|   | 
Details
   web
Records
Author Tadić, M.; Čukarić, N.; Arsoski, V.; Peeters, F.M.
Title Excitonic Aharonov-Bohm effect : unstrained versus strained type-I semiconductor nanorings Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 84 Issue 12 Pages 125307-125307,13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study how mechanical strain affects the magnetic field dependence of the exciton states in type-I semiconductor nanorings. Strain spatially separates the electron and hole in (In,Ga)As/GaAs nanorings which is beneficial for the occurrence of the excitonic Aharonov-Bohm (AB) effect. In narrow strained (In,Ga)As/GaAs nanorings the AB oscillations in the exciton ground-state energy are due to anticrossings with the first excited state. No such AB oscillations are found in unstrained GaAs/(Al,Ga)As nanorings irrespective of the ring width. Our results are obtained within an exact numerical diagonalization scheme and are shown to be accurately described by a two-level model with off-diagonal coupling t. The later transfer integral expresses the Coulomb coupling between states of electron-hole pairs. We also found that the oscillator strength for exciton recombination in (In,Ga)As/GaAs nanorings exhibits AB oscillations, which are superimposed on a linear increase with magnetic field. Our results agree qualitatively with recent experiments on the excitonic Aharonov-Bohm effect in type-I (In,Ga)As/GaAs nanorings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000294777400013 Publication Date 2011-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was supported by the Ministry of Education and Science of Serbia, the Flemish Science Foundation (FWO-Vl), the EU NoE: SANDiE, and the Belgian Science Policy (IAP). The calculations were performed on the CalcUA and Seastar computer clusters of the University of Antwerp. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:92326 Serial 1122
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M.
Title Fano resonances and electron spin transport through a two-dimensional spin-orbit-coupled quantum ring Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 84 Issue 23 Pages 235319-235319,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electron transport through a spin-orbit-coupled quantum ring is investigated within linear response theory. We show that the finite width of the ring results in the appearance of Fano resonances in the conductance. This turns out to be a consequence of the spin-orbit interaction that leads to a breaking of the parity of the states localized in the ring. The resonances appear when the system is close to maxima of Aharonov-Casher conductance oscillations where spin transfer is heavily modified. When the spin-orbit coupling strength is detuned from the Aharonov-Casher maxima the resonances are broadened resulting in a dependence of the spin transport on the electron Fermi energy in contrast to predictions from one-dimensional models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298605700002 Publication Date 2011-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes ; This work was supported by the “Krakow Interdisciplinary PhD Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme cofinanced by the EU European Regional Development Fund, Project No. N N202103938 supported by the Ministry of Science and Higher Education (MNiSW) for 2010-2013, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1). This research was supported in part by PL-Grid Infrastructure. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94292 Serial 1171
Permanent link to this record
 

 
Author Galván Moya, J.E.; Peeters, F.M.
Title Ginzburg-Landau theory of the zigzag transition in quasi-one-dimensional classical Wigner crystals Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 84 Issue 13 Pages 134106,1-134106,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a mean-field description of the zigzag phase transition of a quasi-one-dimensional system of strongly interacting particles, with interaction potential r−ne−r/λ, that are confined by a power-law potential (yα). The parameters of the resulting one-dimensional Ginzburg-Landau theory are determined analytically for different values of α and n. Close to the transition point for the zigzag phase transition, the scaling behavior of the order parameter is determined. For α=2, the zigzag transition from a single to a double chain is of second order, while for α>2, the one-chain configuration is always unstable and, for α<2, the one-chain ordered state becomes unstable at a certain critical density, resulting in jumps of single particles out of the chain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000296289500004 Publication Date 2011-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:93583 Serial 1345
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; Peeters, F.M.
Title Influence of an ellipsoid on the angular order in a two-dimensional cluster Type A1 Journal article
Year 2011 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume (up) 84 Issue 3 Pages 031405,1-031405,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The influence of an ellipsoid on the angular order of two-dimensional classical clusters is investigated through Brownian dynamics simulations. We found the following: (1) The presence of an ellipsoid does not influence the start of the angular melting, but reduces the rate at which the inner rings can rotate with respect to each other. (2) Even a small eccentricity of the ellipsoid leads to a stabilization of the angular order of the system. (3) Depending on the position of the ellipsoid in the cluster, a reentrant behavior in the angular order is observed before full radial melting of the cluster sets in. (4) The ellipsoid can lead to a two-step angular melting process: First, the rotation of the inner rings with respect to each other is hindered by the ellipsoid, but on further increasing the kinetic energy of the system, the ellipsoid just starts to behave as a spherical particle with different mobility. The effect of an ellipsoid on the molten system does not depend crucially on the interparticle interaction, but a softer parabolic confinement reduces the angular stabilization.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000296495000007 Publication Date 2011-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.366 Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and CNPq. ; Approved Most recent IF: 2.366; 2011 IF: 2.255
Call Number UA @ lucian @ c:irua:93612 Serial 1615
Permanent link to this record
 

 
Author Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P.; Peeters, F.M.
Title Influence of impurities and surface defects on the flux-induced current in mesoscopic d-wave superconducting loops Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 84 Issue 13 Pages 132501-132501,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigated the magnetic flux dependence of the supercurrent in mesoscopic d-wave superconducting loops, containing impurities and surface defects, by numerically solving the Bogoliubovde Gennes equations self-consistently. In the presence of impurities, bound states arise close to the Fermi energy. In the case of a single impurity, the flux-induced current is found to be suppressed. This can be different when more impurities are introduced in the sample due to the quantum interference effect, which depends sensitively on the relative position between the impurities. We further analyze the effect of small surface defects at the inner or outer edge of the loop, and show that indentation and bulge defects have pronounced and different effects on the supercurrent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000295713600002 Publication Date 2011-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), by Belgian Science Policy (IAP), by National Science Foundation of China (Grant Nos. 10904089 and 60971053), and by research funds under Grant Nos. 20093108120005, S30105, 09JC1406000, and 10zz63. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:92811 Serial 1623
Permanent link to this record
 

 
Author Sena, S.H.R.; Pereira, J.M.; Peeters, F.M.; Farias, G.A.
Title Landau levels in asymmetric graphene trilayer Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 84 Issue 20 Pages 205448-205448,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic spectrum of three coupled graphene layers (graphene trilayers) is investigated in the presence of an external magnetic field. We obtain analytical expressions for the Landau level spectrum for both the ABA and ABC type of stacking, which exhibit very different dependence on the magnetic field. We show that layer asymmetry and an external gate voltage can strongly influence the properties of the system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297295400018 Publication Date 2011-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 30 Open Access
Notes ; This work was supported by the Brazilian Council for Research (CNPq), the National Council for the Improvement of Higher Education (CAPES), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the bilateral projects between Flanders and Brazil and the CNPq and FWO-Vl. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94026 Serial 1773
Permanent link to this record
 

 
Author Partoens, B.; Peeters, F.M.
Title Molecule-type phases and Hund's rule in vertically coupled quantum dots Type A1 Journal article
Year 2000 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume (up) 84 Issue Pages 4433-4436
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000086941600045 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 99 Open Access
Notes Approved Most recent IF: 8.462; 2000 IF: 6.462
Call Number UA @ lucian @ c:irua:28519 Serial 2188
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
Title Origin of the hysteresis of the current voltage characteristics of superconducting microbridges near the critical temperature Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 84 Issue 9 Pages 094511
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The current voltage (IV) characteristics of short [with length L less than or similar to xi(T)] and long [L >> xi(T)] microbridges are theoretically investigated near the critical temperature of the superconductor. Calculations are made in the nonlocal (local) limit when the inelastic relaxation length due to electron-phonon interactions L(in) = (D tau(in))(1/2) is larger (smaller) than the temperature-dependent coherence length xi(T) (D is the diffusion coefficient, tau(in) is the inelastic relaxation time of the quasiparticle distribution function). We find that, in both limits, the origin of the hysteresis in the IV characteristics is mainly connected with the large time scale over which the magnitude of the order parameter varies in comparison with the time-scale variation of the superconducting phase difference across the microbridge in the resistive state. In the nonlocal limit, the time-averaged heating and cooling of quasiparticles are found in different areas of the microbridge, which are driven, respectively, by oscillations of the order parameter and the electric field. We show that, by introducing an additional term in the time-dependent Ginzburg-Landau equation, it is possible to take into account the cooling effect in the local limit too.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000294920900009 Publication Date 2011-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education under the Federal Target Programme“Scientific and educational personnel of innovative Russia in 2009-2013,” the Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:105573 Serial 2527
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.; Axt, V.M.
Title Parity-fluctuation induced enlargement of the ratio \DeltaE/kBTc in metallic grains Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 84 Issue 21 Pages 214518-214518,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate how the interplay of quantum confinement and particle number-parity fluctuations affects superconducting correlations in ultra-small metallic grains. Using the number-parity projected BCS formalism we calculate the critical temperature and the excitation gap as a function of the grain size for grains with even and odd number of confined carriers. We show that the experimentally observed anomalous increase of the coupling ratio ΔE/kBTc with decreasing superconducting grain size can be attributed to an enhancement of the number-parity fluctuations in ultra-small grains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298114100003 Publication Date 2011-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR), the Flamish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). M. D. C. thanks A. S. Mel'nikov and N. B. Kopnin for fruitful discussions. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94373 Serial 2555
Permanent link to this record
 

 
Author Schweigert, I.V.; Schweigert, V.A.; Peeters, F.M.
Title Radial fluctuations induced stabilization of the ordered state in two-dimensional classical clusters Type A1 Journal article
Year 2000 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume (up) 84 Issue Pages 4381-4384
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000086941600032 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 69 Open Access
Notes Approved Most recent IF: 8.462; 2000 IF: 6.462
Call Number UA @ lucian @ c:irua:28518 Serial 2807
Permanent link to this record
 

 
Author Masir, M.R.; Matulis, A.; Peeters, F.M.
Title Scattering of Dirac electrons by circular mass barriers : valley filter and resonant scattering Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 84 Issue 24 Pages 245413-245413,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The scattering of two-dimensional (2D) massless Dirac electrons is investigated in the presence of a random array of circular mass barriers. The inverse momentum relaxation time and the Hall factor are calculated and used to obtain parallel and perpendicular resistivity components within linear transport theory. We found a nonzero perpendicular resistivity component which has opposite sign for electrons in the different K and K′ valleys. This property can be used for valley filter purposes. The total cross section for scattering on penetrable barriers exhibits resonances due to the presence of quasibound states in the barriers that show up as sharp gaps in the cross section while for Schrödinger electrons they appear as peaks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297934500008 Publication Date 2011-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94383 Serial 2951
Permanent link to this record
 

 
Author Covaci, L.; Peeters, F.M.
Title Superconducting proximity effect in graphene under inhomogeneous strain Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 84 Issue 24 Pages 241401-241401,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interplay between quantum Hall states and Cooper pairs is usually hindered by the suppression of the superconducting state due to the strong magnetic fields needed to observe the quantum Hall effect. From this point of view, graphene is special since it allows the creation of strong pseudomagnetic fields due to strain. We show that in a Josephson junction made of strained graphene, Cooper pairs will diffuse into the strained region. The pair correlation function will be sublattice polarized due to the polarization of the local density of states in the zero pseudo-Landau level. We uncover two regimes: (1) one in which the cyclotron radius is larger than the junction length, in which case the supercurrent will be enhanced, and (2) the long junction regime where the supercurrent is strongly suppressed because the junction becomes an insulator. In the latter case quantized Hall states form and Andreev scattering at the normal/superconducting interface will induce edge states. Our numerical calculation has become possible due to an extension of the Chebyshev-Bogoliubovde Gennes method to computations on video cards (GPUs).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297766600003 Publication Date 2011-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Euro GRAPHENE project CONGRAN. Discussions with Andrey Chaves are gratefully acknowledged. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:93962 Serial 3364
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Bahlouli, H.; Peeters, F.M.
Title Effect of substitutional impurities on the electronic transport properties of graphene Type A1 Journal article
Year 2016 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume (up) 84 Issue 84 Pages 22-26
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Density-functional theory in combination with the nonequilibrium Green's function formalism is used to study the effect of substitutional doping on the electronic transport properties of hydrogen passivated zig-zag graphene nanoribbon devices. B, N and Si atoms are used to substitute carbon atoms located at the center or at the edge of the sample. We found that Si -doping results in better electronic transport as compared to the other substitutions. The transmission spectrum also depends on the location of the substitutional dopants: for single atom doping the largest transmission is obtained for edge substitutions, whereas substitutions in the middle of the sample give larger transmission for double carbon substitutions. The obtained results are explained in terms of electron localization in the system due to the presence of impurities. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000382489600004 Publication Date 2016-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 17 Open Access
Notes ; H.B. and F.M.P. acknowledge the support from King Fahd University of Petroleum and Minerals, Saudi Arabia, under research group project RG1329-1 and RG1329-2. G.R.B. acknowledges fruitful discussions with Dr. M.E. Madjet from Qatar Environment and Energy Research Institute. ; Approved Most recent IF: 2.221
Call Number UA @ lucian @ c:irua:135699 Serial 4301
Permanent link to this record
 

 
Author Ramos, I.R.O.; Ferreira, W.P.; Munarin, F.F.; Farias, G.A.; Peeters, F.M.
Title Bilayer crystals of charged magnetic dipoles : structure and phonon spectrum Type A1 Journal article
Year 2012 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume (up) 85 Issue 5:1 Pages 051404-051404,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the structure and phonon spectrum of a two-dimensional bilayer system of classical charged dipoles oriented perpendicular to the plane of the layers for equal density in each layer. This system can be tuned through six different crystalline phases by changing the interlayer separation or the charge and/or dipole moment of the particle. The presence of the charge on the dipole particles is responsible for the nucleation of five staggered phases and a disordered phase which are not found in the magnetic dipole bilayer system. These extra phases are a consequence of the competition between the repulsive Coulomb and the attractive dipole interlayer interaction. We present the phase diagram and determine the order of the phase transitions. The phonon spectrum of the system was calculated within the harmonic approximation, and a nonmonotonic behavior of the phonon spectrum is found as a function of the effective strength of the interparticle interaction. The stability of the different phases is determined.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000304403400002 Publication Date 2012-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 8 Open Access
Notes ; This work was supported by the Brazilian agencies CNPq, CAPES, and FUNCAP (PRONEX grant), the Flemish Science Foundation (FWO-Vl), the bilateral program between Flanders and Brazil, and the CNPq-FWO collaborating project. The authors are grateful to Prof. G. Goldoni for some technical clarifications concerning Ref. [18]. ; Approved Most recent IF: 2.366; 2012 IF: 2.313
Call Number UA @ lucian @ c:irua:98940 Serial 233
Permanent link to this record
 

 
Author Carvalho, J.C.N.; Nelissen, K.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M.
Title Diffusion in a quasi-one-dimensional system on a periodic substrate Type A1 Journal article
Year 2012 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume (up) 85 Issue 2:1 Pages 021136-021136,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The diffusion of charged particles interacting through a repulsive Yukawa potential, exp(-r/lambda)/r, confined by a parabolic potential in the y direction and subjected to a periodic substrate potential in the x direction is investigated. Langevin dynamic simulations are used to investigate the effect of the particle density, the amplitude of the periodic substrate, and the range of the interparticle interaction potential on the diffusive behavior of the particles. We found that in general the diffusion is suppressed with increasing the amplitude of the periodic potential, but for specific values of the strength of the substrate potential a remarkable increase of the diffusion is found with increasing the periodic potential amplitude. In addition, we found a strong dependence of the diffusion on the specific arrangement of the particles, e. g., single-chain versus multichain configuration. For certain particle configurations, a reentrant behavior of the diffusion is found as a function of the substrate strength due to structural transitions in the ordering of the particles.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000300671500007 Publication Date 2012-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 9 Open Access
Notes ; This work was supported by the Brazilian agencies CNPq and FUNCAP (PRONEX-Grant), the Flemish Science Foundation (FWO-Vl), and the bilateral projects between Flanders and Brazil and the Flemish Science Foundation (FWO-VI) and CNPq. ; Approved Most recent IF: 2.366; 2012 IF: 2.313
Call Number UA @ lucian @ c:irua:97203 Serial 698
Permanent link to this record
 

 
Author Berdiyorov, G.R.; de Romaguera, A.R.C.; Milošević, M.V.; Doria, M.M.; Covaci, L.; Peeters, F.M.
Title Dynamic and static phases of vortices under an applied drive in a superconducting stripe with an array of weak links Type A1 Journal article
Year 2012 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume (up) 85 Issue 4 Pages 130-130,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Static and dynamic properties of superconducting vortices in a superconducting stripe with a periodic array of weakly-superconducting (or normal metal) regions are studied in the presence of external magnetic and electric fields. The time-dependent Ginzburg-Landau theory is used to describe the electronic transport, where the anisotropy is included through the spatially-dependent critical temperature T-c. Superconducting vortices penetrating into the weak-superconducting region with smaller T-c are more mobile than the ones in the strong superconducting regions. We observe periodic entrance and exit of vortices which reside in the weak link for some short interval. The mobility of the weakly-pinned vortices can be reduced by increasing the uniform applied magnetic field leading to distinct features in the voltage vs. magnetic field response of the system.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000303545400013 Publication Date 2012-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 32 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral programme between Flanders and Brazil. G.R.B. and L.C. acknowledge individual support from FWO-Vl. A.R.de C.R. acknowledges CNPq and FACEPE for financial support. ; Approved Most recent IF: 1.461; 2012 IF: 1.282
Call Number UA @ lucian @ c:irua:98267 Serial 761
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M.
Title Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at finite temperatures Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 85 Issue 19 Pages 195444-195444,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have calculated the plasmon modes in graphene double layer structures at finite temperatures, taking into account the inhomogeneity of the dielectric background of the system. The effective dielectric function is obtained from the solution of the Poisson equation of a three-layer dielectric medium with graphene sheets located at the interfaces, separating the different materials. Due to the momentum dispersion of the effective dielectric function, the intra- and interlayer bare Coulomb interactions in the graphene double layer system acquires an additional momentum dependence-an effect that is of the order of the interlayer interaction itself. We show that the energies of the in-phase and out-of-phase plasmon modes are determined largely by different values of the spatially dependent effective dielectric function. The effect of the dielectric inhomogeneity increases with temperature, and even at high temperatures the energy shift induced by the dielectric inhomogeneity and temperature itself remains larger than the broadening of the plasmon energy dispersions due to the Landau damping. The obtained new features of the plasmon dispersions can be observed in frictional drag measurements and in inelastic light scattering and electron energy-loss spectroscopies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304394800011 Publication Date 2012-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 67 Open Access
Notes ; We thank G. Vignale for useful discussions and acknowledge support from the Flemisch Science Foundation (FWO-Fl) and the Belgian Science Policy (BELSPO). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98941 Serial 826
Permanent link to this record
 

 
Author Shakouri, K.; Szafran, B.; Esmaeilzadeh, M.; Peeters, F.M.
Title Effective spin-orbit interaction Hamiltonian for quasi-one-dimensional quantum rings Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 85 Issue 16 Pages 165314-165314,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effective Hamiltonian for an electron in a quasi-one-dimensional quantum ring in the presence of spin-orbit interactions is derived. We demonstrate that, when both coupling types are simultaneously present, the effective Hamiltonian derived by the lowest-radial-state approximation produces energy spectra and charge densities which deviate strongly from the exact ones. For equal Rashba and Dresselhaus coupling constants the lowest-radial-state approximation opens artifactal avoided crossings in the energy spectra and deforms the circular symmetry of the confined charge densities. In this case, there does not exist a ring thin enough to justify the restriction to the lowest radially quantized energy state. We derive the effective Hamiltonian accounting for both the lowest and the first excited radial states, and show that the inclusion of the latter restores the correct features of the exact solution. Relation of this result to the states of a quantum wire is also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303068800006 Publication Date 2012-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes ; This work was partially supported by Polish Ministry of Science and Higher Education and its grants for Scientific Research. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98258 Serial 855
Permanent link to this record
 

 
Author Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.
Title Electric-field-induced shift of the Mott metal-insulator transition in thin films Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 85 Issue 8 Pages 085110-085110,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground-state properties of a paramagnetic Mott insulator at half-filling are investigated in the presence of an external electric field using the inhomogeneous Gutzwiller approximation for a single-band Hubbard model in a slab geometry. We find that the metal-insulator transition is shifted toward higher Hubbard repulsions by applying an electric field perpendicular to the slab. The main reason is the accumulation of charges near the surface. The spatial distribution of site-dependent quasiparticle weight shows that it is maximal in a few layers beneath the surface, while the central sites where the field is screened have a very low quasiparticle weight. Our results show that above a critical-field value, states near the surface will be metallic, while the bulk quasiparticle weight is extremely suppressed but never vanishing, even for large Hubbard repulsions above the bulk zero-field critical value. Below the critical-field value, our results hint toward an insulating state in which the electric field is totally screened and the slab is again at half-filling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000300240100002 Publication Date 2012-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97208 Serial 884
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M.
Title Electron-phonon bound state in graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 85 Issue 20 Pages 205453-205453,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The fine structure of the Dirac energy spectrum in graphene induced by electron-optical phonon coupling is investigated in the portion of the spectrum near the phonon emission threshold. The derived new dispersion equation in the immediate neighborhood below the threshold corresponds to an electron-phonon bound state. We find that the singular vertex corrections beyond perturbation theory strongly increase the electron-phonon binding energy scale. The predicted enhancement of the effective electron-phonon coupling can be measured using angle-resolved spectroscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304649400002 Publication Date 2012-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes ; We thank E. Rashba for the useful discussion and acknowledge support from the Belgian Science Policy (IAP) and BELSPO. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98939 Serial 982
Permanent link to this record
 

 
Author Krstajić, P.M.; Peeters, F.M.
Title Energy-momentum dispersion relation of plasmarons in graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 85 Issue 20 Pages 205454-205454,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The many-body correction to the band structure of a quasi-free-standing graphene layer is obtained within the Overhauser approach, where the electron-plasmon interaction is described as a field theoretical problem. We find that the Dirac-like spectrum is shifted by Delta E(k = 0), which is on the order of 50-150 meV, depending on the electron concentration n(e), and is in semiquantitative agreement with experimental data. The value of the Fermi velocity is renormalized by several percents and decreases with increasing electron concentration as found experimentally.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304649900004 Publication Date 2012-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE project CON-GRAN, and the Serbian Ministry of Education and Science (project No. TR 32008). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98937 Serial 1043
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
Title Enhancement of the retrapping current of superconducting microbridges of finite length Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 85 Issue 2 Pages 024508-024508,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically find that the resistance of a superconducting microbridge or nanowire decreases while the retrapping current I(r) for the transition to the superconducting state increases when one suppresses the magnitude of the order parameter vertical bar Delta vertical bar in the attached superconducting leads. This effect is a consequence of the increased energy interval for diffusion of the “hot” nonequilibrium quasiparticles (induced by the oscillations of vertical bar Delta vertical bar in the center of the microbridge) to the leads. The effect is absent in short microbridges (with length less than the coherence length) and it is relatively weak in long microbridges (with length larger than the inelastic relaxation length of the nonequilibrium distribution function). A nonmonotonous dependence of I(r) on the length of the microbridge is predicted. Our results are important for the explanation of the enhancement of the critical current and the appearance of negative magnetoresistance observed in many recent experiments on superconducting microbridges or nanowires.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298863400005 Publication Date 2012-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education, under the Federal Target Programme “Scientific and Educational Personnel of Innovative Russia in 2009-2013” and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:96235 Serial 1065
Permanent link to this record
 

 
Author Vagov, A.V.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Extended Ginzburg-Landau formalism : systematic expansion in small deviation from the critical temperature Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 85 Issue 1 Pages 014502-014502,17
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Based on the Gor'kov formalism for a clean s-wave superconductor, we develop an extended version of the single-band Ginzburg-Landau (GL) theory by means of a systematic expansion in the deviation from the critical temperature T(c), i.e., tau = 1 – T/T(c). We calculate different contributions to the order parameter and the magnetic field: the leading contributions (proportional to tau(1/2) in the order parameter and. t in the magnetic field) are controlled by the standard GL theory, while the next-to-leading terms (proportional to tau(3/2) in the gap and proportional to tau(2) in the magnetic field) constitute the extended GL (EGL) approach. We derive the free-energy functional for the extended formalism and the corresponding expression for the current density. To illustrate the usefulness of our formalism, we calculate, in a semianalytical form, the temperature-dependent correction to the GL parameter at which the surface energy becomes zero, and analytically, the temperature dependence of the thermodynamic critical field. We demonstrate that the EGL formalism is not just a mathematical extension to the theory: variations of both the gap and the thermodynamic critical field with temperature calculated within the EGL theory are found in very good agreement with the full BCS results down to low temperatures, which dramatically improves the applicability of the formalism compared to its standard predecessor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298985100002 Publication Date 2012-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 36 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). A. V. V. is grateful to V. Zalipaev for important comments. A. A. S. thanks W. Pogosov for helpful notes. Discussions with E. H. Brandt and A. Perali are appreciated. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:96232 Serial 1155
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Hernández-Nieves, A.D.; Milošević, M.V.; Peeters, F.M.; Dominguez, D.
Title Flux-quantum-discretized dynamics of magnetic flux entry, exit, and annihilation in current-driven mesoscopic type-I superconductors Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 85 Issue 9 Pages 092502-092502,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study nonlinear flux dynamics in a current-carrying type-I superconductor. The stray magnetic field of the current induces the intermediate state, where nucleation of flux domains is discretized to a single fluxoid at a time, while their final shape (tubular or laminar), size, and nucleation rate depend on applied current and edge conditions. The current induces opposite flux domains on opposite sides of the sample, and subsequently drives them to annihilation-which is also discretized, as a sequence of vortex-antivortex pairs. The discretization of both nucleation and annihilation leaves measurable traces in the voltage across the sample and in locally probed magnetization. The reported dynamic phenomena thus provide an unambiguous proof of a flux quantum being the smallest building block of the intermediate state in type-I superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000301183000002 Publication Date 2012-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the Belgian Science Policy (IAP), the Flemish Science Foundation (FWO-Vl), and the collaborative project FWO-MINCyT (Project No. FW/08/01). G. R. B. and A. D. H acknowledge support from FWO-Vl. A. D. H. and D. D. acknowledge support from CONICET, CNEA, and ANPCyT (Grant No. PICT07-824). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97180 Serial 1243
Permanent link to this record
 

 
Author Saniz, R.; Partoens, B.; Peeters, F.M.
Title Green function approach to superconductivity in nanowires Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 85 Issue 14 Pages 144504-144504,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superconductivity in nanowires made of weak coupling superconductor materials is investigated using a Green function approach. We show that these are multigap systems in which the ratio Delta(T)/k(B)T(c) is to a large extent similar to what is observed in some high-T-c two-gap systems, such as MgB2 and some of the Fe-based superconductors. On the other hand, because of confinement, the superfluid density has a temperature behavior of the form n(s)(T) = 1 – (T/T-c)(3) near T-c, thus deviating from the BCS behavior for bulk superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000302290700006 Publication Date 2012-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes ; This work was supported by FWO-Vl and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97764 Serial 1381
Permanent link to this record
 

 
Author Čukarić, N.; Arsoski, V.; Tadić, M.; Peeters, F.M.
Title Hole states in nanocups in a magnetic field Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 85 Issue 23 Pages 235425-235425,11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The magnetic-field dependence of the hole states in a nanocup, which is composed of a ring (the nanocup rim) that surrounds a disk (the nanocup bottom), is obtained within the Luttinger-Kohn model for the unstrained GaAs/(Al,Ga) As and the strained (In,Ga) As/GaAs systems. Aharonov-Bohm oscillations due to angular momentum transitions of the hole ground state appear with periods that vary with the thickness of the disk. The strain in the (In, Ga) As/GaAs nanocup is sensitive to the disk thickness and favors the spatial localization of the heavy holes inside the disk. Therefore, the angular momentum transitions between the valence-band states disappear for much thinner disks than in the case of the unstrained GaAs/(Al, Ga) As nanocups. In both systems, the oscillations in the energy of the hole ground state are found to disappear for thinner inner layer than in the electron ground-state energy. This is due to the different confining potentials and the mixing between the heavy- and light-hole states. As a consequence, magnetization of the single hole is found to strongly depend on the bottom thickness of the strained (In, Ga) As/GaAs nanocup. Furthermore, we found that the strain can lead to a spatial separation of the electron and the hole, as in type-II band alignment, which is advantageous for the appearance of the excitonic Aharonov-Bohm effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305116700005 Publication Date 2012-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; The authors thank B. Partoens for useful discussions. This work was supported by the EU NoE: SANDiE, the Ministry of Education and Science of Serbia, and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98906 Serial 1477
Permanent link to this record
 

 
Author Zarenia, M.; Vasilopoulos, P.; Peeters, F.M.
Title Magnetotransport in periodically modulated bilayer graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 85 Issue 24 Pages 245426-245426,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetotransport in bilayer graphene in the presence of a weak and periodic potential is investigated in the presence of a perpendicular magnetic field B. The modulation broadens the Landau levels into bands and for weak magnetic fields leads to the well-known Weiss oscillations in their bandwidth and their transport coefficients at very low B and to the Shubnikov-de Haas oscillations at larger B. The amplitude of the Weiss oscillations is severely reduced if the periodic potentials applied to the two layers oscillate out of phase. We also contrast some results with those corresponding to single-layer graphene. Relative to them the flat-band condition and the oscillation amplitude differ substantially, due to the interlayer coupling, and agree only when this coupling is extremely weak. We further show that the Hall conductivity exhibits the well-known steps at half-integer and integer multiples of 4e(2)/h in single-layer and bilayer graphene, respectively, even for very weak magnetic fields. The results are pertinent to weak and periodic corrugations when the potential modulation dominates the strain-induced magnetic modulation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305253600012 Publication Date 2012-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CON-GRAN), and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:99077 Serial 1934
Permanent link to this record
 

 
Author Clem, J.R.; Mawatari, Y.; Berdiyorov, G.R.; Peeters, F.M.
Title Predicted field-dependent increase of critical currents in asymmetric superconducting nanocircuits Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 85 Issue 14 Pages 144511-144511,16
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The critical current of a thin superconducting strip of width W much larger than the Ginzburg-Landau coherence length xi but much smaller than the Pearl length Lambda = 2 lambda(2)/d is maximized when the strip is straight with defect-free edges. When a perpendicular magnetic field is applied to a long straight strip, the critical current initially decreases linearly with H but then decreases more slowly with H when vortices or antivortices are forced into the strip. However, in a superconducting strip containing sharp 90 degrees or 180 degrees turns, the zero-field critical current at H = 0 is reduced because vortices or antivortices are preferentially nucleated at the inner corners of the turns, where current crowding occurs. Using both analytic London-model calculations and time-dependent Ginzburg-Landau simulations, we predict that in such asymmetric strips the resulting critical current can be increased by applying a perpendicular magnetic field that induces a current-density contribution opposing the applied current density at the inner corners. This effect should apply to all turns that bend in the same direction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000302611100004 Publication Date 2012-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 40 Open Access
Notes ; This research, supported in part by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering, was performed in part at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work also was supported in part by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). G.R.B. acknowledges individual support from FWO-Vlaanderen. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98263 Serial 2695
Permanent link to this record
 

 
Author Krstajić, P.M.; Peeters, F.M.
Title Remote electron plasmon polaron in graphene Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume (up) 85 Issue 8 Pages 085436-085436,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Coulomb interaction and the correlation of a remote electron with a single layer of graphene is investigated in the presence of a magnetic field applied perpendicular to the graphene layer. The remote electron polarizes the electron gas in the graphene layer, which we describe in terms of excitations of virtual plasmons in graphene. The composite quasiparticle formed by electron plus polarization is called a plasmon polaron. The ground-state energy of this quasiparticle is calculated within perturbation theory for remote electrons in different environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000300831900012 Publication Date 2012-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97202 Serial 2869
Permanent link to this record
 

 
Author Molnar, B.; Vasilopoulos, P.; Peeters, F.M.
Title Spin-dependent transmission through a chain of rings : influence of a periodically modulated spin-orbit interaction strength or ring radius Type A1 Journal article
Year 2004 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume (up) 85 Issue 4 Pages 612-614
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study ballistic electron transport through a finite chain of quantum circular rings in the presence of spin-orbit interaction of strength alpha. For a single ring, the transmission and reflection coefficients are obtained analytically and from them the conductance for a chain of rings as a function of alpha and of the wave vector k of the incident electron. We show that due to destructive spin interferences, the chain can be totally opaque for certain ranges of k, the width of which depends on the value of alpha. A periodic modulation of the strength alpha or of the ring radius widens the gaps considerably and produces a nearly binary conductance output. (C) 2004 American Institute of Physics.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000222855400034 Publication Date 2004-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 26 Open Access
Notes Approved Most recent IF: 3.411; 2004 IF: 4.308
Call Number UA @ lucian @ c:irua:94799 Serial 3085
Permanent link to this record