Call Number UA @ lucian @ c:irua:76614 Serial 2049
Permanent link to this record
 

 
Author Willems, B.; Nistor, L.; Ghica, C.; Van Tendeloo, G.
Title Strain mapping around dislocations in diamond and cBN Type A1 Journal article
Year 2005 Publication Physica status solidi: A: applied research Abbreviated Journal Phys Status Solidi A
Volume (up) 202 Issue 11 Pages 2224-2228
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000231925500033 Publication Date 2005-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:54850 Serial 3170
Permanent link to this record
 

 
Author Willems, B.; Martineau, P.M.; Fisher, D.; van Royen, J.; Van Tendeloo, G.
Title Dislocation distributions in brown diamond Type A1 Journal article
Year 2006 Publication Physica status solidi: A: applied research Abbreviated Journal Phys Status Solidi A
Volume (up) 203 Issue 12 Pages 3076-3080
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000240967400014 Publication Date 2006-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300;1862-6319; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 21 Open Access
Notes Approved Most recent IF: 1.775; 2006 IF: NA
Call Number UA @ lucian @ c:irua:61002 Serial 730
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.
Title First-principles characterization of amorphous carbon nitride systems: structural and electronic properties Type A1 Journal article
Year 2006 Publication Physica status solidi: A: applied research Abbreviated Journal Phys Status Solidi A
Volume (up) 203 Issue 12 Pages 3191-3197
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000240967400032 Publication Date 2006-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300;1862-6319; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 3 Open Access
Notes Approved Most recent IF: 1.775; 2006 IF: NA
Call Number UA @ lucian @ c:irua:61003 Serial 1205
Permanent link to this record
 

 
Author Udoh, K.-I.; El- Araby, A.M.; Tanaka, Y.; Hisatsune, K.; Yasuda, K.; Van Tendeloo, G.; van Landuyt, J.
Title Structural aspects of AuCu I or AuCu II and a cuboidal black configuration of f.c.c. disordered phase in AuCu-Pt and AuCu-Ag pseudobinary alloys Type A1 Journal article
Year 1995 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume (up) 203 Issue Pages 154-164
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos A1995TM62800016 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.567 Times cited 15 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:13298 Serial 3205
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Janssens, L.; De Backer, A.; Nellist, P.D.; Van Aert, S.
Title The atomic lensing model: new opportunities for atom-by-atom metrology of heterogeneous nanomaterials Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume (up) 203 Issue Pages 155
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The atomic lensing model has been proposed as a promising method facilitating atom-counting in heterogeneous nanocrystals [1]. Here, image simulations will validate the model, which describes dynamical diffraction as a superposition of individual atoms focussing the incident electrons. It will be demonstrated that the model is reliable in the annular dark field regime for crystals having columns containing dozens of atoms. By using the principles of statistical detection theory, it will be shown that this model gives new opportunities for detecting compositional differences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465021000020 Publication Date 2018-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 4 Open Access OpenAccess
Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N, G.0502.18N and WO.010.16N), and by personal grants to K.H.W. van den Bos and A. De Backer. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 770887). Approved Most recent IF: 2.843
Call Number EMAT @ emat @UA @ admin @ c:irua:155721 Serial 5074
Permanent link to this record
 

 
Author Müller-Caspary, K.; Krause, F.F.; Winkler, F.; Béché, A.; Verbeeck, J.; Van Aert, S.; Rosenauer, A.
Title Comparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume (up) 203 Issue 203 Pages 95-104
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study addresses the comparison of scanning transmission electron microscopy (STEM) measurements of momentum transfers using the first moment approach and the established method that uses segmented annular detectors. Using an ultrafast pixelated detector to acquire four-dimensional, momentum-resolved STEM signals, both the first moment calculation and the calculation of the differential phase contrast (DPC) signals are done for the same experimental data. In particular, we investigate the ability to correct the segment-based signal to yield a suitable approximation of the first moment for cases beyond the weak phase object approximation. It is found that the measurement of momentum transfers using segmented detectors can approach the first moment measurement as close as 0.13 h/nm in terms of a root mean square (rms) difference in 10 nm thick SrTiO3 for a detector with 16 segments. This amounts to 35% of the rms of the momentum transfers. In addition, we present a statistical analysis of the precision of first moment STEM as a function of dose. For typical experimental settings with recent hardware such as a Medipix3 Merlin camera attached to a probe-corrected STEM, we find that the precision of the measurement of momentum transfers stagnates above certain doses. This means that other instabilities such as specimen drift or scan noise have to be taken into account seriously for measurements that target, e.g., the detection of bonding effects in the charge density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465021000013 Publication Date 2018-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 25 Open Access OpenAccess
Notes ; The direct electron detector (Medipix3 Merlin) was funded by the Hercules fund from the Flemish Government. K. Muller-Caspary acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the framework of the Helmholtz Young Investigator Group moreSTEM (VH-NG-1317) at Forschungszentrum Julich, Germany. F. F. Krause acknowledges funding from the Central Research Development Fund of the University of Bremen, Germany. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) and the Research Fund of the University of Antwerp. ; Approved Most recent IF: 2.843
Call Number UA @ admin @ c:irua:160213 Serial 5242
Permanent link to this record
 

 
Author Leuthner, G.T.; Hummel, S.; Mangler, C.; Pennycook, T.J.; Susi, T.; Meyer, J.C.; Kotakoski, J.
Title Scanning transmission electron microscopy under controlled low-pressure atmospheres Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume (up) 203 Issue 203 Pages 76-81
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy (TEM) is carried out in vacuum to minimize the interaction of the imaging electrons with gas molecules while passing through the microscope column. Nevertheless, in typical devices, the pressure remains at 10(-7) mbar or above, providing a large number of gas molecules for the electron beam to crack, which can lead to structural changes in the sample. Here, we describe experiments carried out in a modified scanning TEM (STEM) instrument, based on the Nion UltraSTEM 100. In this instrument, the base pressure at the sample is around 2 x 10(-10 )mbar, and can be varied up to 10(-6) mbar through introduction of gases directly into the objective area while maintaining atomic resolution imaging conditions. We show that air leaked into the microscope column during the experiment is efficient in cleaning graphene samples from contamination, but ineffective in damaging the pristine lattice. Our experiments also show that exposure to O(2 )and H2O lead to a similar result, oxygen providing an etching effect nearly twice as efficient as water, presumably due to the two 0 atoms per molecule. H(2 )and N-2 environments have no influence on etching. These results show that the residual gas environment in typical TEM instruments can have a large influence on the observations, and show that chemical etching of carbon-based structures can be effectively carried out with oxygen.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465021000010 Publication Date 2019-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 4 Open Access
Notes Approved Most recent IF: 2.843
Call Number UA @ admin @ c:irua:165937 Serial 6321
Permanent link to this record
 

 
Author Wang, X.; Yao, X.; Schryvers, D.; Verlinden, B.; Wang, G.; Zhao, G.; Van Humbeeck, J.; Kustov, S.
Title Anomalous stress-strain behavior of NiTi shape memory alloy close to the border of superelastic window Type A1 Journal article
Year 2021 Publication Scripta Materialia Abbreviated Journal Scripta Mater
Volume (up) 204 Issue Pages 114135
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this work, we report an anomalous phenomenon on superelastic cycling of NiTi shape memory alloys when deforming at the temperature close to the border of superelastic window. New unexpected effects are found-(i) critical stress for inducing martensite transformation during the second loading cycle is higher than that of the first cycle; ( ii ) the plateau stress of the second cycle decreases to the original level when the strain overcomes the limit of the first cycle; ( iii ) transition from good superelasticity in the first cycle to fully irreversible strain in the second. We propose that defects generated during the first superelastic cycle close to the border of superelastic window impede following stress-induced martensitic transformations, leading to the increase of critical stress beyond yield stress of the B2 matrix, and thus functional fatigue of NiTi alloys. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000690441400007 Publication Date 2021-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.747
Call Number UA @ admin @ c:irua:181658 Serial 6853
Permanent link to this record
 

 
Author Chizhov, A.S.; Rumyantseva, M.N.; Vasiliev, R.B.; Filatova, D.G.; Drozdov, K.A.; Krylov, I.V.; Abakumov, A.M.; Gaskov, A.M.
Title Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots Type A1 Journal article
Year 2014 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume (up) 205 Issue Pages 305-312
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This work reports the study of photoconductivity and visible light activated room temperature gas sensors properties of nanocrystalline ZnO thick films sensitized with colloidal CdSe quantum dots (QDs). Nanocrystalline zinc oxide (ZnO) was synthesized by the precipitation method. Colloidal CdSe quantum dots were obtained by high temperature colloidal synthesis. Sensitization was effectuated by three different procedures including direct adsorption of CdSe QDs stabilized with oleic acid on ZnO surface, anchoring to the ZnO surface through a bifunctional molecule of mercaptopropionic acid (MPA), and coating of CdSe QDs with a monolayer of MPA with subsequent adsorption on ZnO surface. Sensor measurements demonstrated that obtained QD CdSe/ZnO nanocomposites can be used for NO2 detection under visible (green) light illumination at room temperature without any thermal heating. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000343117600041 Publication Date 2014-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 36 Open Access
Notes Approved Most recent IF: 5.401; 2014 IF: 4.097
Call Number UA @ lucian @ c:irua:121107 Serial 3848
Permanent link to this record
 

 
Author Zalfani, M.; Hu, Z.-Y.; Yu, W.-B.; Mahdouani, M.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djoued, Y.; Su, B.-L.
Title BiVo4/3DOM TiO2 nanocomposites : effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants Type A1 Journal article
Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume (up) 205 Issue 205 Pages 121-132
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A series of BiVO4/3DOM TiO2 nanocomposites have been synthesized and their photocatalytic activity was investigated under visible light irradiation using the RhB dye as model pollutant molecule in an aqueous solution. The effect of the amount of BiVO4 as visible light sensitizer on the photocatalytic activity of BiVO4/3DOM TiO2 nanocomposites was highlighted. The heterostructured composite system leads to much higher photocatalytic efficiencies than bare 3DOM TiO2 and BiVO4 nanoparticles. As the proportion of BiVO4 in BiVO4/3DOM TiO2 nanocomposites increases from 0.04 to 0.6, the photocatalytic performance of the BiVO4/3DOM TiO2 nanocomposites increases and then decreases after reaching a maximum at 0.2. This improvement in photocatalytic perfomance is related to 1) the interfacial electron transfer efficiency between the coupled materials, 2) the 3DOM TiO2 inverse opal structure with interconnected pores providing an easy mass transfer of the reactant molecules and high accessibility to the active sites and large surface area and 3) the effect of light sensitizer of BiVO4. Intensive studies on structural, textural, optical and surface properties reveal that the electronic interactions between BiVO4 and TiO2 lead to an improved charge separation of the coupled BiVO4/TiO2 system. The photogenerated charge carrier densities increase with increasing the BiVO4 content, which acts as visible light sensitizer to the TiO2 and is responsible for the enhancement in the rate of photocatalytic degradation. However, the photocatalytic activity is reduced when the BiVO4 amount is much higher than that of 3DOM TiO2. Two reasons could account for this behavior. First, with increasing BiVO4 content, the photogenerated electron/hole pairs are accumulated at the surface of the BiVO4 nanoparticles and the recombination rate increases as shown by the PL results. Second, decreasing the amount of 3DOM TiO2 in the nanocomposite decreases the surface area as shown by the BET results. Moreover, the poor adsorptive properties of the BiVO4 photocatalyst also affect the photocatalytic performance, in particular at higher BiVO4 content. The present work demonstrates that BiVO4/3DOM TiO2 is a very promising heterojunction system for visible light photocatalytic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000393931000013 Publication Date 2016-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 52 Open Access OpenAccess
Notes ; This work was realized with the financial support of Chinese Ministry of Education in a framework of the Changjiang Scholar Innovative Research Team Program (IRT_15R52). B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Member, University of Cambridge. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is also supported by PhD Programs Foundation (20120143120019) of Chinese Ministry of Education, the Wuhan Youth Chenguang Program of Science and Technology (2013070104010003), Hubei Provincial Natural Science Foundation (2014CFB160, 2015CFB516), the National Science Foundation for Young Scholars of China (No. 51502225) and Self-determined and Innovative Research Funds of the SKLWUT (2015-ZD-7). MZ thanks the scholarship support from the Laboratory of Inorganic Materials Chemistry ay the University of Namur. Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). This research used resources of the Electron Microscopy Service located at the University of Namur. This Service is member of the “Plateforme Technologique Morphologie – Imagerie”. The XPS analyses were made in the LISE, Department of Physics of University of Namur thanks to Dr. P. Louette. XRD measurements, UV-vis and photoluminescent spectroscopic analyses and N<INF>2</ INF> adsorption-desorption measurements were made with the facility of the “Plateforme Technologique Physico-Chimique”. ; Approved Most recent IF: 9.446
Call Number UA @ lucian @ c:irua:138601 Serial 4405
Permanent link to this record
 

 
Author Calestani, G.; Salsi, G.; Francesconi, M.G.; Masini, M.; Dimesso, L.; Migliori, A.; Zhang, X.F.; Van Tendeloo, G.
Title Effects of the annealing conditions on the structural and superconducting properties of Bi2-xPbxSr2Y0.2Ca0.8Cu2Oz Type A1 Journal article
Year 1993 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume (up) 206 Issue Pages 33-42
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1993KM09500006 Publication Date 2002-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.942 Times cited 10 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:6791 Serial 871
Permanent link to this record
 

 
Author Erfurt, D.; Koida, T.; Heinemann, M.D.; Li, C.; Bertram, T.; Nishinaga, J.; Szyszka, B.; Shibata, H.; Klenk, R.; Schlatmann, R.
Title Impact of rough substrates on hydrogen-doped indium oxides for the application in CIGS devices Type A1 Journal article
Year 2020 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C
Volume (up) 206 Issue Pages 110300
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Indium oxide based transparent conductive oxides (TCOs) are promising contact layers in solar cells due to their outstanding electrical and optical properties. However, when applied in Cu(In,Ga)Se-2 or Si-hetero-junction solar cells the specific roughness of the material beneath can affect the growth and the properties of the TCO. We investigated the electrical properties of hydrogen doped and hydrogen-tungsten co-doped indium oxides grown on rough Cu(In,Ga)Se-2 samples as well as on textured and planar glass. At sharp ridges and V-shaped valleys crack-shaped voids form inside the indium oxide films, which limit the effective electron mobility of the In2O3:H and In2O3:H,W thin films. This was found for films deposited by magnetron sputtering and reactive plasma deposition at several deposition parameters, before as well as after annealing and solid phase crystallization. This suggests universal behavior that will have a wide impact on solar cell devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000519653800038 Publication Date 2019-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.9 Times cited 5 Open Access OpenAccess
Notes ; This work was supported by the German Federal Ministry for Economic Affairs and Energy under contract number 0325762G (TCO4CIGS). The authors thank M. Hartig, K. Mayer-Stillrich, I. Dorbandt, B. Bunn, M. Kirsch for technical support. C. Li is grateful for financial support from Max Planck Society, Germany and technical support from the MPI FKF StEM group members. ; Approved Most recent IF: 6.9; 2020 IF: 4.784
Call Number UA @ admin @ c:irua:168668 Serial 6544
Permanent link to this record
 

 
Author Lin, F.; Meng, X.; Kukueva, E.; Kus, M.; Mertens, M.; Bals, S.; Van Doorslaer, S.; Cool, P.
Title Novel method to synthesize highly ordered ethane-bridged PMOs under mild acidic conditions : taking advantages of phosphoric acid Type A1 Journal article
Year 2015 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume (up) 207 Issue 207 Pages 61-70
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Highly ordered SBA-15-type ethane-bridged PMOs have been obtained by employing H3PO4 as acid to tune the pH in the presence of copolymer surfactant P123. The effects of the acidity and the addition of inorganic salt on the formation of the mesostructure are investigated. It is found that, compared with HCl, the polyprotic weak acid H3PO4 is preferable for the synthesis of highly ordered SBA-15-type ethane-bridged PMOs with larger pore size and surface areas under mild acidic conditions. Moreover, taking the advantages of the mild acidic condition, vanadium-containing SBA-15-type ethane-bridged PMOs were successfully prepared through a direct synthesis approach. The XRD, N2-sorption, UVVis and CW-EPR studies of the V-PMO show that part of the vanadium species are present in polymeric (VOV)n clusters, while part of the vanadium centers are well-dispersed and immobilized on the inner surface of the mesopores.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000350518600009 Publication Date 2015-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 5 Open Access OpenAccess
Notes ; The Erasmus Mundus CONNEC program is acknowledged for PhD funding of F.Lin. Furthermore, the authors acknowledge support by the GOA-BOF project 'Optimization of the structure-activity relation in nanoporous materials', funded by the University of Antwerp. ; Approved Most recent IF: 3.615; 2015 IF: 3.453
Call Number c:irua:123910 Serial 2379
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title Ab initio based atomic scattering amplitudes and {002} electron structure factors of InxGa1-xAs/GaAs quantum wells Type A1 Journal article
Year 2010 Publication Journal of physics : conference series Abbreviated Journal
Volume (up) 209 Issue 1 Pages 012040,1-012040,6
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The atomic scattering amplitudes of the various atoms of the systems Ga1−xInxAs, GaAs1−xNx and InAs1−xNx are calculated using the density functional theory (DFT) approach. The scattering amplitudes of N, Ga, As and In in the model systems are compared with the frequently used Doyle and Turner values. Deviation from the latter values is found for small scattering vectors (s<0.3Å−1) and for these scattering vectors dependence on the orientation of the scattering vector and the chemical environment is reported. We suggest a parametrization of these modified scattering amplitudes (MASAs) for small scattering vectors (s<1.0Å−1). The MASAs are exploited within zero pressure classical Metropolis Monte Carlo (MC), finite temperature calculations to investigate the effect of quantum well size on the electron {002} structure factor (SF) of Ga1−xInxAs quantum wells.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000283739100040 Publication Date 2010-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:85760 Serial 28
Permanent link to this record
 

 
Author Mortet, V.; Zhang, L.; Eckert, M.; D'Haen, J.; Soltani, A.; Moreau, M.; Troadec, D.; Neyts, E.; De Jaeger, J.C.; Verbeeck, J.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K.; Wagner, P.
Title Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth : experimental and theoretical study Type A1 Journal article
Year 2012 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume (up) 209 Issue 9 Pages 1675-1682
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, a detailed structural and spectroscopic study of nanocrystalline diamond (NCD) thin films grown by a continuous bias assisted CVD growth technique is reported. This technique allows the tuning of grain size and phase purity in the deposited material. The crystalline properties of the films are characterized by SEM, TEM, EELS, and Raman spectroscopy. A clear improvement of the crystalline structure of the nanograined diamond film is observed for low negative bias voltages, while high bias voltages lead to thin films consisting of diamond grains of only ∼10 nm nanometer in size, showing remarkable similarities with so-called ultrananocrystalline diamond. These layers arecharacterized by an increasing amount of sp2-bonded carbon content of the matrix in which the diamond grains are embedded. Classical molecular dynamics simulations support the observed experimental data, giving insight in the underlying mechanism for the observed increase in deposition rate with bias voltage. Furthermore, a high atomic concentration of hydrogen has been determined in these films. Finally, Raman scattering analyses confirm that the Raman line observed at ∼1150 cm−1 cannot be attributed to trans-poly-acetylene, which continues to be reported in literature, reassigning it to a deformation mode of CHx bonds in NCD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000308942100009 Publication Date 2012-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 31 Open Access
Notes M.E. and E.N. acknowledge financial support from, respectively, the Institute for Promotion of Innovation through Science and Technology in Flanders (IWT), and the Research Foundation-Flanders (FWO). J.V. gratefully acknowledges financial support from the GOA project “XANES meets ELNES” of the research fund of the University of Antwerp. Calculation support was provided by the University of Antwerp through the core facility CALCUA. G.V.T. acknowledges the ERC grant COUNTATOMS. The work was also financially supported by the joint UAUHasseltMethusalem “NANO” network, the Research Programs G.0068.07 and G.0555.10N of the Research Foundation-Flanders (FWO), the IAP-P6/42 project “Quantum Effects in Clusters and Nanowires”, and by the EU FP7 through the Integrated Infrastructure Initiative “ESMI” (No. 262348), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). Approved Most recent IF: 1.775; 2012 IF: 1.469
Call Number UA @ lucian @ c:irua:101516UA @ admin @ c:irua:101516 Serial 1364
Permanent link to this record
 

 
Author Dams, M.; Drijkoningen, L.; Pauwels, B.; Van Tendeloo, G.; de Vos, D.E.; Jacobs, P.A.
Title Pd-zeolites as heterogeneous catalysts in heck chemistry Type A1 Journal article
Year 2002 Publication Journal of catalysis Abbreviated Journal J Catal
Volume (up) 209 Issue 1 Pages 225-236
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000176501100027 Publication Date 2002-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9517; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.844 Times cited 157 Open Access
Notes Approved Most recent IF: 6.844; 2002 IF: 3.118
Call Number UA @ lucian @ c:irua:54844 Serial 2567
Permanent link to this record
 

 
Author Tytgat, T.; Hauchecorne, B.; Abakumov, A.M.; Smits, M.; Verbruggen, S.W.; Lenaerts, S.
Title Photocatalytic process optimisation for ethylene oxidation Type A1 Journal article
Year 2012 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume (up) 209 Issue Pages 494-500
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract When studying photocatalysis it is important to consider, beside the chemical approach, the engineering part related to process optimisation. To achieve this a fixed bed photocatalytic set-up consisting of different catalyst placings, in order to vary catalyst distribution, is studied. The use of a fixed quantity of catalyst placed packed or randomly distributed in the reactor, results in an almost double degradation for the distributed catalyst. Applying this knowledge leads to an improved performance with limited use of catalyst. A reactor only half filled with catalyst leads to higher degradation performance compared to a completely filled reactor. Taking into account this simple process optimisation by better distributing the catalyst a more sustainable photocatalytic air purification process is achieved. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000311190500058 Publication Date 2012-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 12 Open Access
Notes ; We are grateful for the delivered photocatalyst by Evonik as well as for the PhD grant (T. Tytgat) given by the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved Most recent IF: 6.216; 2012 IF: 3.473
Call Number UA @ lucian @ c:irua:105185 Serial 2609
Permanent link to this record
 

 
Author Müller, K.; Schowalter, M.; Rosenauer, A.; Jansen, J.; Tsuda, K.; Titantah, J.T.; Lamoen, D.
Title Refinement of chemically sensitive structure factors using parallel and convergent beam electron nanodiffraction Type A1 Journal article
Year 2010 Publication Journal of physics : conference series Abbreviated Journal
Volume (up) 209 Issue 1 Pages 012025-012025,4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We introduce a new method to measure structure factors from parallel beam electron diffraction (PBED) patterns. Bloch wave refinement routines were developed which can minimise the difference between simulated and experimental Bragg intensities via variation of structure factors, Debye parameters, specimen thickness and -orientation. Due to plane wave illumination, the PBED refinement is highly efficient not only in computational respect, but also concerning the experimental effort since energy filtering is shown to have no significant effect on the refinement results. The PBED method was applied to simulated GaAs diffraction patterns to derive systematic errors and rules for the identification of plausible refinement results. The evaluation of experimental GaAs PBED patterns yields a 200 X-ray structure factor of -6.33±0.14. Additionally, we obtained -6.35±0.13 from two-dimensional convergent beam electron diffraction refinements. Both results confirm density functional theory calculations published by Rosenauer et al. and indicate the inaccuracy of isolated atom scattering data, which is crucial e.g. for the composition evaluation by lattice fringe analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos Publication Date 2010-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596; ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:85761 Serial 2855
Permanent link to this record
 

 
Author Jalabert, D.; Pelloux-Gervais, D.; Béché, A.; Hartmann, J.M.; Gergaud, P.; Rouvière, J.L.; Canut, B.
Title Depth strain profile with sub-nm resolution in a thin silicon film using medium energy ion scattering Type A1 Journal article
Year 2012 Publication Physica Status Solidi A-Applications And Materials Science Abbreviated Journal Phys Status Solidi A
Volume (up) 209 Issue 2 Pages 265-267
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The depth strain profile in silicon from the Si (001) substrate to the surface of a 2 nm thick Si/12 nm thick SiGe/bulk Si heterostructure has been determined by medium energy ion scattering (MEIS). It shows with sub-nanometer resolution and high strain sensitivity that the thin Si cap presents residual compressive strain caused by Ge diffusion coming from the fully strained SiGe layer underneath. The strain state of the SiGe buffer have been checked by X-ray diffraction (XRD) and nano-beam electron diffraction (NBED) measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303382700005 Publication Date 2011-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 3 Open Access
Notes Approved Most recent IF: 1.775; 2012 IF: 1.469
Call Number UA @ lucian @ c:irua:136430 Serial 4497
Permanent link to this record
 

 
Author Turner, S.; Shenderova, O.; da Pieve, F.; Lu, Y.-G.; Yücelen, E.; Verbeeck, J.; Lamoen, D.; Van Tendeloo, G.
Title Aberration-corrected microscopy and spectroscopy analysis of pristine, nitrogen containing detonation nanodiamond Type A1 Journal article
Year 2013 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume (up) 210 Issue 10 Pages 1976-1984
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Aberration-corrected transmission electron microscopy, electron energy-loss spectroscopy, and density functional theory (DFT) calculations are used to solve several key questions about the surface structure, the particle morphology, and the distribution and nature of nitrogen impurities in detonation nanodiamond (DND) cleaned by a recently developed ozone treatment. All microscopy and spectroscopy measurements are performed at a lowered acceleration voltage (80/120kV), allowing prolonged and detailed experiments to be carried out while minimizing the risk of knock-on damage or surface graphitization of the nanodiamond. High-resolution TEM (HRTEM) demonstrates the stability of even the smallest nanodiamonds under electron illumination at low voltage and is used to image the surface structure of pristine DND. High resolution electron energy-loss spectroscopy (EELS) measurements on the fine structure of the carbon K-edge of nanodiamond demonstrate that the typical * pre-peak in fact consists of three sub-peaks that arise from the presence of, amongst others, minimal fullerene-like reconstructions at the nanoparticle surfaces and deviations from perfect sp(3) coordination at defects in the nanodiamonds. Spatially resolved EELS experiments evidence the presence of nitrogen within the core of DND particles. The nitrogen is present throughout the whole diamond core, and can be enriched at defect regions. By comparing the fine structure of the experimental nitrogen K-edge with calculated energy-loss near-edge structure (ELNES) spectra from DFT, the embedded nitrogen is most likely related to small amounts of single substitutional and/or A-center nitrogen, combined with larger nitrogen clusters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000329299700025 Publication Date 2013-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 37 Open Access
Notes 262348 ESMI; 246791 COUNTATOMS; FWO; Hercules; GOA XANES meets ELNES Approved Most recent IF: 1.775; 2013 IF: 1.525
Call Number UA @ lucian @ c:irua:110821UA @ admin @ c:irua:110821 Serial 41
Permanent link to this record