toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Van Doorslaer, S.; Meynen, V.; Gorton, L.; De Wael, K. url  doi
openurl 
  Title Amperometric flow-injection analysis of phenols induced by reactive oxygen species generated under daylight irradiation of titania impregnated with horseradish peroxidase Type A1 Journal article
  Year 2020 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume (up) 92 Issue 92 Pages 3643-3649  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Titanium dioxide (TiO2) is a unique material for biosensing applications due to its capability of hosting enzymes. For the first time, we show that TiO2 can accumulate reactive oxygen species (ROS) under daylight irradiation and can support the catalytic cycle of horseradish peroxidase (HRP) without the need of H2O2 to be present in the solution. Phenolic compounds, such as hydroquinone (HQ) and 4-aminophenol (4-AP), were detected amperometrically in flow-injection analysis (FIA) mode via the use of an electrode modified with TiO2 impregnated with HRP. In contrast to the conventional detection scheme, no H2O2 was added to the analyte solution. Basically, the inherited ability of TiO2 to generate reactive oxygen species is used as a strategy to avoid adding H2O2 in the solution during the detection of phenolic compounds. Electron paramagnetic resonance (EPR) spectroscopy indicates the presence of ROS on titania which, in interaction with HRP, initiate the electrocatalysis toward phenolic compounds. The amperometric response to 4-AP was linear in the concentration range between 0.05 and 2 μM. The sensitivity was 0.51 A M–1 cm–2, and the limit of detection (LOD) 26 nM. The proposed sensor design opens new opportunities for the detection of phenolic traces by HRP-based electrochemical biosensors, yet in a more straightforward and sensitive way following green chemistry principles of avoiding the use of reactive and harmful chemical, such as H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518234700023 Publication Date 2020-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited 3 Open Access  
  Notes ; The authors thank Scientific Reseatch-Flanders (F-WO) (grant 12T4219N) for funding. ; Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number UA @ admin @ c:irua:166241 Serial 5463  
Permanent link to this record
 

 
Author Khan, S.U.; Trashin, S.A.; Korostei, Y.S.; Dubinina, T.V.; Tomilova, L.G.; Verbruggen, S.W.; De Wael, K. pdf  doi
openurl 
  Title Photoelectrochemistry for measuring the photocatalytic activity of soluble photosensitizers Type A1 Journal article
  Year 2020 Publication ChemPhotoChem Abbreviated Journal  
  Volume (up) 4 Issue 4 Pages 300-306  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We introduce a rapid method to test the photocatalytic activity of singlet‐oxygen‐producing photosensitizers using a batch cell, a LED laser and a conventional potentiostat. The strategy is based on coupling of photo‐oxidation of hydroquinone and simultaneous electrochemical reduction of its oxidized form at a carbon electrode in an organic solvent (methanol). This scheme gives an immediate response and avoids complications related to long‐term experiments such as oxidative photo‐degradation of photosensitizers and singlet oxygen traps by reactive oxygen species (ROS). Among the tested compounds, a fluoro‐substituted subphthalocyanine showed the highest photocurrent and singlet oxygen quantum yield (ΦΔ) in comparison to phenoxy‐ and tert‐butyl‐substituted analogues, whereas the lowest photocurrents and yields were observed for aggregated and dimeric phthalocyanine complexes. The method is useful for fast screening of the photosensitizing activity and represents the first example of one‐pot coupling of electrochemical and photocatalytic reactions in organic media.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520100400001 Publication Date 2020-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2367-0932 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access  
  Notes ; We gratefully acknowledge the financial support by ERA.Net RUS Plus Plasmon Electrolight project (No. 18-53-76006 ERA) and RSF 17-13-01197. ; Approved Most recent IF: 3.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:165912 Serial 5771  
Permanent link to this record
 

 
Author Gezahegn, T.W.; Van Passel, S.; Berhanu, T.; D'haese, M.; Maertens, M. pdf  url
doi  openurl
  Title Do bottom-up and independent agricultural cooperatives really perform better? Insights from a technical efficiency analysis in Ethiopia Type A1 Journal article
  Year 2020 Publication Agrekon Abbreviated Journal Agrekon  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract The cooperative landscape in Ethiopia is very heterogeneous with a mixture of remains of the pre-1991 government-controlled system and new post-1991 bottom-up collective action initiatives. This heterogeneity, coupled with a large growth in the number of cooperatives in the country, offers an interesting perspective to study the determinants of the (in)efficiency of cooperatives. In this paper, we analyse the performance of Ethiopian agricultural cooperatives, focusing on the degree of technical (in)efficiency and its determinants. We use the stochastic frontier approach in which we account for heteroskedasticity and the monotonicity of production functions, presenting a methodological improvement with respect to previous technical efficiency studies. The results show that NGO- and government-initiated cooperatives are less efficient than community-initiated ones, implying that governments and NGOs should not interfere too strongly in cooperative formation. Cooperatives with a high degree of heterogeneity in members' participation are found to be about 98% less efficient, while cooperatives that have paid employees are 33% more efficient. Besides, results show that cooperatives in Ethiopia function more efficiently if they incentivize committee members through monetary compensation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487651200001 Publication Date 2019-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0303-1853 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited Open Access  
  Notes ; The authors acknowledge funding from the VLIR-UOS TEAM Program (VLIR-UOS-ZEIN2015PR406 (13V95615T), Belgium. ; Approved Most recent IF: 1.3; 2020 IF: 0.224  
  Call Number UA @ admin @ c:irua:163772 Serial 6184  
Permanent link to this record
 

 
Author Rafiaani, P.; Kuppens, T.; Thomassen, G.; Van Dael, M.; Azadi, H.; Lebailly, P.; Van Passel, S. pdf  url
doi  openurl
  Title A critical view on social performance assessment at company level : social life cycle analysis of an algae case Type A1 Journal article
  Year 2020 Publication International Journal Of Life Cycle Assessment Abbreviated Journal Int J Life Cycle Ass  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Purpose Social indicators are not easy to be quantitatively analyzed, although at the local scale, the social impacts might be relevant and important. Using the existing approaches for both quantitative and semi-qualitative measurements, this study aims to assess the social impacts of a company working on algae production systems in Belgium through social life cycle analysis (SLCA). By highlighting the opportunities and challenges on the way of applying the existing SLCA approaches at company level, the objective of this study is to contribute to the development of a suitable and clear SLCA approach when a company is considered as the unit of analysis. Methods Based on the list of potential social impact categories suggested by the United Nations Environment Program/Society of Environmental Toxicology and Chemistry (UNEP/SETAC) guidelines (2009) for SLCA, three stakeholder groups (workers, consumers, and local community) and three subcategories associated with each stakeholder group were identified as the most relevant for carbon capture and utilization technologies. Company and sector level data were collected using existing documents and reports, and the data were analyzed and scored using a combined quantitative and semi-quantitative approach to develop a social assessment model for the case study. Results and discussion The company appears to perform well for all the evaluated social indicators except the one related to the subcategory “equal opportunity/discrimination for workers” for which the share of women employed is lower compared with the sector-level data. The results of our assessment were further discussed regarding the challenges and limitations of performing SLCA at the company level. Based on our experience, the validity of the outcomes is significantly influenced by the data availability, the generality of the indicators introduced within the UNEP/SETAC guidelines, and the subjectivity in data collection for the semi-quantitative assessment among others. Conclusions By highlighting the difficulties and challenges of applying the SLCA at the company level, our study provides a starting point for improving the quantitative assessment and monitoring social implications at the company level within a regional foreground in Europe.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000492643600001 Publication Date 2019-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0948-3349; 1614-7502 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 4.8; 2020 IF: 3.173  
  Call Number UA @ admin @ c:irua:164676 Serial 6141  
Permanent link to this record
 

 
Author Callaert, C. url  openurl
  Title Characterization of defects, modulations and surface layers in topological insulators and structurally related compounds Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume (up) Issue Pages 180 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165867 Serial 6288  
Permanent link to this record
 

 
Author Vets, C. pdf  openurl
  Title Growth properties of carbon nanomaterials : towards tuning for electronic applications Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume (up) Issue Pages 130 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:164737 Serial 6299  
Permanent link to this record
 

 
Author Pourbabak, S. url  openurl
  Title Influence of nano and microstructural features and defects in finegrained NiTi on the thermal and mechanical reversibility of the martensitic transformation Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume (up) Issue Pages 166 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165919 Serial 6305  
Permanent link to this record
 

 
Author Jin, B.; Liang, F.; Hu, Z.-Y.; Wei, P.; Liu, K.; Hu, X.; Van Tendeloo, G.; Lin, Z.; Li, H.; Zhou, X.; Xiong, Q.; Zhai, T. pdf  doi
openurl 
  Title Nonlayered CdSe flakes homojunctions Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume (up) 30 Issue 30 Pages 1908902  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract 2D homojunctions have stimulated extensive attention because of their perfect thermal and lattice matches, as well as their tunable band structures in 2D morphology, which provide fascinating opportunities for novel electronics and optoelectronics. Recently, 2D nonlayered materials have attracted the attention of researchers owing to their superior functional applications and diverse portfolio of the 2D family. Therefore, 2D nonlayered homojunctions would open the door to a rich spectrum of exotic 2D materials. However, they are not investigated due to their extremely difficult synthesis methods. Herein, nonlayered CdSe flakes homojunctions are obtained via self-limited growth with InCl3 as a passivation agent. Interestingly, two pieces of vertical wurtzite-zinc blende (WZ-ZB) homojunctions epitaxially integrate into WZ/ZB lateral junctions. These homojunctions show a divergent second-harmonic generation intensity, strongly correlated to the multiple twinned ZB phase, as identified by aberration-corrected scanning transmission electron microscopy and theoretical calculations. Impressively, the photodetector based on this WZ/ZB CdSe homojunction shows excellent performances, integrating a high photoswitching ratio (3.4 x 10(5)) and photoresponsivity (3.7 x 10(3) A W-1), suggesting promising potential for applications in electronics and optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508624800001 Publication Date 2020-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited 8 Open Access Not_Open_Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grant Nos. 21825103, 51727809, and 51802103), the Hubei Provincial Natural Science Foundation of China (2019CFA002), and the Fundamental Research Funds for the Central Universities (HUST: 2019kfyXMBZ018; WUT: 2019III012GX). Here the authors also thank the support from Analytical and Testing Center in HUST and the State Key Laboratory of Silicate Materials for Architectures in WUT. ; Approved Most recent IF: 19; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:165654 Serial 6314  
Permanent link to this record
 

 
Author Wang, J.; Nguyen, M.D.; Gauquelin, N.; Verbeeck, J.; Do, M.T.; Koster, G.; Rijnders, G.; Houwman, E. url  doi
openurl 
  Title On the importance of the work function and electron carrier density of oxide electrodes for the functional properties of ferroelectric capacitors Type A1 Journal article
  Year 2020 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal Phys Status Solidi-R  
  Volume (up) 14 Issue 14 Pages 1900520  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is important to understand the effect of the interfaces between the oxide electrode layers and the ferroelectric layer on the polarization response for optimizing the device performance of all-oxide ferroelectric devices. Herein, the effects of the oxide La0.07Ba0.93SnO3 (LBSO) as an electrode material in an PbZr0.52Ti0.48O3 (PZT) ferroelectric capacitor are compared with those of the more commonly used SrRuO3 (SRO) electrode. SRO (top)/PZT/SRO (bottom), SRO/PZT/LBSO, and SRO/PZT/2 nm SRO/LBSO devices are fabricated. Only marginal differences in crystalline properties, determined by X-ray diffraction and scanning transmission electron microscopy, are found. High-quality polarization loops are obtained, but with a much larger coercive field for the SRO/PZT/LBSO device. In contrast to the SRO/PZT/SRO device, the polarization decreases strongly with increasing field cycling. This fatigue problem can be remedied by inserting a 2 nm SRO layer between PZT and LBSO. It is argued that strongly increased charge injection into the PZT occurs at the bottom interface, because of the low PZT/LBSO interfacial barrier and the much lower carrier density in LBSO, as compared with that in SRO, causing a low dielectric constant, depleted layer in LBSO. The charge injection creates a trapped space charge in the PZT, causing the difference in fatigue behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000506195600001 Publication Date 2019-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited 6 Open Access OpenAccess  
  Notes ; This work was supported by Nederlandse Organisatie voor Wetenschappelijk Onderzoek through grant no.13HTSM01. ; Approved Most recent IF: 2.8; 2020 IF: 3.032  
  Call Number UA @ admin @ c:irua:165681 Serial 6316  
Permanent link to this record
 

 
Author Vanschoenwinkel, J.; Moretti, M.; Van Passel, S. url  doi
openurl 
  Title The effect of policy leveraging climate change adaptive capacity in agriculture Type A1 Journal Article
  Year 2020 Publication European Review Of Agricultural Economics Abbreviated Journal Eur Rev Agric Econ  
  Volume (up) Issue Pages  
  Keywords A1 Journal Article; Engineering Management (ENM)  
  Abstract Agricultural adaptation to climate change is indispensable. However, the degree of adaptation depends on adaptive capacity levels and it only takes place if the appropriate resources are present. Cross-sectional climate response models ignore this requirement. This paper adapts the Ricardian method to control for a generic territorial adaptive capacity index. The results for a sample of over 60.000 European farms show a significant non-linear positive relationship between adaptive capacity and climate responsiveness and that some regions in Europe can increase their climate responsiveness significantly. This confirms that improvement of adaptive capacity is an important policy tool to enhance adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558982300007 Publication Date 2019-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-1587 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access  
  Notes This paper was supported by the Horizon 2020 project SUFISA (Grant Agreement No. 635577). Approved Most recent IF: 3.4; 2020 IF: 1.6  
  Call Number ENM @ enm @c:irua:167258 Serial 6350  
Permanent link to this record
 

 
Author Spanoghe, J.; Grunert, O.; Wambacq, E.; Sakarika, M.; Papini, G.; Alloul, A.; Spiller, M.; Derycke, V.; Stragier, L.; Verstraete, H.; Fauconnier, K.; Verstraete, W.; Haesaert, G.; Vlaeminck, S.E. url  doi
openurl 
  Title Storage, fertilization and cost properties highlight the potential of dried microbial biomass as organic fertilizer Type A1 Journal article
  Year 2020 Publication Microbial biotechnology Abbreviated Journal Microb. Biotechnol.  
  Volume (up) Issue Pages 1-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The transition to sustainable agriculture and horticulture is a societal challenge of global importance. Fertilization with a minimum impact on the environment can facilitate this. Organic fertilizers can play an important role, given their typical release pattern and production through resource recovery. Microbial fertilizers (MFs) constitute an emerging class of organic fertilizers and consist of dried microbial biomass, for instance produced on effluents from the food and beverage industry. In this study, three groups of organisms were tested as MFs: a high-rate consortium aerobic bacteria (CAB), the microalga Arthrospira platensis (‘Spirulina’) and a purple non-sulfur bacterium (PNSB) Rhodobacter sp. During storage as dry products, the MFs showed light hygroscopic activity, but the mineral and organic fractions remained stable over a storage period of 91 days. For biological tests, a reference organic fertilizer (ROF) was used as positive control, and a commercial organic growing medium (GM) as substrate. The mineralization patterns without and with plants were similar for all MFs and ROF, with more than 70% of the organic nitrogen mineralized in 77 days. In a first fertilization trial with parsley, all MFs showed equal performance compared to ROF, and the plant fresh weight was even higher with CAB fertilization. CAB was subsequently used in a follow-up trial with petunia and resulted in elevated plant height, comparable chlorophyll content and a higher amount of flowers compared to ROF. Finally, a cost estimation for packed GM with supplemented fertilizer indicated that CAB and a blend of CAB/PNSB (85%/15%) were most cost competitive, with an increase of 6% and 7% in cost compared to ROF. In conclusion, as biobased fertilizers, MFs have the potential to contribute to sustainable plant nutrition, performing as good as a commercially available organic fertilizer, and to a circular economy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000563539700001 Publication Date 2020-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7915 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited Open Access  
  Notes The authors would like to kindly acknowledge (i) the MIP i‐Cleantech Flanders (Milieu‐innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD) for financial support, (ii) the DOCPRO4 project ‘PurpleTech’, funded by the BOF (Bijzonder onderzoeksfonds; Special research fund) from the University of Antwerp for financially supporting J.S., (iii) all MicroNOD partners, including the University of Antwerp, Ghent University, AgrAqua, Greenyard Horticulture and Avecom; and (iv) all steering committee members, including Greenyard Frozen, Agristo, AVBS, Vlakwa, het Innovatiesteunpunt, VCM and OVAM. Approved Most recent IF: 5.7; 2020 IF: NA  
  Call Number DuEL @ duel @c:irua:167595 Serial 6357  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume (up) Issue Pages acs.jpcc.0c02630  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6367  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume (up) Issue Pages acs.jpcc.0c02630  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6368  
Permanent link to this record
 

 
Author Velazco, A.; Nord, M.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Evaluation of different rectangular scan strategies for STEM imaging Type A1 Journal article
  Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume (up) Issue Pages 113021  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract STEM imaging is typically performed by raster scanning a focused electron probe over a sample. Here we investigate and compare three different scan patterns, making use of a programmable scan engine that allows to arbitrarily set the sequence of probe positions that are consecutively visited on the sample. We compare the typical raster scan with a so-called ‘snake’ pattern where the scan direction is reversed after each row and a novel Hilbert scan pattern that changes scan direction rapidly and provides an homogeneous treatment of both scan directions. We experimentally evaluate the imaging performance on a single crystal test sample by varying dwell time and evaluating behaviour with respect to sample drift. We demonstrate the ability of the Hilbert scan pattern to more faithfully represent the high frequency content of the image in the presence of sample drift. It is also shown that Hilbert scanning provides reduced bias when measuring lattice parameters from the obtained scanned images while maintaining similar precision in both scan directions which is especially important when e.g. performing strain analysis. Compared to raster scanning with flyback correction, both snake and Hilbert scanning benefit from dose reduction as only small probe movement steps occur.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000544042800007 Publication Date 2020-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited 13 Open Access OpenAccess  
  Notes A.V., A.B. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. M.N. received support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 838001. J.V acknowledges funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. Approved Most recent IF: 2.2; 2020 IF: 2.843  
  Call Number EMAT @ emat @c:irua:169225 Serial 6369  
Permanent link to this record
 

 
Author Duan, J.; Ma, M.; Yusupov, M.; Cordeiro, R.M.; Lu, X.; Bogaerts, A. pdf  url
doi  openurl
  Title The penetration of reactive oxygen and nitrogen species across the stratum corneum Type A1 Journal article
  Year 2020 Publication Plasma Processes And Polymers Abbreviated Journal Plasma Process Polym  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The penetration of reactive oxygen and nitrogen species (RONS) across the stratum corneum (SC) is a necessary and crucial process in many skin‐related plasma medical applications. To gain more insights into this penetration behavior, we combined experimental measurements of the permeability of dry and moist SC layers with computer simulations of model lipid membranes. We measured the permeation of relatively stable molecules, which are typically generated by plasma, namely H2O2, NO3−, and NO2−. Furthermore, we calculated the permeation free energy profiles of the major plasma‐generated RONS and their derivatives (i.e., H2O2, OH, HO2, O2, O3, NO, NO2, N2O4, HNO2, HNO3, NO2−, and NO3−) across native and oxidized SC lipid bilayers, to understand the mechanisms of RONS permeation across the SC. Our results indicate that hydrophobic RONS (i.e., NO, NO2, O2, O3, and N2O4) can translocate more easily across the SC lipid bilayer than hydrophilic RONS (i.e., H2O2, OH, HO2, HNO2, and HNO3) and ions (i.e., NO2− and NO3−) that experience much higher permeation barriers. The permeability of RONS through the SC skin lipids is enhanced when the skin is moist and the lipids are oxidized. These findings may help to understand the underlying mechanisms of plasma interaction with a biomaterial and to optimize the environmental parameters in practice in plasma medical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536892900001 Publication Date 2020-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited Open Access  
  Notes National Natural Science Foundation of China, 51625701 51977096 ; Fonds Wetenschappelijk Onderzoek, 1200219N ; China Scholarship Council, 201806160128 ; M. Y. acknowledges the Research Foundation Flanders (FWO) for financial support (Grant No. 1200219N). This study was partially supported by the National Natural Science Foundation of China (Grant No: 51625701 and 51977096) and the China Scholarship Council (Grant No: 201806160128). All computational work was performed using the Turing HPC infrastructure at the CalcUA Core Facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 3.5; 2020 IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:169709 Serial 6372  
Permanent link to this record
 

 
Author Jamshidi, O.; Asadi, A.; Kalantari, K.; Movahhed Moghaddam, S.; Dadrass Javan, F.; Azadi, H.; Van Passel, S.; Witlox, F. pdf  url
doi  openurl
  Title Adaptive capacity of smallholder farmers toward climate change: evidence from Hamadan province in Iran Type A1 Journal Article
  Year 2020 Publication Climate And Development Abbreviated Journal Clim Dev  
  Volume (up) Issue Pages 1-11  
  Keywords A1 Journal Article; Adaptive capacity; cross sectional survey; socio-economic variables; adaptation strategies; Hamadan province; Engineering Management (ENM) ;  
  Abstract The global climate is changing, and farmers must increase their adaptive capacity to avoid negative impacts. This study aimed to examine the adaptive capacity of farmers’ household to tolerate climate changes and identify factors affecting the climate in Hamadan province, Iran. The adaptive capacity was evaluated quantitatively by using 23 indicators and was categorized into high, moderate, low, and very low adaptive capacity. The study was based on a cross sectional survey and was conducted with a random sample of 280 household farmers distributed in five counties of Hamadan province in the west of the country whose climatic data revealed signs of climate change. The result showed that farmers’ negative perception toward climate change generally increases during dry seasons and decreases when the precipitation and water resources are more available. Regarding the available information, only 15% of farmers had a high level of adaptive capacity, while 10% of them were highly adapted, and 27.5% showed a very low level of adaptive capacity. Adaptive capacity in the current study was influenced by some socio-economic variables including total farm size, irrigated farm size, number of agricultural land plots, and perception and knowledge of climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000509193400001 Publication Date 2020-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1756-5529 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.051 Times cited Open Access  
  Notes The authors appreciate the comments of the anonymous reviewers and would like to thank them for their constructive feedback. Frank Witlox acknowledges funding received from the Estonian Research Council (PUT PRG306). Approved Most recent IF: NA  
  Call Number ENM @ enm @c:irua:166572 Serial 6378  
Permanent link to this record
 

 
Author Larrain, M.; Van Passel, S.; Thomassen, G.; Kresovic, U.; Alderweireldt, N.; Moerman, E.; Billen, P. url  doi
openurl 
  Title Economic performance of pyrolysis of mixed plastic waste: Open-loop versus closed-loop recycling Type A1 Journal Article
  Year 2020 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod  
  Volume (up) Issue Pages 122442  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract In recent decades new recycling technologies for mixed plastic waste have emerged. In pyrolysis, the polymer chains are thermally broken (pyrolyzed) to obtain hydrocarbon materials of different molecular weights such as naphtha, oil or waxes, whose yields can be controlled by varying the reaction parameters. Naphtha represents a closed-loop recycling process as it is a feedstock for (poly)olefins; while the co-production of waxes, having several applications in e.g. the construction industry, exemplifies an open-loop recycling process. This paper compares the economic performance of the pyrolysis of mixed polyolefin waste in a closed-loop and open-loop scheme, including a probabilistic approach to the most important variables. From an economic perspective, open-loop pyrolysis as presented outperforms closed-loop recycling, due to the high prices of wax. However, the results present a high dispersion caused by the volatility of the prices of crude oil and its derivates. Considering the current oil price projections, our case study analysis showed that for open-loop recycling there is a future probability of almost a 98 % of observing positive results and around 57 % of probability in the case of closed-loop recycling, under the assumptions made. Yet, in a future scenario where decarbonized electricity would decrease oil prices, the probability of a positive outcome reduces to 57 % for the open-loop case and to less than 8 % in the case of closed-loop recycling. To make these pathways attractive to investors, the nameplate capacity should be at least 70 kt/year for open-loop recycling and 115 kt/year for closed-loop recycling. A 120 kt/year plant should operate minimally at 80 % of its capacity for open-loop recycling, while closed-loop recycling would demand running close to maximum capacity. Security of feedstock supply therefore is required.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000579071300078 Publication Date 2020-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access  
  Notes This work was supported by the VLAIO Catalisti-ICON project MATTER (Mechanical and Thermochemical Recycling of mixed plastic waste; project HBC.2018.0262). Approved Most recent IF: 11.1; 2020 IF: 5.715  
  Call Number ENM @ enm @c:irua:170005 Serial 6385  
Permanent link to this record
 

 
Author Larrain, M.; Van Passel, S.; Thomassen, G.; Kresovic, U.; Alderweireldt, N.; Moerman, E.; Billen, P. url  doi
openurl 
  Title Economic performance of pyrolysis of mixed plastic waste: Open-loop versus closed-loop recycling Type A1 Journal Article
  Year 2020 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod  
  Volume (up) Issue Pages 122442  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract In recent decades new recycling technologies for mixed plastic waste have emerged. In pyrolysis, the polymer chains are thermally broken (pyrolyzed) to obtain hydrocarbon materials of different molecular weights such as naphtha, oil or waxes, whose yields can be controlled by varying the reaction parameters. Naphtha represents a closed-loop recycling process as it is a feedstock for (poly)olefins; while the co-production of waxes, having several applications in e.g. the construction industry, exemplifies an open-loop recycling process. This paper compares the economic performance of the pyrolysis of mixed polyolefin waste in a closed-loop and open-loop scheme, including a probabilistic approach to the most important variables. From an economic perspective, open-loop pyrolysis as presented outperforms closed-loop recycling, due to the high prices of wax. However, the results present a high dispersion caused by the volatility of the prices of crude oil and its derivates. Considering the current oil price projections, our case study analysis showed that for open-loop recycling there is a future probability of almost a 98 % of observing positive results and around 57 % of probability in the case of closed-loop recycling, under the assumptions made. Yet, in a future scenario where decarbonized electricity would decrease oil prices, the probability of a positive outcome reduces to 57 % for the open-loop case and to less than 8 % in the case of closed-loop recycling. To make these pathways attractive to investors, the nameplate capacity should be at least 70 kt/year for open-loop recycling and 115 kt/year for closed-loop recycling. A 120 kt/year plant should operate minimally at 80 % of its capacity for open-loop recycling, while closed-loop recycling would demand running close to maximum capacity. Security of feedstock supply therefore is required.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000579071300078 Publication Date 2020-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access  
  Notes This work was supported by the VLAIO Catalisti-ICON project MATTER (Mechanical and Thermochemical Recycling of mixed plastic waste; project HBC.2018.0262). Approved Most recent IF: 11.1; 2020 IF: 5.715  
  Call Number ENM @ enm @c:irua:170005 Serial 6386  
Permanent link to this record
 

 
Author Canossa, S.; Ji, Z.; Wuttke, S. url  doi
openurl 
  Title Circumventing Wear and Tear of Adaptive Porous Materials Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume (up) Issue Pages 1908547  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The assessment of the architectural stability of molecular porous materials is not yet a common practice, but critical to their understanding and development. The conformational adaptation of porous materials to guest binding and other chemical dynamics poses a risk of architectural damage, leading to performance deterioration during their prolonged usage. The deformation of the framework backbone and the disconnection of building units are driven by chemical, mechanical, and thermal perturbations, and can be quantitatively described by the term connection completeness. Analytical means that can be used to measure this parameter are presented in order to provide a standard, practical protocol for evaluating architectural damage made to framework materials. Preventive and remedial strategies are proposed for enhancing the architectural integrity of frameworks without compromising their functional mechanisms, paving the way to the design of robust yet adaptive materials. In this way, the discussion on architectural stability is initiated, and readers are encouraged to carefully characterize molecular porous materials for a better understanding of their structure-property relationship.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000511238300001 Publication Date 2020-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 12ZV120N ; Approved Most recent IF: 19; 2020 IF: 12.124  
  Call Number EMAT @ emat @c:irua:166505 Serial 6387  
Permanent link to this record
 

 
Author de Jong, M.; Florea, A.; Daems, D.; Van Loon, J.; Samyn, N.; De Wael, K. url  doi
openurl 
  Title Electrochemical Analysis of Speedball-like Polydrug Samples Type A1 Journal article
  Year 2020 Publication Analyst Abbreviated Journal Analyst  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Product development  
  Abstract Increasing global production, trafficking and consumption of drugs of abuse cause an emerging threat to people’s health and safety. Electrochemical approaches have proven to be useful for on-site analysis of drugs of abuse. However, few attention has been focused on the analysis of polydrug samples, despite these samples causing severe health concerns, certainly when stimulants and depressants are combined, as is the case for Speedball, a mixture of cocaine and heroin. In this work, we provide solutions for the selective detection of cocaine (stimulant) in polydrug samples adulterated with heroin and codeine (depressants). The presence of either one of these compounds in cocaine street samples leads to an overlap with the cocaine signal in square-wave voltammetry measurements at unmodified carbon screen-printed electrodes, leading to inconclusive screening results in the field. The provided solutions to this problem consist of two parallel approaches: (i) cathodic pretreatment of the carbon screen-printed electrode surface prior to measurement in both alkaline and neutral conditions; (ii) electropolymerization of orthophenylenediamine on graphene modified carbon screen-printed electrodes prior to measurement in neutral conditions. Both strategies allow simultaneous detection of cocaine and heroin in speedball samples as well as simultaneous detection of cocaine and codeine. Implementing these strategies in portable devices holds great potential for significantly improved accuracy of on-site cocaine screening in polydrug samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000568961600011 Publication Date 2020-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.2 Times cited Open Access  
  Notes This work was supported by IOF-SBO and IOF-POC from University of Antwerp, Antwerp, Belgium; and VLAIO IM [HBC.2019.2181], Brussels, Belgium. Approved Most recent IF: 4.2; 2020 IF: 3.885  
  Call Number AXES @ axes @c:irua:170444 Serial 6395  
Permanent link to this record
 

 
Author Payne, L.M.; Albrecht, W.; Langbein, W.; Borri, P. url  doi
openurl 
  Title The optical nanosizer – quantitative size and shape analysis of individual nanoparticles by high-throughput widefield extinction microscopy Type A1 Journal article
  Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanoparticles are widely utilised for a range of applications, from catalysis to medicine, requiring accurate knowledge of their size and shape. Current techniques for particle characterisation are either not very accurate or time consuming and expensive. Here we demonstrate a rapid and quantitative method for particle analysis based on measuring the polarisation-resolved optical extinction cross-section of hundreds of individual nanoparticles using wide-field microscopy, and determining the particle size and shape from the optical properties. We show measurements on three samples consisting of nominally spherical gold nanoparticles of 20 nm and 30 nm diameter, and gold nanorods of 30 nm length and 10 nm diameter. Nanoparticle sizes and shapes in three dimensions are deduced from the measured optical cross-sections at different wavelengths and light polarisation, by solving the inverse problem, using an ellipsoid model of the particle polarisability in the dipole limit. The sensitivity of the method depends on the experimental noise and the choice of wavelengths. We show an uncertainty down to about 1 nm in mean diameter, and 10% in aspect ratio when using two or three color channels, for a noise of about 50 nm<sup>2</sup>in the measured cross-section. The results are in good agreement with transmission electron microscopy, both 2D projection and tomography, of the same sample batches. Owing to its combination of experimental simplicity, ease of access to statistics over many particles, accuracy, and geometrical particle characterisation in 3D, this “optical nanosizer” method has the potential to become the technique of choice for quality control in next-generation particle manufacturing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558928800022 Publication Date 2020-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access OpenAccess  
  Notes This work was supported by a Welsh Government Life Sciences Bridging Fund (grant LSBF/R6-005) and by the UK EPSRC (grant no. EP/I005072/1 and EP/M028313/1). PB acknowledges the Royal Society for her Wolfson research merit award (grant WM140077). The authors acknowledge funding from the European Commission (Grant EUSMI E191000350). WA acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA) under the EU’s Horizon 2020 program (Grant 797153, SOPMEN), and Sara Bals for supporting the STEM measurements. The bright-field TEM was performed by Thomas Davies at Cardiff University. We acknowledge Attilio Zilli for helpful discussions and contributions in calculating the relative field strengths in the illumination and finite-element simulation of cross-sections shown in the ESI.† We acknowledge Iestyn Pope for technical support of the optical equipment. Approved Most recent IF: 6.7; 2020 IF: 7.367  
  Call Number UA @ lucian @c:irua:170485 Serial 6397  
Permanent link to this record
 

 
Author Rodal-Cedeira, S.; Vázquez-Arias, A.; Bodelon, G.; Skorikov, A.; Núñez-Sanchez, S.; La Porta, A.; Polavarapu, L.; Bals, S.; Liz-Marzán, L.M.; Perez-Juste, J.; Pastoriza-Santos, I. url  doi
openurl 
  Title An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Raman-encoded gold nanoparticles have been widely employed as photostable multifunctional probes for sensing, bioimaging, multiplex diagnostics, and surface-enhanced Raman scattering (SERS)-guided tumor therapy. We report a strategy toward obtaining a particularly large library of Au nanocapsules encoded with Raman codes defined by the combination of different thiol-free Raman reporters, encapsulated at defined molar ratios. The fabrication of SERS tags with tailored size and pre-defined codes is based on the in situ incorporation of Raman reporter molecules inside Au nanocapsules during their formation via Galvanic replacement coupled to seeded growth on Ag NPs. The hole-free closed shell structure of the nanocapsules is confirmed by electron tomography. The unusually wide encoding possibilities of the obtained SERS tags are investigated by means of either wavenumber-based encoding or Raman frequency combined with signal intensity, leading to an outstanding performance as exemplified by 26 and 54 different codes, respectively. We additionally demonstrate that encoded nanocapsules can be readily bioconjugated with antibodies for applications such as SERS-based targeted cell imaging and phenotyping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595533800019 Publication Date 2020-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 14 Open Access OpenAccess  
  Notes L.M.L.-M. acknowledges financial support from the European Research Council (ERC-AdG-4DbioSERS-787510) and the Spanish State Research Agency (Grant No. MDM-2017-0720 and PID2019-108954RB-I00). I.P.-S. and J.P.-J. acknowledge financial support from the Spanish State Research Agency (Grant No. MAT2016-77809-R)) and Ramon Areces Foundation (Grant No. SERSforSAFETY). G.B. acknowledges financial support from CINBIO (Grant number ED431G 2019/07 Xunta de Galicia). S.B. and A.S. acknowledge financial support by the Research Foundation Flanders (FWO grant G038116N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI). S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). We thank Carlos Fernández-Lodeiro and Daniel García-Lojo for their helpful contribution to the SEM characterization and SERS analysis and Veronica Montes-García for her fruitful contribution in the PCA analysis.; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number EMAT @ emat @c:irua:172492 Serial 6403  
Permanent link to this record
 

 
Author de Jong, M.; Sleegers, N.; Schram, J.; Daems, D.; Florea, A.; De Wael, K. pdf  url
doi  openurl
  Title A Benzocaine‐Induced Local Near‐Surface pH Effect: Influence on the Accuracy of Voltammetric Cocaine Detection Type A1 Journal article
  Year 2020 Publication Analysis & Sensing Abbreviated Journal Anal. Sens.  
  Volume (up) Issue Pages anse.202000012  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This work reports on a local induced near-surface pH effect (pHS), due to the presence of one analyte, leading to an influence or even suppression of redox signals of a second analyte present in solution. This concept and its impact on voltammetric sensing is illustrated by focusing on the detection of cocaine in the presence of the common adulterant benzocaine. An in-depth study on the occurring interference mechanism and why it occurs for benzocaine specifically and not for other adulterants was performed through the use of multiple electrochemical strategies. It was concluded that the potential shift and loss of intensity of the squarewave voltammetric cocaine signal in the presence of benzocaine was caused by a local pHS effect. A cathodic pretreatment strategy was developed to nonetheless allow accurate cocaine detection. The gathered insights are useful to explain unidentified phenomena involving compounds with properties similar to benzocaine in voltammetric electroanalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2629-2742 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes The authors acknowledge financial support from IOF-SBO/POC (UAntwerp), the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N and Grant 1SB 8120N, and VLAIO IM [HBC.2019.2181]. Approved Most recent IF: NA  
  Call Number AXES @ axes @c:irua:173031 Serial 6427  
Permanent link to this record
 

 
Author Irtem, E.; Arenas Esteban, D.; Duarte, M.; Choukroun, D.; Lee, S.; Ibáñez, M.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Ligand-Mode Directed Selectivity in Cu–Ag Core–Shell Based Gas Diffusion Electrodes for CO2Electroreduction Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume (up) Issue Pages 13468-13478  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Bimetallic nanoparticles with tailored size and specific composition have shown promise as stable and selective catalysts for electrochemical reduction of CO2 (CO2R) in batch systems. Yet, limited effort was devoted to understand the effect of ligand coverage and postsynthesis treatments on CO2 reduction, especially under industrially applicable conditions, such as at high currents (>100 mA/cm2) using gas diffusion electrodes (GDE) and flow reactors. In this work, Cu–Ag core–shell nanoparticles (11 ± 2 nm) were prepared with three different surface modes: (i) capped with oleylamine, (ii) capped with monoisopropylamine, and (iii) surfactant free with a reducing borohydride agent; Cu–Ag (OAm), Cu–Ag (MIPA), and Cu–Ag (NaBH4), respectively. The ligand exchange and removal was evidenced by infrared spectroscopy (ATR-FTIR) analysis, whereas high-resolution scanning transmission electron microscopy (HAADF-STEM) showed their effect on the interparticle distance and nanoparticle rearrangement. Later on, we developed a process-on-substrate method to track these effects on CO2R. Cu–Ag (OAm) gave a lower on-set potential for hydrocarbon production, whereas Cu–Ag (MIPA) and Cu–Ag (NaBH4) promoted syngas production. The electrochemical impedance and surface area analysis on the well-controlled electrodes showed gradual increases in the electrical conductivity and active surface area after each surface treatment. We found that the increasing amount of the triple phase boundaries (the meeting point for the electron–electrolyte–CO2 reactant) affect the required electrode potential and eventually the C+2e̅/C2e̅ product ratio. This study highlights the importance of the electron transfer to those active sites affected by the capping agents—particularly on larger substrates that are crucial for their industrial application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000592978900031 Publication Date 2020-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited 23 Open Access OpenAccess  
  Notes The authors also acknowledge financial support from the University Research Fund (BOF-GOA-PS ID No. 33928). S.L. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SkłodowskaCurie Grant Agreement No. 665385. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number EMAT @ emat @c:irua:173803 Serial 6432  
Permanent link to this record
 

 
Author Lefrancois, P.; Girard-Sahun, F.; Badets, V.; Clement, F.; Arbault, S. pdf  url
doi  openurl
  Title Electroactivity of superoxide anion in aqueous phosphate buffers analyzed with platinized microelectrodes Type A1 Journal article
  Year 2020 Publication Electroanalysis Abbreviated Journal Electroanal  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The reactivity of platinized ultramicroelectrodes (Pt-black UMEs) towards superoxide anion O-2(.-), an unstable Reactive Oxygen Species (ROS), and its relatives, H2O2 and O-2, was studied. Voltammetric studies in PBS demonstrate that Pt-black UMEs provide: i) a well-resolved reversible redox signature for O-2(.-) detected in both alkaline and physiological buffers (pH 12 and 7.4); ii) irreversible oxidation and reduction waves for H2O2 at pH 7.4. The oxygen reduction reaction (ORR) at Pt-black surfaces solely yields H2O2 (2 electrons/2 H+) at physiological pH. Consequently, Pt-black UMEs allow to sense different ROS including superoxide anion for future biomedical or physico-chemical investigations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000590291800001 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited Open Access  
  Notes Approved Most recent IF: 3; 2020 IF: 2.851  
  Call Number UA @ admin @ c:irua:174264 Serial 6764  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Ghergherehchi, M. pdf  url
doi  isbn
openurl 
  Title Strain, electric-field and functionalization induced widely tunable electronic properties in MoS2/BC3, /C3N and / C3N4 van der Waals heterostructures Type A1 Journal article
  Year 2020 Publication Nanotechnology (Bristol. Print) Abbreviated Journal  
  Volume (up) Issue Pages 295202 pp  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this paper, the effect of BC3, C3N and C3N4BC(3) and MoS2/C(3)N4 heterostructures are direct semiconductors with band gaps of 0.4 and 1.74 eV, respectively, while MoS2/C3N is a metal. Furthermore, the influence of strain and electric field on the electronic structure of these van der Waals heterostructures is investigated. The MoS2/BC3 heterostructure, for strains larger than -4%, transforms it into a metal where the metallic character is maintained for strains larger than -6%. The band gap decreases with increasing strain to 0.35 eV (at +2%), while for strain (>+6%) a direct-indirect band gap transition is predicted to occur. For the MoS2/C3N heterostructure, the metallic character persists for all strains considered. On applying an electric field, the electronic properties of MoS2/C3N4 are modified and its band gap decreases as the electric field increases. Interestingly, the band gap reaches 30 meV at +0.8 V/angstrom, and with increase above +0.8 V/angstrom, a semiconductor-to-metal transition occurs. Furthermore, we investigated effects of semi- and full-hydrogenation of MoS2/C3N and we found that it leads to a metallic and semiconducting character, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000532366000001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0957-4484 Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 19 Open Access  
  Notes ; This work has supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(NRF-2017R1A2B2011989). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169523 Serial 6444  
Permanent link to this record
 

 
Author Kardel, F.; Wuyts, K.; De Wael, K.; Samson, R. pdf  doi
openurl 
  Title Assessing atmospheric dry deposition via water-soluble ionic composition of roadside leaves Type A1 Journal article
  Year 2020 Publication Journal of environmental science and health : part A: toxic/hazardous substances and environmental engineering Abbreviated Journal  
  Volume (up) Issue Pages 1-9  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This study focuses on the water-soluble ion concentrations in the washing solution of leaves of different roadside tree species at three sites in Iran to estimate the ionic composition of the dry deposition of ambient air particulates. All considered water-soluble ion concentrations were significantly higher next to the roads with high traffic density compared to the reference site with low traffic density. The PCA results showed that Ca2+, Mg2+, and originated mainly from traffic activities and geological sources, and Na+, Cl-, K+ and F- from sea salts. In addition to sea salt, K+ and F- were also originated from anthropogenic sources i.e. industrial activities, biomass burning and fluorite mining. Moreover, the concentration of the water-soluble ions depended on species and site. C. lawsoniana had significantly higher ion concentrations in its leaf washing solution compared to L. japonicum and P. brutia which indicates C. lawsoniana is the most suitable species for accumulating of atmospheric dry deposition. From our results, it can be concluded that sites with similar traffic density can have different particle loads and water-soluble ion species, and that concentrations in leaf-washing solutions depend on site conditions and species-specific leaf surface characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000527821700001 Publication Date 2020-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169584 Serial 6451  
Permanent link to this record
 

 
Author Cautaerts, N.; Lamm, S.; Stergar, E.; Pakarinen, J.; Yang, Y.; Hofer, C.; Schnitzer, R.; Felfer, P.; Verwerft, M.; Delville, R.; Schryvers, D. doi  openurl
  Title Atom probe tomography data collection from DIN 1.4970 (15-15Ti) austenitic stainless steel irradiated with Fe ions Type Dataset
  Year 2020 Publication Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract This dataset comprises a large collection of atom probe tomography datasets collected from DIN 1.4970 alloy that was irradiated with Fe ions at different conditions. The DIN 1.4970 alloy is an austenitic stainless steel with 15 wt% Cr, 15 wt% Ni, a small addition of Ti. The full composition and characterization of our material can be found published elsewhere [1,2]. Some of our material was subjected to ageing heat treatments at different temperatures for different times. Small samples of our original material and aged material was irradiated at the Michigan Ion Beam Laboratory in 2017 with 4.5 MeV Fe ions up to 40 dpa at an average dose rate of 2×10−4 dpa/s. This was done at three different temperatures: 300, 450, and 600 ºC. Atom probe samples were made of the irradiated layers (approximately 1.5 micron deep) with focused ion beam and mounted on Microtip coupons. APT measurements took place on three CAMECA LEAP-HR systems located at CAES in Idaho Falls, USA (files beginning with R33), at Montanuniversität Leoben in Leoben, Austria (R21) and at Friedrich–Alexander University in Erlangen, Germany (R56).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169127 Serial 6454  
Permanent link to this record
 

 
Author Bigiani, L.; Gasparotto, A.; Andreu, T.; Verbeeck, J.; Sada, C.; Modin, E.; Lebedev, O.I.; Morante, J.R.; Barreca, D.; Maccato, C. pdf  doi
openurl 
  Title Au-manganese oxide nanostructures by a plasma-assisted process as electrocatalysts for oxygen evolution : a chemico-physical investigation Type A1 Journal article
  Year 2020 Publication Advanced sustainable systems Abbreviated Journal  
  Volume (up) Issue Pages 2000177-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Earth-abundant and eco-friendly manganese oxides are promising platforms for the oxygen evolution reaction (OER) in water electrolysis. Herein, a versatile and potentially scalable route to gold-decorated manganese oxide-based OER electrocatalysts is reported. In particular, MnxOy(MnO2, Mn2O3) host matrices are grown on conductive glasses by plasma assisted-chemical vapor deposition (PA-CVD), and subsequently functionalized with gold nanoparticles (guest) as OER activators by radio frequency (RF)-sputtering. The final selective obtainment of MnO2- or Mn2O3-based systems is then enabled by annealing under oxidizing or inert atmosphere, respectively. A detailed material characterization evidences the formation of high-purity Mn(x)O(y)dendritic nanostructures with an open morphology and an efficient guest dispersion into the host matrices. The tailoring of Mn(x)O(y)phase composition and host-guest interactions has a remarkable influence on OER activity yielding, for the best performing Au/Mn(2)O(3)system, a current density of approximate to 5 mA cm(-2)at 1.65 V versus the reversible hydrogen electrode (RHE) and an overpotential close to 300 mV at 1 mA cm(-2). Such results, comparing favorably with literature data on manganese oxide-based materials, highlight the importance of compositional control, as well as of surface and interface engineering, to develop low-cost and efficient anode nanocatalysts for water splitting applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000572376000001 Publication Date 2020-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-7486 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.1 Times cited 4 Open Access Not_Open_Access  
  Notes ; Padova University (DOR 2017-2019 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects), as well as the INSTM Consortium (INSTMPD004 – NETTUNO project) and AMGA Foundation (Mn4Energy project), are gratefully acknowledged for financial support. The Qu-Ant-EM microscope was partially funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from a GOA project “Solarpaint” from the University of Antwerp and from EU H2020 823717 ESTEEM3 project. The authors thank Dr. Daniele Valbusa, Dr. Gianluca Corr, Dr. Andrea Gallo, and Dr. Dileep Khrishnan for helpful experimental assistance. ; esteem3TA; esteem3reported Approved Most recent IF: 7.1; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:171937 Serial 6457  
Permanent link to this record
 

 
Author Wang, D.; Dasgupta, T.; van der Wee, E.B.; Zanaga, D.; Altantzis, T.; Wu, Y.; Coli, G.M.; Murray, C.B.; Bals, S.; Dijkstra, M.; van Blaaderen, A. pdf  url
doi  openurl
  Title Binary icosahedral clusters of hard spheres in spherical confinement Type A1 Journal article
  Year 2020 Publication Nature Physics Abbreviated Journal Nat Phys  
  Volume (up) Issue Pages 1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The influence of geometry on the local and global packing of particles is important to many fundamental and applied research themes, such as the structure and stability of liquids, crystals and glasses. Here we show by experiments and simulations that a binary mixture of hard-sphere-like nanoparticles crystallizing into a MgZn(2)Laves phase in bulk spontaneously forms icosahedral clusters in slowly drying droplets. Using advanced electron tomography, we are able to obtain the real-space coordinates of all the spheres in the icosahedral clusters of up to about 10,000 particles. The local structure of 70-80% of the particles became similar to that of the MgCu(2)Laves phase. These observations are important for photonic applications. In addition, we observed in simulations that the icosahedral clusters nucleated away from the spherical boundary, which is distinctly different from that of the single species clusters. Our findings open the way for particle-level studies of nucleation and growth of icosahedral clusters, and of binary crystallization. The authors investigate out-of-equilibrium crystallization of a binary mixture of sphere-like nanoparticles in small droplets. They observe the spontaneous formation of an icosahedral structure with stable MgCu(2)phases, which are promising for photonic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000564497300002 Publication Date 2020-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473; 1745-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.6 Times cited 38 Open Access OpenAccess  
  Notes ; D.W., E.B.v.d.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union's Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. T.D. and M. D. acknowledge financial support from the Industrial Partnership Programme, 'Computational Sciences for Energy Research' (grant number 13CSER025), of the Netherlands Organization for Scientific Research (NWO), which was co-financed by Shell Global Solutions International BV G.M.C. was also financially supported by NWO. S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO. T.A. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). C.B.M. and Y.W. acknowledge support for materials synthesis from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497. G. A. Blab is gratefully acknowledged for 3D printing numerous truncated tetrahedra, which increased our understanding of the connection between the binary icosahedral cluster and Laves phase structures. N. Tasios is sincerely thanked for providing the code for the diffraction pattern calculation. M. Hermes is sincerely thanked for providing interactive views of the structures in this work. We thank G. van Tendeloo, M. Engel, J. Wang, S. Dussi, L. Filion, E. Boattini, S. Paliwal, N. Tasios, B. van der Meer, I. Lobato, J. Wu and L. Laurens for fruitful discussions. We acknowledge the EM Square centre at Utrecht University for the access to the microscopes. ; sygma Approved Most recent IF: 19.6; 2020 IF: 22.806  
  Call Number UA @ admin @ c:irua:172044 Serial 6460  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: