|   | 
Details
   web
Records
Author Lepoittevin, C.; Hadermann, J.; Malo, S.; Pérez, O.; Van Tendeloo, G.; Hervieu, M.
Title Two variants of the 1/2[110]p(203)p crystallographic shear structures: the phasoid Sr0.61Pb0.18(Fe0.75Mn0.25)O2.29 Type A1 Journal article
Year 2009 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume (down) 48 Issue 17 Pages 8257-8262
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract For the composition (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29, a new modulated crystallographic shear structure, related to perovskite, has been synthesized and structurally characterized by transmission electron microscopy. The structure can be described using a monoclinic supercell with cell parameters am = 27.595(2) Å, bm = 3.8786(2) Å, cm = 13.3453(9) Å, and βm = 100.126(5)°, refined from powder X-ray diffraction data. The incommensurate crystallographic shear phases require an alternative approach using the superspace formalism. This allows a unified description of the incommensurate phases from a monoclinically distorted perovskite unit cell and a modulation wave vector. The structure deduced from the high-resolution transmission electron microscopy and high-angle annular dark-field−scanning transmission electron microscopy images is that of a 1/2[110]p(203)p crystallographic shear structure. The structure follows the concept of a phasoid, with two coexisting variants with the same unit cell. The difference is situated at the translational interface, with the local formation of double (phase 2) or single (phase 1) tunnels, where the Pb cations are likely located.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000269313500032 Publication Date 2009-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 11 Open Access
Notes Esteem 026019 Approved Most recent IF: 4.857; 2009 IF: 4.657
Call Number UA @ lucian @ c:irua:78482 Serial 3786
Permanent link to this record
 

 
Author Hardy, A.; Van Elshocht, S.; De Dobbelaere, C.; Hadermann, J.; Pourtois, G.; De Gendt, S.; Afanas'ev, V.V.; Van Bael, M.K.
Title Properties and thermal stability of solution processed ultrathin, high-k bismuth titanate (Bi2Ti2O7) films Type A1 Journal article
Year 2012 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume (down) 47 Issue 3 Pages 511-517
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ultrathin bismuth titanate films (Bi2Ti2O7, 5-25 nm) are deposited onto SiO2/Si substrates by aqueous chemical solution deposition and their evolution during annealing is studied. The films crystallize into a preferentially oriented, pure pyrochlore phase between 500 and 700 degrees C, depending on the film thickness and the total thermal budget. Crystallization causes a strong increase of surface roughness compared to amorphous films. An increase of the interfacial layer thickness is observed after anneal at 600 degrees C, together with intermixing of bismuth with the substrate as shown by TEM-EDX. The band gap was determined to be similar to 3 eV from photoconductivity measurements and high dielectric constants between 30 and 130 were determined from capacitance voltage measurements, depending on the processing conditions. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000301994100001 Publication Date 2012-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.446 Times cited Open Access
Notes Approved Most recent IF: 2.446; 2012 IF: 1.913
Call Number UA @ lucian @ c:irua:97797 Serial 2727
Permanent link to this record
 

 
Author Hasanli, N.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Hayward, M.A.
Title Small-moment paramagnetism and extensive twinning in the topochemically reduced phase Sr2ReLiO5.5 Type A1 Journal article
Year 2018 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
Volume (down) 47 Issue 44 Pages 15783-15790
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Reaction of the cation-ordered double perovskite Sr2ReLiO6 with dilute hydrogen at 475 degrees C leads to the topochemical deintercalation of oxide ions from the host lattice and the formation of a phase of composition Sr2ReLiO5.5, as confirmed by thermogravimetric and EELS data. A combination of neutron and electron diffraction data reveals the reduction process converts the -Sr2O2-ReLiO4-Sr2O2-ReLiO4- stacking sequence of the parent phase into a -Sr2O2-ReLiO3-Sr2O2-ReLiO4-, partially anion-vacant ordered sequence. Furthermore a combination of electron diffraction and imaging reveals Sr2ReLiO5.5 exhibits extensive twinning – a feature which can be attributed to the large, anisotropic volume expansion of the material on reduction. Magnetisation data reveal a strongly reduced moment of (eff) = 0.505(B) for the d(1) Re6+ centres in the phase, suggesting there remains a large orbital component to the magnetism of the rhenium centres, despite their location in low symmetry coordination environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000450208000019 Publication Date 2018-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.029 Times cited Open Access Not_Open_Access
Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC. NH acknowledges funding from the “State Programme on Education of Azerbaijani Youth Abroad in 2007-2015” by the Ministry of Education of Azerbaijan. J. V. and N. G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 4.029
Call Number EMAT @ emat @c:irua:155771 Serial 5137
Permanent link to this record
 

 
Author Oleynikov, P.N.; Shpanchenko, R.V.; Rozova, M.G.; Abakumov, A.M.; Antipov, E.V.; Hadermann, J.; Lebedev, O.I.; Van Tendeloo, G.
Title Synthesis and structure of fluorinated RBa2Cu2O6+. (R=Dy, Ho and Tm) phases Type A1 Journal article
Year 2001 Publication Russian journal of inorganic chemistry Abbreviated Journal Russ J Inorg Chem+
Volume (down) 46 Issue 2 Pages 153-158
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-0236 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.787 Times cited Open Access
Notes Approved Most recent IF: 0.787; 2001 IF: NA
Call Number UA @ lucian @ c:irua:36045 Serial 3443
Permanent link to this record
 

 
Author Alekseeva, A.M.; Abakumov, A.M.; Chizhov, P.S.; Leithe-Jasper, A.; Schnelle, W.; Prots, Y.; Hadermann, J.; Antipov, E.V.; Grin, Y.
Title Ternary magnesium rhodium boride Mg2Rh1-xB6+2x with a modified Y2ReB6-type crystal structure Type A1 Journal article
Year 2007 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume (down) 46 Issue 18 Pages 7378-7386
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000248984500026 Publication Date 2007-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 12 Open Access
Notes Approved Most recent IF: 4.857; 2007 IF: 4.123
Call Number UA @ lucian @ c:irua:65595 Serial 3510
Permanent link to this record
 

 
Author Yan, L.; Niu, H.; Bridges, C.A.; Marshall, P.A.; Hadermann, J.; Van Tendeloo, G.; Chalker, P.R.; Rosseinsky, M.J.
Title Unit-cell-level assembly of metastable transition-metal oxides by pulsed-laser deposition Type A1 Journal article
Year 2007 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume (down) 46 Issue 24 Pages 4539-4542
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000247500600026 Publication Date 2007-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 16 Open Access
Notes Approved Most recent IF: 11.994; 2007 IF: 10.031
Call Number UA @ lucian @ c:irua:65593 Serial 3812
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Bals, S.; Nikolaev, I.V.; Antipov, E.V.; Van Tendeloo, G.
Title Crystallographic shear structures as a route to anion-deficient perovskites Type A1 Journal article
Year 2006 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume (down) 45 Issue 40 Pages 6697-6700
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000241474500022 Publication Date 2006-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 62 Open Access
Notes Approved Most recent IF: 11.994; 2006 IF: 10.232
Call Number UA @ lucian @ c:irua:61689 Serial 589
Permanent link to this record
 

 
Author Paria Sena, R.; Babaryk, A.A.; Khainakov, S.; Garcia-Granda, S.; Slobodyanik, N.S.; Van Tendeloo, G.; Abakumov, A.M.; Hadermann, J.
Title A pseudo-tetragonal tungsten bronze superstructure: a combined solution of the crystal structure of K6.4(Nb,Ta)36.3O94 with advanced transmission electron microscopy and neutron diffraction Type A1 Journal article
Year 2016 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
Volume (down) 45 Issue 45 Pages 973-979
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) A, b = 12.493(3) A, c = 3.95333(15) A. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.
Address Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium. joke.hadermann@uantwerpen.be babaryk@univ.kiev.ua
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000367614700018 Publication Date 2015-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.029 Times cited 6 Open Access
Notes We thank Dr E. Suard and Dr O. Fabello for assistance in collecting the neutron diffraction data. R.P.S. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791-COUNTATOMS. The titan microscope was partly funded by the Hercules fund from the Flemish Government. The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483-ESTEEM2. AAB acknowledges the JSPDS ICDD Grant-in-Aid program (12-02).; esteem2jra1; esteem2jra2 Approved Most recent IF: 4.029
Call Number c:irua:130408 c:irua:130408 Serial 3998
Permanent link to this record
 

 
Author Tyablikov, O.A.; Batuk, D.; Tsirlin, A.A.; Batuk, M.; Verchenko, V.Y.; Filimonov, D.S.; Pokholok, K.V.; Sheptyakov, D.V.; Rozova, M.G.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M.;
Title {110}-Layered B-cation ordering in the anion-deficient perovskite Pb2.4Ba2.6Fe2Sc2TiO13 with the crystallographic shear structure Type A1 Journal article
Year 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
Volume (down) 44 Issue 44 Pages 10753-10762
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A novel anion-deficient perovskite-based compound, Pb2.4Ba2.6Fe2Sc2TiO13, was synthesized via the citrate-based route. This compound is an n = 5 member of the A(n)B(n)O(3n-2) homologous series with unit-cell parameters related to the perovskite subcell a(p) approximate to 4.0 angstrom as a(p)root 2 x a(p) x 5a(p)root 2. The crystal structure of Pb2.4Ba2.6Fe2Sc2TiO13 consists of quasi-2D perovskite blocks with a thickness of three octahedral layers separated by the 1/2[110]((1) over bar 01)(p) crystallographic shear (CS) planes, which are parallel to the {110} plane of the perovskite subcell. The CS planes transform the corner-sharing octahedra into chains of edge-sharing distorted tetragonal pyramids. Using a combination of neutron powder diffraction, Fe-57 Mossbauer spectroscopy and atomic resolution electron energy-loss spectroscopy we demonstrate that the B-cations in Pb2.4Ba2.6Fe2Sc2TiO13 are ordered along the {110} perovskite layers with Fe3+ in distorted tetragonal pyramids along the CS planes, Ti4+ preferentially in the central octahedra of the perovskite blocks and Sc3+ in the outer octahedra of the perovskite blocks. Magnetic susceptibility and Mossbauer spectroscopy indicate a broadened magnetic transition around T-N similar to 45 K and the onset of local magnetic fields at low temperatures. The magnetic order is probably reminiscent of that in other A(n)B(n)O(3n-2) homologues, where G-type AFM order within the perovskite blocks has been observed.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000355701000026 Publication Date 2015-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.029 Times cited 1 Open Access
Notes Approved Most recent IF: 4.029; 2015 IF: 4.197
Call Number c:irua:127001 Serial 22
Permanent link to this record
 

 
Author Mazo, G.N.; Savvin, S.N.; Abakumov, A.M.; Hadermann, J.; Dobrovol'skii, Y.A.; Leonova, L.S.
Title Lanthanum-strontium cuprate as a promising cathodic matreila for solid oxide fuel cells Type A1 Journal article
Year 2007 Publication Russian journal of electrochemistry Abbreviated Journal Russ J Electrochem+
Volume (down) 43 Issue 4 Pages 436-442
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000246338500010 Publication Date 2007-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1023-1935;1608-3342; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.828 Times cited 8 Open Access
Notes Approved Most recent IF: 0.828; 2007 IF: 0.263
Call Number UA @ lucian @ c:irua:62062 Serial 1777
Permanent link to this record
 

 
Author Tuck, L.; Sayer, M.; Mackenzie, M.; Hadermann, J.; Dunfield, D.; Pietak, A.; Reid, J.W.; Stratilatov, A.D.
Title Composition and crystal structure of resorbable calcium phosphate thin films Type A1 Journal article
Year 2006 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume (down) 41 Issue 13 Pages 4273-4284
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000239282300041 Publication Date 2006-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 2 Open Access
Notes Approved Most recent IF: 2.599; 2006 IF: 0.999
Call Number UA @ lucian @ c:irua:60128 Serial 442
Permanent link to this record
 

 
Author Zelonka, K.; Sayer, M.; Freundorfer, A.P.; Hadermann, J.
Title Hydrothermal processing of barium strontium titanate sol-gel composite thin films Type A1 Journal article
Year 2006 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume (down) 41 Issue 12 Pages 3885-3897
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000239022100043 Publication Date 2006-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 10 Open Access
Notes Approved Most recent IF: 2.599; 2006 IF: 0.999
Call Number UA @ lucian @ c:irua:60566 Serial 1539
Permanent link to this record
 

 
Author Tsirlin, A.A.; Chernaya, V.V.; Shpanchenko, R.V.; Antipov, E.V.; Hadermann, J.
Title Crystal structure and properties of the new complex vanadium oxide K2SrV3O9 Type A1 Journal article
Year 2005 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume (down) 40 Issue 5 Pages 800-809
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000229376500010 Publication Date 2005-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.446 Times cited 9 Open Access
Notes Approved Most recent IF: 2.446; 2005 IF: 1.380
Call Number UA @ lucian @ c:irua:52373 Serial 564
Permanent link to this record
 

 
Author Shpanchenko, R.V.; Lapshina, O.A.; Antipov, E.V.; Hadermann, J.; Kaul, E.E.; Geibel, C.
Title New lead vanadium phosphate with langbeinite-type structure: Pb1.5V2(PO4)3 Type A1 Journal article
Year 2005 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume (down) 40 Issue 9 Pages 1569-1576
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000231208100018 Publication Date 2005-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.446 Times cited 14 Open Access
Notes Approved Most recent IF: 2.446; 2005 IF: 1.380
Call Number UA @ lucian @ c:irua:55031 Serial 2320
Permanent link to this record
 

 
Author Vladimirova, N.V.; Frolov, A.S.; Sanchez-Barriga, J.; Clark, O.J.; Matsui, F.; Usachov, D.Y.; Muntwiler, M.; Callaert, C.; Hadermann, J.; Neudachina, V.S.; Tamm, M.E.; Yashina, L.V.
Title Occupancy of lattice positions probed by X-ray photoelectron diffraction : a case study of tetradymite topological insulators Type A1 Journal article
Year 2023 Publication Surfaces and interfaces Abbreviated Journal
Volume (down) 36 Issue Pages 102516-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Occupancy of different structural positions in a crystal lattice often seems to play a key role in material prop-erties. Several experimental techniques have been developed to uncover this issue, all of them being mostly bulk sensitive. However, many materials including topological insulators (TIs), which are among the most intriguing modern materials, are intended to be used in devices as thin films, for which the sublattice occupancy may differ from the bulk. One of the possible approaches to occupancy analysis is X-ray Photoelectron Diffraction (XPD), a structural method in surface science with chemical sensitivity. We applied this method in a case study of Sb2(Te1-xSex)3 mixed crystals, which belong to prototypical TIs. We used high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) as a reference method to verify our analysis. We revealed that the XPD data for vacuum cleaved bulk crystals are in excellent agreement with the reference ones. Also, we demonstrate that the anion occupancy near a naturally formed surface can be rather different from that of the bulk. The present results are relevant for a wide range of compositions where the system remains a topological phase, as we ultimately show by probing the transiently occupied topological surface state above the Fermi level by ultrafast photoemission.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000901694900001 Publication Date 2022-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.2; 2023 IF: NA
Call Number UA @ admin @ c:irua:193502 Serial 7327
Permanent link to this record
 

 
Author Zhang, F.; Vanmeensel, K.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Naert, I.; Vleugels, J.
Title Critical influence of alumina content on the low temperature degradation of 2-3 mol% yttria-stabilized TZP for dental restorations Type A1 Journal article
Year 2015 Publication Journal of the European Ceramic Society Abbreviated Journal J Eur Ceram Soc
Volume (down) 35 Issue 35 Pages 741-750
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The influence of 0.25, 2 and 5 wt.% alumina addition on the mechanical properties and low temperature degradation (LTD) of 3, 2.5 and 2 mol% yttria-stabilized TZP ceramics was investigated. The amount of alumina addition was observed to have a crucial impact on the degradation of Y-TZP ceramics. Independent on the yttria stabilizer content, 0.25 wt.% alumina had a higher degradation retarding effect to Y-TZP ceramics than 2 and 5 wt.% of alumina addition, which had a comparable effect. The apparent activation energy for the degradation process was increased by adding alumina, but it was the same for 0.255 wt.% alumina doped 3Y-TZP ceramics. For Y-TZPs containing a small amount of alumina addition, only the segregated Al3+ at the grain boundaries of the zirconia grains was effective to retard the degradation of Y-TZPs. The secondary phase Al2O3 grains increased the degradation kinetics, which might be attributed to the residual stresses.
Address
Corporate Author Thesis
Publisher Place of Publication Barking Editor
Language Wos 000345201700032 Publication Date 2014-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0955-2219; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 37 Open Access
Notes Fwo G043110n Approved Most recent IF: 3.411; 2015 IF: 2.947
Call Number c:irua:121328 Serial 544
Permanent link to this record
 

 
Author Zhang, F.; Vanmeensel, K.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Naert, I.; Vleugels, J.
Title 3Y-TZP ceramics with improved hydrothermal degradation resistance and fracture toughness Type A1 Journal article
Year 2014 Publication Journal of the European Ceramic Society Abbreviated Journal J Eur Ceram Soc
Volume (down) 34 Issue 10 Pages 2453-2463
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Different factors such as the way of incorporating the Y2O3 stabilizer, alumina addition and sintering temperature were assessed with the goal to improve the low temperature degradation (LTD) resistance of 3Y-TZP without compromising on the mechanical properties. The degradation of hydrothermally treated specimens was studied by X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy. Decreasing the sintering temperature decreased the LTD susceptibility of 3Y-TZPs but did not allow to obtain a LTD resistant 3Y-TZP with optimized mechanical properties. Alumina addition along with the use of Y2O3 stabilizer coated starting powder allowed to combine both an excellent toughness and LTD resistance, as compared to alumina-free and stabilizer co-precipitated powder based equivalents. Transmission electron microscopy revealed that the improved LTD resistance could be attributed to the segregation of Al3+ at the grain boundary and the heterogeneously distributed Y3+ stabilizer.
Address
Corporate Author Thesis
Publisher Place of Publication Barking Editor
Language Wos 000336352500033 Publication Date 2014-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0955-2219; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 48 Open Access
Notes Fwo G.0431.10n Approved Most recent IF: 3.411; 2014 IF: 2.947
Call Number UA @ lucian @ c:irua:117065 c:irua:117065 Serial 11
Permanent link to this record
 

 
Author Feng, H.L.; Kang, C.-J.; Manuel, P.; Orlandi, F.; Su, Y.; Chen, J.; Tsujimoto, Y.; Hadermann, J.; Kotliar, G.; Yamaura, K.; McCabe, E.E.; Greenblatt, M.
Title Antiferromagnetic order breaks inversion symmetry in a metallic double perovskite, Pb₂NiOsO₆ Type A1 Journal article
Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
Volume (down) 33 Issue 11 Pages 4188-4195
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A polycrystalline sample of Pb2NiOsO6 was synthesized under high-pressure (6 GPa) and high-temperature (1575 K) conditions. Pb2NiOsO6 crystallizes in a monoclinic double perovskite structure with a centrosymmetric space group P2(1)/n at room temperature. Pb2NiOsO6 is metallic down to 2 K and shows a single antiferromagnetic (AFM) transition at T-N = 58 K. Pb2NiOsO6 is a new example of a metallic and AFM oxide with three-dimensional connectivity. Neutron powder diffraction and first-principles calculation studies indicate that both Ni and Os moments are ordered below T-N and the AFM magnetic order breaks inversion symmetry. This loss of inversion symmetry driven by AFM order is unusual in metallic systems, and the 3d-Sd double-perovskite oxides represent a new class of noncentrosymmetric AFM metallic oxides.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000661521800032 Publication Date 2021-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.466
Call Number UA @ admin @ c:irua:179679 Serial 6854
Permanent link to this record
 

 
Author Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J.
Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
Year 2016 Publication Dental materials Abbreviated Journal Dent Mater
Volume (down) 32 Issue 12 Pages E327-E337
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Objective. The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. Methods. Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n = 6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n = 10), single edge V-notched beam (SEVNB) fracture toughness (n = 8) and Vickers hardness (n = 10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n = 3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha = 0.05). Results. Lowering the alumina content below 0.25 wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5 mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2 mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. Significance. Three different approaches were compared to improve the translucency of 3YTZP ceramics. (C) 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000389516400003 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.07 Times cited 47 Open Access
Notes Approved Most recent IF: 4.07
Call Number UA @ lucian @ c:irua:140246 Serial 4447
Permanent link to this record
 

 
Author Tan, X.; Stephens, P.W.; Hendrickx, M.; Hadermann, J.; Segre, C.U.; Croft, M.; Kang, C.-J.; Deng, Z.; Lapidus, S.H.; Kim, S.W.; Jin, C.; Kotliar, G.; Greenblatt, M.
Title Tetragonal Cs1.17In0.81Cl3 : a charge-ordered indium halide perovskite derivative Type A1 Journal article
Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 31 Issue 6 Pages 1981-1989
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline samples of Cs1.17In0.81Cl3 were prepared by annealing a mixture of CsCl, InCl, and InCl3, stoichiometric for the targeted CsInCl3. Synchrotron powder X-ray diffraction refinement and chemical analysis by energy dispersive X-ray indicated that Cs1.17In0.81Cl3, a tetragonal distorted perovskite derivative (I4/m), is the thermodynamically stable product. The refined unit cell parameters and space group were confirmed by electron diffraction. In the tetragonal structure, In+ and In3+ are located in four different crystallographic sites, consistent with their corresponding bond lengths. In1, In2, and In3 are octahedrally coordinated, whereas In4 is at the center of a pentagonal bipyramid of Cl because of the noncooperative octahedral tilting of In4Cl6. The charged-ordered In+ and In3+ were also confirmed by X-ray absorption and Raman spectroscopy. Cs1.17In0.81Cl3 is the first example of an inorganic halide double perovskite derivative with charged-ordered In+ and In3+. Band structure and optical conductivity calculations were carried out with both generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) approach; the GGA calculations estimated the band gap and optical band gap to be 2.27 eV and 2.4 eV, respectively. The large and indirect band gap suggests that Cs1.17In0.81Cl3 is not a good candidate for photovoltaic application.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462950400017 Publication Date 2019-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access OpenAccess
Notes ; M.G. and X.T. were supported by the Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant No. DE-FOA-0001276. M.G. also acknowledges support of NSF-DMR-1507252 grant. G.K. and C.-J.K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. The use of the Advanced Photon Source at the Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The works at IOPCAS were supported by NSF & MOST of China through research projects. ; Approved Most recent IF: 9.466
Call Number UA @ admin @ c:irua:159413 Serial 5262
Permanent link to this record
 

 
Author Pearce, P.E.; Rousse, G.; Karakulina, O.M.; Hadermann, J.; Van Tendeloo, G.; Foix, D.; Fauth, F.; Abakumov, A.M.; Tarascon, J.-M.
Title β-Na1.7IrO3: A Tridimensional Na-Ion Insertion Material with a Redox Active Oxygen Network Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 30 Issue 10 Pages 3285-3293
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The revival of the Na-ion battery concept has prompted an intense search for new high capacity Na-based positive electrodes. Recently, emphasis has been placed on manipulating Na-based layered compounds to trigger the participation of the anionic network. We further explored this direction and show the feasibility of achieving anionic-redox activity in three-dimensional Na-based compounds. A new 3D β-Na1.7IrO3 phase was synthesized in a two-step process, which involves first the electrochemical removal of Li from β-Li2IrO3 to produce β-IrO3, which is subsequently reduced by electrochemical Na insertion. We show that β-Na1.7IrO3 can reversibly uptake nearly 1.3 Na+ per formula unit through an uneven voltage profile characterized by the presence of four plateaus related to structural transitions. Surprisingly, the β-Na1.7IrO3 phase was found to be stable up to 600 °C, while it could not be directly synthesized via conventional synthetic methods. Although these Na-based iridate phases are of limited practical interest, they help to understand how introducing highly polarizable guest ions (Na+) into host rocksalt-derived oxide structures affects the anionic redox mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000433403800014 Publication Date 2018-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access OpenAccess
Notes The authors thank A. Perez for fruitful discussions and his valuable help in synchrotron XRD experiment and Matthieu Courty for carrying out the DSC measurements. The authors also greatly thank Matthieu Saubanère and Marie-Liesse Doublet for valuable discussions on theoretical aspects of this work. This work is based on experiments performed on the Materials Science and Powder Diffraction Beamline at ALBA synchrotron (Proposal 2016091814), Cerdanyola del Vallès, E- 08290 Barcelona, Spain. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116-ARPEMA. G.R. acknowledges funding from ANR DeliRedox. O.M.K., J.H., and A.M.A. are grateful to FWO Vlaanderen for financial support under Grant G040116N. Approved Most recent IF: 9.466
Call Number EMAT @ emat @c:irua:152048 Serial 4996
Permanent link to this record
 

 
Author Morozov, V.; Deyneko, D.; Basoyich, O.; Khaikina, E.G.; Spassky, D.; Morozov, A.; Chernyshev, V.; Abakumov, A.; Hadermann, J.
Title Incommensurately modulated structures and luminescence properties of the AgxSm(2-x)/3WO4 (x=0.286, 0.2) scheelites as thermographic phosphors Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 30 Issue 14 Pages 4788-4798
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ag+ for Sm3+ substitution in the scheelite-type AgxSm(2-x)/3 square(1-2x)/3WO4 tungstates has been investigated for its influence on the cation-vacancy ordering and luminescence properties. A solid state method was used to synthesize the x = 0.286 and x = 0.2 compounds, which exhibited (3 + 1)D incommensurately modulated structures in the transmission electron microscopy study. Their structures were refined using high resolution synchrotron powder X-ray diffraction data. Under near-ultraviolet light, both compounds show the characteristic emission lines for (4)G(5/2) -> H-6(J) (J = 5/2, 7/2, 9/2, and 11/2) transitions of the Sm3+ ions in the range 550-720 nm, with the J = 9/2 transition at the similar to 648 nm region being dominant for all photoluminescence spectra. The intensities of the (4)G(5/2) -> H-6(9/2) and (4)G(5/2) -> H-6(7/2) bands have different temperature dependencies. The emission intensity ratios (R) for these bands vary reproducibly with temperature, allowing the use of these materials as thermographic phosphors.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000440105500037 Publication Date 2018-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 2 Open Access Not_Open_Access
Notes ; This research was supported by FWO (Project G039211N), Flanders Research Foundation. The research was carried out within the state assignment of FASO of Russia (Themes No. 0339-2016-0007). V.M. thanks the Russian Foundation for Basic Research (Grant 18-03-00611) for financial support. E.G.K. and O.B. acknowledge financial support from the Russian Foundation for Basic Research (Grant 16-03-00510). D.D. thanks the Foundation of the Russian Federation President (Grant MK-3502.2018.5) for financial support. We are grateful to the ESRF for granting the beamtime. V.C. is grateful for the financial support of the Russian Ministry of Science and Education (Project No. RFMEFI61616X0069). We are grateful to the ESRF for the access to ID22 station (experiment MA-3313). ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:153156 Serial 5107
Permanent link to this record
 

 
Author Morozov, V.A.; Batuk, D.; Batuk, M.; Basovich, O.M.; Khaikina, E.G.; Deyneko, D.V.; Lazoryak, B.I.; Leonidov, I.I.; Abakumov, A.M.; Hadermann, J.
Title Luminescence Property Upgrading via the Structure and Cation Changing in AgxEu(2–x)/3WO4and AgxGd(2–x)/3–0.3Eu0.3WO4 Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 29 Issue 20 Pages 8811-8823
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The creation and ordering of A-cation vacancies and the effect of cation substitutions in the scheelite-type framework are investigated as a factor for controlling the scheelite-type structure and luminescence properties. AgxEu3+(2−x)/3□(1−2x)/3WO4 and AgxGd(2−x)/3−0.3Eu3+0.3□(1−2x)/3WO4 (x = 0.5−0) scheelite-type phases were synthesized by a solid state method, and their structures were investigated using a combination of transmission electron microscopy techniques and powder synchrotron X-ray diffraction. Transmission electron microscopy also revealed the (3 + 1)D incommensurately modulated character of AgxEu3+(2−x)/3□(1−2x)/3WO4 (x = 0.286, 0.2) phases. The crystal structures of the scheelite-based AgxEu3+(2−x)/3□(1−2x)/3WO4 (x = 0.5, 0.286, 0.2) red phosphors have been refined from high resolution synchrotron powder X-ray diffraction data. The luminescence properties of all phases under near-ultraviolet (n-UV) light have been investigated. The excitation spectra of AgxEu3+(2−x)/3□(1−2x)/3WO4 (x = 0.5, 0.286,0.2) phosphors show the strongest absorption at 395 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. The excitation spectra of the Eu2/3□1/3WO4 and Gd0.367Eu0.30□1/3WO4 phases exhibit the highest contribution of the charge transfer band at 250 nm and thus the most efficient energy transfer mechanism between the host and the luminescent ion as compared to direct excitation. The emission spectra of all samples indicate an intense red emission due to the 5D0 → 7F2 transition of Eu3+. Concentration dependence of the 5D0 → 7F2 emission for AgxEu(2−x)/3□(1−2x)/3WO4 samples differs from the same dependence for the earlier studied NaxEu3+(2−x)/3□(1−2x)/3MoO4 (0 ≤ x ≤ 0.5) phases. The intensity of the 5D0 → 7F2 emission is reduced almost 7 times with decreasing x from 0.5 to 0, but it practically does not change in the range from x = 0.286 to x = 0.200. The emission spectra of Gd-containing samples show a completely different trend as compared to only Eu-containing samples. The Eu3+ emission under excitation of Eu3+(5L6) level (λex = 395 nm) increases more than 2.5 times with the increasing Gd3+ concentration from 0.2 (x = 0.5) to 0.3 (x = 0.2) in the AgxGd(2−x)/3−0.3Eu3+0.3□(1−2x)/3WO4, after which it remains almost constant for higher Gd3+ concentrations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413884900028 Publication Date 2017-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 7 Open Access Not_Open_Access
Notes This research was supported by FWO (project G039211N), Flanders Research Foundation. V.A.M. is grateful for financial support of the Russian Foundation for Basic Research (Grant 15-03-07741). E.G.K. and O.M.B. are grateful for financial support of the Russian Foundation for Basic Research (Grants 13-03-01020 and 16-03-00510). D.V.D. is grateful for financial support of the Russian Foundation for Basic Research (Grant 16-33-00197) and the Foundation of the President of the Russian Federation (Grant MK-7926.2016.5.). We are grateful to the ESRF for granting the beamtime. Experimental support of Andy Fitch at the ID31 beamline of ESRF is kindly acknowledged. Approved Most recent IF: 9.466
Call Number EMAT @ emat @c:irua:147241 Serial 4768
Permanent link to this record
 

 
Author Verchenko, V.Y.; Wei, Z.; Tsirlin, A.A.; Callaert, C.; Jesche, A.; Hadermann, J.; Dikarev, E.V.; Shevelkov, A.V.
Title Crystal growth of the Nowotny chimney ladder phase Fe2Ge3 : exploring new Fe-based narrow-gap semiconductor with promising thermoelectric performance Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 29 Issue 23 Pages 9954-9963
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('A new synthetic approach based on chemical transport reactions has been introduced to obtain the Nowotny chimney ladder phase Fe2Ge3 in the form of single crystals and polycrystalline powders. The single crystals possess the stoichiometric composition and the commensurate chimney ladder structure of the Ru2Sn3 type in contrast to the polycrystalline samples that are characterized by a complex microstructure. In compliance with the 18-n electron counting rule formulated for T-E intermetallics, electronic structure calculations reveal a narrow-gap semiconducting behavior of Fe2Ge3 favorable for high thermoelectric performance. Measurements of transport and thermoelectric properties performed on the polycrystalline samples confirm the formation of a narrow band gap of similar to 30 meV and reveal high absolute values of the Seebeck coefficient at elevated temperatures. Low glass-like thermal conductivity is observed in a wide temperature range that might be caused by the underlying complex microstructure.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000418206600013 Publication Date 2017-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access OpenAccess
Notes ; The authors thank Dr. Sergey Kazakov and Oleg Tyablikov for their help with the PXRD experiments. V.Y.V. appreciates the help of Dr. Sergey Dorofeev in provision and handling of the Mo(CO)<INF>6</INF> reagent. The work is supported by the Russian Science Foundation, Grant No. 17-13-01033. V.Y.V. appreciates the support from the European Regional Development Fund, Project No. TK134. A.A.T. acknowledges financial support by the Federal Ministry for Education and Research under the Sofia Kovalevskaya Award of the Alexander von Humboldt Foundation. E.V.D. thanks the National Science Foundation, Grant No. CHE-1152441. C.C. acknowledges the support from the University of Antwerp through the BOF Grant No. 31445. ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:148531 Serial 4869
Permanent link to this record
 

 
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G.
Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 29 Issue 20 Pages 8901-8913
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000413884900037 Publication Date 2017-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 13 Open Access OpenAccess
Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:147432 Serial 4886
Permanent link to this record
 

 
Author Karakulina, O.M.; Khasanova, N.R.; Drozhzhin, O.A.; Tsirlin, A.A.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M.
Title Antisite Disorder and Bond Valence Compensation in Li2FePO4F Cathode for Li-Ion Batteries Type A1 Journal article
Year 2016 Publication Chemistry Of Materials Abbreviated Journal Chem Mater
Volume (down) 28 Issue 28 Pages 7578-7581
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387518500004 Publication Date 2016-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 10 Open Access
Notes Russian Science Foundation, 16-19-00190 ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 9.466
Call Number EMAT @ emat @ c:irua:139170 c:irua:138599 Serial 4320
Permanent link to this record
 

 
Author Singh, V.; Mehta, B.R.; Sengar, S.K.; Karakulina, O.M.; Hadermann, J.; Kaushal, A.
Title Achieving independent control of core diameter and carbon shell thickness in Pd-C core–shell nanoparticles by gas phase synthesis Type A1 Journal article
Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume (down) 28 Issue 29 Pages 295603
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Pd-C core–shell nanoparticles with independently controllable core size and shell thickness are grown by gas phase synthesis. First, the core size is selected by electrical mobility values of charged particles, and second, the shell thickness is controlled by the concentration of carbon precursor gas. The carbon shell grows by adsorption of carbon precursor gas molecules on the surface of nanoparticles, followed by sintering. The presence of a carbon shell on Pd nanoparticles is potentially important in hydrogen-related applications operating at high temperatures or in catalytic reactions in acidic/aqueous environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404633200002 Publication Date 2017-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 1 Open Access Not_Open_Access
Notes VS is thankful to the All India Council for Technical Education, India, for providing assistantship under its Quality Improvement Programme. BRM gratefully acknowledges the support of the Nanomission Programme of the Department of Science and Technology (DST), India and Schlumberger Chair Professorship. BRM would also like to acknowledge the support from the project funded by BRNS, DAE, India. Approved Most recent IF: 3.44
Call Number EMAT @ emat @c:irua:144831 Serial 4712
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Sheptyakov, D.V.; Frontzek, M.; Hadermann, J.; Abakumov, A.M.
Title Layered oxychlorides [PbBiO2]An+1BnO3n-1Cl2(A = Pb/Bi, B = Fe/Ti) : intergrowth of the hematophanite and sillen phases Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 27 Issue 27 Pages 2946-2956
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract New layered structures corresponding to the general formula [PbBiO2]A(n+1)B(n)O(3n-1)Cl(2) Were prepared. Pb5BiFe3O10Cl2 (n = 3) and Pb5Bi2Fe4O13Cl2 (n = 4) are built as a stacking of truncated A(n+1)B(n)O(3n-1) perovskite blocks and alpha-PbO-type [A(2)O(2)](2+) (A = Pb, Bi) blocks combined with chlorine sheets. The alternation of these structural blocks can be represented as an intergrowth between the hematophanite and Sullen-type structural blocks. The crystal and-Magnetic structures of Pb5BiFe3O10Cl2 and Pb5Bi2Fe4O13Cl2 were investigated in the temperature range of 1.5-700 K using X-ray and neutron powder diffraction, transmission electron microscopy and Fe-57 Mossbauer spectroscopy. Both compounds crystallize in the I4/mmm space group with the unit cell parameters a approximate to a(p) approximate to 3.92 angstrom (a unit-cell parameter of the perovskite-structure), c approximate to 43.0 angstrom for the n = 3 member and c approximate to 53.5 angstrom for the n = 4 member. Despite the large separation between the slabs containing the Fe3+ ions (nearly 14 angstrom), long-range antiferromagnetic order sets in below similar to 600 K with the G-type arrangement of the Fe magnetic moments aligned along the c-axis. The possibility of mixing d(0) and d(n) cations at the B sublattice of these structures was also demonstrated by preparing the Ti-substituted n = 4 member Pb6BiFe3TiO13Cl2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353865800028 Publication Date 2015-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access
Notes Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:126060 Serial 1807
Permanent link to this record
 

 
Author Morozov, V.A.; Arakcheeva, A.V.; Pattison, P.; Meert, K.W.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J.
Title KEu(MoO4)2 : polymorphism, structures, and luminescent properties Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume (down) 27 Issue 27 Pages 5519-5530
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper, with the example of two different polymorphs of KEu(MoO4)2, the influence of the ordering of the A-cations on the luminescent properties in scheelite related compounds (A′,A″)n[(B′,B″)O4]m is investigated. The polymorphs were synthesized using a solid state method. The study confirmed the existence of only two polymorphic forms at annealing temperature range 9231203 K and ambient pressure: a low temperature anorthic α-phase and a monoclinic high temperature β-phase with an incommensurately modulated structure. The structures of both polymorphs were solved using transmission electron microscopy and refined from synchrotron powder X-ray diffraction data. The monoclinic β-KEu(MoO4)2 has a (3+1)-dimensional incommensurately modulated structure (superspace group I2/b(αβ0)00, a = 5.52645(4) Å, b = 5.28277(4) Å, c = 11.73797(8) Å, γ = 91.2189(4)o, q = 0.56821(2)a*0.12388(3)b*), whereas the anorthic α-phase is (3+1)-dimensional commensurately modulated (superspace group I1̅(αβγ)0, a = 5.58727(22) Å, b = 5.29188(18)Å, c = 11.7120(4) Å, α = 90.485(3)o, β = 88.074(3)o, γ = 91.0270(23)o, q = 1/2a* + 1/2c*). In both cases the modulation arises due to Eu/K cation ordering at the A site: the formation of a 2-dimensional Eu3+ network is characteristic for the α-phase, while a 3-dimensional Eu3+-framework is observed for the β-phase structure. The luminescent properties of KEu(MoO4)2 samples prepared under different annealing conditions were measured, and the relation between their optical properties and their structures is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000360323700011 Publication Date 2015-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 26 Open Access
Notes 278510 Vortex; Fwo G039211n; G004413n ECASJO_; Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:127244 Serial 3537
Permanent link to this record
 

 
Author Li, M.R.; Croft, M.; Stephens, P.W.; Ye, M.; Vanderbilt, D.; Retuerto, M.; Deng, Z.; Grams, C.P.; Hemberger, J.; Hadermann, J.; Li, W.M.; Jin, C.Q.; Saouma, F.O.; Jang, J.I.; Akamatsu, H.; Gopalan, V.; Walker, D.; Greenblatt, M.;
Title Mn2FeWO6 : a new Ni3TeO6-type polar and magnetic oxide Type A1 Journal article
Year 2015 Publication Advanced materials Abbreviated Journal Adv Mater
Volume (down) 27 Issue 27 Pages 2177-2181
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Mn22+Fe2+W6+O6, a new polar magnetic phase, adopts the corundum-derived Ni3TeO6-type structure with large spontaneous polarization (P-S) of 67.8 mu C cm-2, complex antiferromagnetic order below approximate to 75 K, and field-induced first-order transition to a ferrimagnetic phase below approximate to 30 K. First-principles calculations predict a ferrimagnetic (udu) ground state, optimal switching path along the c-axis, and transition to a lower energy udu-udd magnetic double cell.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000352548900004 Publication Date 2015-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 32 Open Access
Notes Approved Most recent IF: 19.791; 2015 IF: 17.493
Call Number c:irua:126002 Serial 3545
Permanent link to this record