|   | 
Details
   web
Records
Author Sels, D.; Sorée, B.; Groeseneken, G.
Title Quantum ballistic transport in the junctionless nanowire pinch-off field effect transistor Type A1 Journal article
Year 2011 Publication Journal of computational electronics Abbreviated Journal J Comput Electron
Volume (down) 10 Issue 1 Pages 216-221
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract In this work we investigate quantum ballistic transport in ultrasmall junctionless and inversion mode semiconducting nanowire transistors within the framework of the self-consistent Schrödinger-Poisson problem. The quantum transmitting boundary method is used to generate open boundary conditions between the active region and the electron reservoirs. We adopt a subband decomposition approach to make the problem numerically tractable and make a comparison of four different numerical approaches to solve the self-consistent Schrödinger-Poisson problem. Finally we discuss the IV-characteristics for small (r≤5 nm) GaAs nanowire transistors. The novel junctionless pinch-off FET or junctionless nanowire transistor is extensively compared with the gate-all-around (GAA) nanowire MOSFET.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000300735800021 Publication Date 2011-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited 12 Open Access
Notes ; ; Approved Most recent IF: 1.526; 2011 IF: 1.211
Call Number UA @ lucian @ c:irua:89501 Serial 2772
Permanent link to this record
 

 
Author Becker, M.; Guzzinati, G.; Béché, A.; Verbeeck, J.; Batelaan, H.
Title Asymmetry and non-dispersivity in the Aharonov-Bohm effect Type A1 Journal article
Year 2019 Publication Nature communications Abbreviated Journal Nat Commun
Volume (down) 10 Issue 10 Pages 1700
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Decades ago, Aharonov and Bohm showed that electrons are affected by electromagnetic potentials in the absence of forces due to fields. Zeilinger's theorem describes this absence of classical force in quantum terms as the “dispersionless” nature of the Aharonov-Bohm effect. Shelankov predicted the presence of a quantum “force” for the same Aharonov-Bohm physical system as elucidated by Berry. Here, we report an experiment designed to test Shelankov's prediction and we provide a theoretical analysis that is intended to elucidate the relation between Shelankov's prediction and Zeilinger's theorem. The experiment consists of the Aharonov-Bohm physical system; free electrons pass a magnetized nanorod and far-field electron diffraction is observed. The diffraction pattern is asymmetric confirming one of Shelankov's predictions and giving indirect experimental evidence for the presence of a quantum “force”. Our theoretical analysis shows that Zeilinger's theorem and Shelankov's result are both special cases of one theorem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000464338100011 Publication Date 2019-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 12 Open Access OpenAccess
Notes ; H.B. would like to thank Michael Berry for bringing the presence of a quantum “force” to our attention. A.B., G.G. and J.V. acknowledge support from the European Research Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX. G.G. acknowledges support from the Fonds Wetenschappelijk Onderzoek -Vlaanderen (FWO). M.B. and H.B. acknowledge support by the U.S. National Science Foundation under Grant No. 1602755. ; Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:159341 Serial 5241
Permanent link to this record
 

 
Author Spreitzer, M.; Klement, D.; Egoavil, R.; Verbeeck, J.; Kovac, J.; Zaloznik, A.; Koster, G.; Van Tendeloo, G.; Suvorov, D.; Rijnders, G.
Title Growth mechanism of epitaxial SrTiO3 on a (1 x 2) + (2 x 1) reconstructed Sr(1/2 ML)/Si(001) surface Type A1 Journal article
Year 2020 Publication Journal Of Materials Chemistry C Abbreviated Journal J Mater Chem C
Volume (down) 8 Issue 2 Pages 518-527
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sub-monolayer control over the growth at silicon-oxide interfaces is a prerequisite for epitaxial integration of complex oxides with the Si platform, enriching it with a variety of functionalities. However, the control over this integration is hindered by the intense reaction of the constituents. The most suitable buffer material for Si passivation is metallic strontium. When it is overgrown with a layer of SrTiO3 (STO) it can serve as a pseudo-substrate for the integration with functional oxides. In our study we determined a mechanism for epitaxial integration of STO with a (1 x 2) + (2 x 1) reconstructed Sr(1/2 ML)/Si(001) surface using all-pulsed laser deposition (PLD) technology. A detailed analysis of the initial deposition parameters was performed, which enabled us to develop a complete protocol for integration, taking into account the peculiarities of the PLD growth, STO critical thickness, and process thermal budget, in order to kinetically trap the reaction between STO and Si and thus to minimize the thickness of the interface layer. The as-prepared oxide layer exhibits STO(001)8Si(001) out-of-plane and STO[110]8Si[100] in-plane orientation and together with recent advances in large-scale PLD tools these results represent a new technological solution for the implementation of oxide electronics on demand.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000506852400036 Publication Date 2019-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited 12 Open Access OpenAccess
Notes ; The research was financially supported by the Slovenian Research Agency (Project No. P2-0091, J2-9237) and Ministry of Education, Science and Sport of the Republic of Slovenia (SIOX projects). This work was also funded by the European Union Council under the 7th Framework Program grant no. NMP3-LA-2010-246102 IFOX. J. V. and G. V. T. acknowledge funding from the Fund for Scientific Research Flanders under project no. G.0044.13N. ; Approved Most recent IF: 6.4; 2020 IF: 5.256
Call Number UA @ admin @ c:irua:165672 Serial 6298
Permanent link to this record
 

 
Author Peeters, F.M.; Devreese, J.T.
Title Hot magneto-phonon and electro-phonon resonances in heterostructures Type A1 Journal article
Year 1992 Publication Semiconductor science and technology: B Abbreviated Journal Semicond Sci Tech
Volume (down) 7 Issue Pages 15-20
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992HL26200006 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-1242;1361-6641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.19 Times cited 12 Open Access
Notes Approved CHEMISTRY, MEDICINAL 9/59 Q1 # CHEMISTRY, MULTIDISCIPLINARY 40/163 Q1 # COMPUTER SCIENCE, INFORMATION SYSTEMS 6/144 Q1 # COMPUTER SCIENCE, INTERDISCIPLINARY 10/104 Q1 #
Call Number UA @ lucian @ c:irua:2897 Serial 1491
Permanent link to this record
 

 
Author Bacaksiz, C.; Yagmurcukardes, M.; Peeters, F.M.; Milošević, M.V.
Title Hematite at its thinnest limit Type A1 Journal article
Year 2020 Publication 2d Materials Abbreviated Journal 2D Mater
Volume (down) 7 Issue 2 Pages 025029
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by the recent synthesis of two-dimensional alpha-Fe2O3 (Balan et al 2018 Nat. Nanotechnol. 13 602), we analyze the structural, vibrational, electronic and magnetic properties of single- and few-layer alpha-Fe2O3 compared to bulk, by ab initio and Monte-Carlo simulations. We reveal how monolayer alpha-Fe2O3 (hematene) can be distinguished from the few-layer structures, and how they all differ from bulk through observable Raman spectra. The optical spectra exhibit gradual shift of the prominent peak to higher energy, as well as additional features at lower energy when alpha-Fe2O3 is thinned down to a monolayer. Both optical and electronic properties have strong spin asymmetry, meaning that lower-energy optical and electronic activities are allowed for the single-spin state. Finally, our considerations of magnetic properties reveal that 2D hematite has anti-ferromagnetic ground state for all thicknesses, but the critical temperature for Morin transition increases with decreasing sample thickness. On all accounts, the link to available experimental data is made, and further measurements are prompted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000537341000002 Publication Date 2020-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited 12 Open Access
Notes ; This work was supported by Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by Flemish Supercomputer Center(VSC), and TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). Part of this work was also supported by FLAG-ERA project TRANS-2D-TMD and TOPBOF-UAntwerp. MY was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 5.5; 2020 IF: 6.937
Call Number UA @ admin @ c:irua:170301 Serial 6533
Permanent link to this record
 

 
Author Li, J.; Ji, M.; Schwarz, T.; Ke, X.; Van Tendeloo, G.; Yuan, J.; Pereira, P.J.; Huang, Y.; Zhang, G.; Feng, H.L.; Yuan, Y.H.; Hatano, T.; Kleiner, R.; Koelle, D.; Chibotaru, L.F.; Yamaura, K.; Wang, H.B.; Wu, P.H.; Takayama-Muromachi, E.; Vanacken, J.; Moshchalkov, V.V.;
Title Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors Type A1 Journal article
Year 2015 Publication Nature communications Abbreviated Journal Nat Commun
Volume (down) 6 Issue 6 Pages 7614
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional Swiss cheese-like pattern with in-plane and out-of-plane characteristic lengths slightly below ~1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000358857000007 Publication Date 2015-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 12 Open Access
Notes 246791 Countatoms Approved Most recent IF: 12.124; 2015 IF: 11.470
Call Number c:irua:126677 Serial 1827
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Poelman, H.; Galvita, V.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B.
Title One-pot synthesis of Pt catalysts based on layered double hydroxides: an application in propane dehydrogenation Type A1 Journal article
Year 2016 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol
Volume (down) 6 Issue 6 Pages 1863-1869
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Simple methods for producing noble metal catalysts with well-defined active sites and improved performance are highly desired in the chemical industry. However, the development of such methods still presents a formidable synthetic challenge. Here, we demonstrate a one-pot synthesis route for the controlled production of bimetallic Pt–In catalysts based on the single-step formation of Mg,Al,Pt,In-containing layered double hydroxides (LDHs). Besides their simple synthesis, these Pt–In catalysts exhibit superior propane dehydrogenation activity compared to their multi-step synthesized analogs. The presented material serves as a showcase for the one-pot synthesis of a broader class of LDH-derived mono- and multimetallic Pt catalysts. The compositional flexibility provided by LDH materials can pave the way towards highperforming Pt-based catalysts with tunable physicochemical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372172800031 Publication Date 2015-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.773 Times cited 12 Open Access
Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) by supplying financing of beam time at the DUBBLE beamline of the ESRF and travel costs and a post-doctoral fellowship for S. T. The authors acknowledge the assistance from the DUBBLE (XAS campaign 26-01-979) and SuperXAS staff (Proposal 20131191). E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to O. Janssens for performing ex situ XRD characterization. Approved Most recent IF: 5.773
Call Number c:irua:133167 Serial 4057
Permanent link to this record
 

 
Author Abakumov, A.M.; Rozova, M.G.; Alekseeva, A.M.; Kovba, M.L.; Antipov, E.V.; Lebedev, O.I.; Van Tendeloo, G.
Title Synthesis and structure of Sr2MnGaO5+\delta brownmillerites with variable oxygen content Type A1 Journal article
Year 2003 Publication Solid state sciences Abbreviated Journal Solid State Sci
Volume (down) 5 Issue 6 Pages 871-882
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000184765000005 Publication Date 2003-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 12 Open Access
Notes Approved Most recent IF: 1.811; 2003 IF: 1.327
Call Number UA @ lucian @ c:irua:54698 Serial 3445
Permanent link to this record
 

 
Author Schryvers, D.; Toth, L.; van Humbeeck, J.; Beyer, J.
Title Ni2Al versus Ni5Al3 ordering in Ni65Al35 austenite and martensite Type A1 Journal article
Year 1995 Publication Journal de physique: colloques, suppléments Abbreviated Journal
Volume (down) 5 Issue 8 Pages 1029-1034
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Les Ulis Editor
Language Wos A1995TX21300082 Publication Date 2014-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access
Notes Approved PHYSICS, APPLIED 47/145 Q2 #
Call Number UA @ lucian @ c:irua:13167 Serial 3548
Permanent link to this record
 

 
Author Curran, P.J.; Desoky, W.M.; Milošević, M.V.; Chaves, A.; Laloe, J.-B.; Moodera, J.S.; Bending, S.J.
Title Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume (down) 5 Issue 5 Pages 15569
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above T-c. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000363306000002 Publication Date 2015-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 12 Open Access
Notes ; P.J.C. and S.J.B. acknowledge support from EPSRC in the UK under grant number EP/J010626/1 and the NanoSC COST Action MP-1201. M.V.M. thanks the Research Foundation-Flanders (FWO) and CAPES Brazil. A.C. acknowledges the financial support of CNPq, under the PRONEX/FUNCAP and PQ programs. J.-B.L. and J.S.M. acknowledge ONR Grant N00014-06-01-0235. ; Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number UA @ lucian @ c:irua:129450 Serial 4248
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Bals, S.; Van Tendeloo, G.
Title Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM Type A1 Journal article
Year 2013 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech
Volume (down) 4 Issue Pages 77-86
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000314499700001 Publication Date 2013-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.127 Times cited 12 Open Access
Notes 262348 ESMI; 246791 COUNTATOMS; FWO G002410N; ESF Cost Action NanoTP MP0901 Approved Most recent IF: 3.127; 2013 IF: 2.332
Call Number UA @ lucian @ c:irua:106187 Serial 1848
Permanent link to this record
 

 
Author Ding, Y.; Maitra, S.; Arenas Esteban, D.; Bals, S.; Vrielinck, H.; Barakat, T.; Roy, S.; Van Tendeloo, G.; Liu, J.; Li, Y.; Vlad, A.; Su, B.-L.
Title Photochemical production of hydrogen peroxide by digging pro-superoxide radical carbon vacancies in carbon nitride Type A1 Journal article
Year 2022 Publication Cell reports physical science Abbreviated Journal
Volume (down) 3 Issue 5 Pages 100874-17
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Artificial photosynthesis of H2O2, an environmentally friendly oxidant and a clean fuel, holds great promise. However, improving its efficiency and stability for industrial implementation remains highly challenging. Here, we report the visible-light H2O2 artificial photosynthesis by digging pro-superoxide radical carbon vacancies in three-dimensional hierarchical porous g-C3N4 through a simple hydrolysis-freeze-drying-thermal treatment. A significant electronic structure change is revealed upon the implantation of carbon vacancies, broadening visible-light absorption and facilitating the photogenerated charge separation. The strong electron affinity of the carbon vacancies promotes superoxide radical (O-center dot(2)-) formation, significantly boosting the H2O2 photocatalytic production. The developed photocatalyst shows an H2O2 evolution rate of 6287.5 mM g(-1) h(-1) under visible-light irradiation with a long cycling stability being the best-performing photocatalyst among all reported g-C3N4-based systems. Our work provides fundamental insight into highly active and stable photocatalysts with great potential for safe industrial H2O2 production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000805830100006 Publication Date 2022-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access OpenAccess
Notes Y.D. thanks the China Scholarship Council (201808310127) for financial support. This work is financially supported by the National Natural Science Foundation of China (U1663225) , Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) of the Chinese Ministry of Education, Program of Introducing Talents of Discipline to Universities-Plan 111 (grant no. B20002) from the Ministry of Science and Technology and the Ministry of Education of China, and the National Key R&D Program of China (2016YFA0202602) . This research was also supported by the European Commission Interreg V France-Wallonie-Vlaanderen project “DepollutAir”. Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189706 Serial 7090
Permanent link to this record
 

 
Author Delabie, A.; Jayachandran, S.; Caymax, M.; Loo, R.; Maggen, J.; Pourtois, G.; Douhard, B.; Conard, T.; Meersschaut, J.; Lenka, H.; Vandervorst, W.; Heyns, M.;
Title Epitaxial chemical vapor deposition of silicon on an oxygen monolayer on Si(100) substrates Type A1 Journal article
Year 2013 Publication ECS solid state letters Abbreviated Journal Ecs Solid State Lett
Volume (down) 2 Issue 11 Pages P104-P106
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Crystalline superlattices consisting of alternating periods of Si layers and O-atomic layers are potential new channel materials for scaled CMOS devices. In this letter, we investigate Chemical Vapor Deposition (CVD) for the controlled deposition of O-atoms with O-3 as precursor on Si(100) substrates and Si epitaxy on the O-layer. The O-3 reaction at 50 degrees C on the H-terminated Si results in the formation of Si-OH and/or Si-O-Si-H surface species with monolayer O-content. Defect-free epitaxial growth of Si on an O-layer containing 6.4E+14 O-atoms/cm(2) is achieved from SiH4 at 500 degrees C. (C) 2013 The Electrochemical Society. All rights reserved.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000324582600006 Publication Date 2013-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8742;2162-8750; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.184 Times cited 12 Open Access
Notes Approved Most recent IF: 1.184; 2013 IF: 0.781
Call Number UA @ lucian @ c:irua:111208 Serial 1070
Permanent link to this record
 

 
Author Yang, T.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Nowik, I.; Stephens, P.W.; Hamberger, J.; Tsirlin, A.A.; Ramanujachary, K.V.; Lofland, S.; Croft, M.; Ignatov, A.; Sun, J.; Greenblatt, M.
Title _BiMnFe2O6, a polysynthetically twinned hcp MO structure Type A1 Journal article
Year 2010 Publication Chemical science Abbreviated Journal Chem Sci
Volume (down) 1 Issue 6 Pages 751-762
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The most efficient use of spatial volume and the lowest potential energies in the metal oxide structures are based on cubic close packing (ccp) or hexagonal close packing (hcp) of anions with cations occupying the interstices. A promising way to tune the composition of close packed oxides and design new compounds is related to fragmenting the parent structure into modules by periodically spaced planar interfaces, such as twin planes at the unit cell scale. The unique crystal chemistry properties of cations with a lone electron pair, such as Bi3+ or Pb2+, when located at interfaces, enables them to act as chemical scissors, to help relieve configurational strain. With this approach, we synthesized a new oxide, BiMnFe2O6, where fragments of the hypothetical hcp oxygen-based MO structure (the NiAs structure type), for the first time, serve as the building modules in a complex transition metal oxide. Mn3+ and Fe3+ ions are randomly distributed in two crystallographically independent sites (M1 and M2). The structure consists of quasi two-dimensional blocks of the 2H hexagonal close packed MO structure cut along the (114) crystal plane of the hcp lattice and stacked along the c axis. The blocks are related by a mirror operation that allows BiMnFe2O6 to be considered as a polysynthetically twinned 2H hcp MO structure. The transition to an AFM state with an incommensurate spin configuration at [similar] 212 K is established by 57Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat and low temperature powder neutron diffraction.
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000283939200013 Publication Date 2010-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 12 Open Access
Notes Approved Most recent IF: 8.668; 2010 IF: NA
Call Number UA @ lucian @ c:irua:85823 Serial 3517
Permanent link to this record
 

 
Author Avila-Brande, D.; Otero-Díaz, L.C.; Landa-Cánovas, A.R.; Bals, S.; Van Tendeloo, G.
Title A new Bi4Mn1/3W2/3O8Cl Sillén-Aurivillius intergrowth: synthesis and structural characterisation by quantitative transmission electron microscopy Type A1 Journal article
Year 2006 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume (down) Issue 9 Pages 1853-1858
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The synthesis and structural characterisation of a new phase with nominal composition Bi4Mn1/3W2/3O8Cl is presented. Conventional and analytical transmission electron microscopy are used to determine the composition, unit-cell symmetry and space group of the compound, whereas a structural model is deducted by exit-wave reconstruction in the transmission electron microscope. This technique allows the microscope information limit of 1.1 angstrom to be reached and the (light) oxygen atoms in the presence of heavier atoms (Bi, W, Mn) to be imaged. The average structure is refined from Xray powder diffraction data using the Rietveld method yielding an orthorhombic unit cell with lattice parameters a 5.467(4) angstrom, b = 5.466(7) angstrom and c = 14.159(3) angstrom and space group Cm2m, which could be described as a Sillen-Aurivillius intergrowth. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000237617800016 Publication Date 2006-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948;1099-0682; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 12 Open Access
Notes Approved Most recent IF: 2.444; 2006 IF: 2.704
Call Number UA @ lucian @ c:irua:59436 Serial 2335
Permanent link to this record
 

 
Author Ramachandran, D.; Egoavil, R.; Crabbe, A.; Hauffman, T.; Abakumov, A.; Verbeeck, J.; Vandendael, I.; Terryn, H.; Schryvers, D.
Title TEM and AES investigations of the natural surface nano-oxide layer of an AISI 316L stainless steel microfibre Type A1 Journal article
Year 2016 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford
Volume (down) 264 Issue 264 Pages 207-214
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The chemical composition, nanostructure and electronic structure of nanosized oxide scales naturally formed on the surface of AISI 316L stainless steel microfibres used for strengthening of composite materials have been characterised using a combination of scanning and transmission electron microscopy with energy-dispersive X-ray, electron energy loss and Auger spectroscopy. The analysis reveals the presence of three sublayers within the total surface oxide scale of 5.0-6.7 nm thick: an outer oxide layer rich in a mixture of FeO.Fe2 O3 , an intermediate layer rich in Cr2 O3 with a mixture of FeO.Fe2 O3 and an inner oxide layer rich in nickel.
Address Electron Microscopy for Materials Science, University of Antwerp, Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000385944300009 Publication Date 2016-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2720 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.692 Times cited 12 Open Access
Notes This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The authors are also thankful to Stijn Van den Broeck for help in FIB sample preparation, to Hamed Heidari for useful comments and to the N.V. Bekaert S.A. company for providing the microfibres. RE acknowledges funding by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. Approved Most recent IF: 1.692
Call Number c:irua:134087 Serial 4096
Permanent link to this record
 

 
Author Mueller, G.; Stahnke, F.; Bleiner, D.
Title Fast steel-cleanness characterization by means of laser-assisted plasma spectrometric methods Type A1 Journal article
Year 2006 Publication Talanta : the international journal of pure and applied analytical chemistry T2 – 34th Colloquium Spectroscopicum Internationale, SEP 04-09, 2005, Univ Antwerp, Antwerp, BELGIUM Abbreviated Journal Talanta
Volume (down) Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Laser-assisted plasma spectrometry is a palette of analytical techniques (L-OES, LA-ICP-MS) capable of fast spatially-resolved elemental analysis in the micrometer range. For fast estimation of the occurrence in steel samples of non-metallic inclusions, which degrade the material's technical properties, simultaneous OES detection and sequential ICP-MS detection were compared. Histograms were obtained for the intensity distribution of the acquired signals (laser pulse statistics). The skewness coefficient of the histograms for Al (indicator of non-metallic inclusions) was found to be clearly dependent on the fraction of non-metallic inclusions in the case of scanning L-OES. For LA-ICP-MS less clear dependence was observed, which was influenced by the acquisition characteristics. In fact, less measurement throughput limited for LA-ICP-MS the counting statistics to an extent that overrides the benefit of higher detection power as compared to L-OES. (c) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Oxford Editor
Language Wos 000242871900015 Publication Date 2006-07-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.162 Times cited 12 Open Access
Notes Approved Most recent IF: 4.162; 2006 IF: 2.810
Call Number UA @ lucian @ c:irua:103122 Serial 4518
Permanent link to this record
 

 
Author Zhang, L.; Lin, B.-C.; Wu, Y.-F.; Wu, H.; Huang, T.-W.; Chang, C.-R.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Xu, J.; Yu, D.; Liao, Z.-M.
Title Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties Type A1 Journal article
Year 2017 Publication ACS nano Abbreviated Journal Acs Nano
Volume (down) 11 Issue 11 Pages 6277-6285
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It has been theoretically proposed that the spin textures of surface states in a topological insulator can be directly transferred to graphene by means of the proximity effect, which is very important for realizing the two-dimensional topological insulator based on graphene. Here we report the anomalous magnetotransport properties of graphene-topological insulator Bi2Se3 heterojunctions, which are sensitive to the electronic coupling between graphene and the topological surface state. The coupling between the p_z orbitals of graphene and the p orbitals of the surface states on the Bi2Se3 bottom surface can be enhanced by applying a perpendicular negative magnetic field, resulting in a giant negative magnetoresistance at the Dirac point up to about -91%. Obvious resistances dip in the transfer curve at the Dirac point is also observed in the hybrid devices, which is consistent with theoretical predictions of the distorted Dirac bands with nontrivial spin textures inherited from the Bi2Se3 surface states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404808000110 Publication Date 2017-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 12 Open Access OpenAccess
Notes ; This work was supported by National Key Research and Development Program of China (Nos. 2016YFA0300802, 2013CB934600) and NSFC (No. 11234001). ; Approved Most recent IF: 13.942
Call Number EMAT @ emat @ c:irua:143192 Serial 4569
Permanent link to this record
 

 
Author Vanrompay, H.; Béché, A.; Verbeeck, J.; Bals, S.
Title Experimental Evaluation of Undersampling Schemes for Electron Tomography of Nanoparticles Type A1 Journal article
Year 2019 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume (down) 36 Issue 36 Pages 1900096
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract One of the emerging challenges in the field of 3D characterization of nanoparticles by electron tomography is to avoid degradation and deformation of the samples during the acquisition of a tilt series. In order to reduce the required electron dose, various undersampling approaches have been proposed. These methods include lowering the number of 2D projection images, reducing the probe current during the acquisition, and scanning a smaller number of pixels in the 2D images. A comparison is made between these approaches based on tilt series acquired for a gold nanoparticle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477679400014 Publication Date 2019-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 12 Open Access Not_Open_Access
Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO Grant No. 1S32617N). A.B. and J.V. acknowledge FWO project 6093417N “Compressed sensing enabling low dose imaging in STEM.” The authors thank G. González-Rubio, A. Sánchez-Iglesias, and L.M. Liz-Marzán for provision of the samples. Approved Most recent IF: 4.474
Call Number EMAT @ emat @UA @ admin @ c:irua:159986 Serial 5175
Permanent link to this record
 

 
Author Arslan Irmak, E.; Liu, P.; Bals, S.; Van Aert, S.
Title 3D Atomic Structure of Supported Metallic Nanoparticles Estimated from 2D ADF STEM Images: A Combination of Atom – Counting and a Local Minima Search Algorithm Type A1 Journal article
Year 2021 Publication Small methods Abbreviated Journal Small Methods
Volume (down) Issue Pages 2101150
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Determining the three-dimensional (3D) atomic structure of nanoparticles (NPs) is critical to understand their structure-dependent properties. It is hereby important to perform such analyses under conditions relevant for the envisioned application. Here, we investigate the 3D structure of supported Au NPs at high temperature, which is of importance to understand their behavior during catalytic reactions. To overcome limitations related to conventional high-resolution electron tomography at high temperature, 3D characterization of NPs with atomic resolution has been performed by applying atom-counting using atomic resolution annular darkfield scanning transmission electron microscopy (ADF STEM) images followed by structural relaxation. However, at high temperatures, thermal displacements, which affect the ADF STEM intensities, should be taken into account. Moreover, it is very likely that the structure of a NP investigated at elevated temperature deviates from a ground state configuration, which is difficult to determine using purely computational energy minimization approaches. In this paper, we therefore propose an optimized approach using an iterative local minima search algorithm followed by molecular dynamics (MD) structural relaxation of candidate structures associated with each local minimum. In this manner, it becomes possible to investigate the 3D atomic structure of supported NPs, which may deviate from their ground state configuration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000716511600001 Publication Date 2021-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 815128 REALNANO to SB, Grant 770887 PICOMETRICS to SVA, Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0267.18N, G.0502.18N, G.0346.21N).; sygmaSB; esteem3jra; esteem3reported Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:183289 Serial 6820
Permanent link to this record