toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vlasov, I.I.; Shenderova, O.; Turner, S.; Lebedev, O.I.; Basov, A.A.; Sildos, I.; Rähn, M.; Shiryaev, A.A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond Type A1 Journal article
  Year 2010 Publication Small Abbreviated Journal Small  
  Volume (up) 6 Issue 5 Pages 687-694  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An efficient method to investigate the microstructure and spatial distribution of nitrogen and nitrogen-vacancy (N-V) defects in detonation nanodiamond (DND) with primary particle sizes ranging from approximately 3 to 50 nm is presented. Detailed analysis reveals atomic nitrogen concentrations as high as 3 at% in 50% of diamond primary particles with sizes smaller than 6 nm. A non-uniform distribution of nitrogen within larger primary DND particles is also presented, indicating a preference for location within the defective central part or at twin boundaries. A photoluminescence (PL) spectrum with well-pronounced zero-phonon lines related to the N-V centers is demonstrated for the first time for electron-irradiated and annealed DND particles at continuous laser excitation. Combined Raman and PL analysis of DND crystallites dispersed on a Si substrate leads to the conclusion that the observed N-V luminescence originates from primary particles with sizes exceeding 30 nm. These findings demonstrate that by manipulation of the size/nitrogen content in DND there are prospects for mass production of nanodiamond photoemitters based on bright and stable luminescence from nitrogen-related defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000275972400013 Publication Date 2010-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810;1613-6829; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 84 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 8.643; 2010 IF: 7.336  
  Call Number UA @ lucian @ c:irua:82364 Serial 2341  
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials Type A1 Journal article
  Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume (up) 6 Issue 6 Pages 1541-1557  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357977300001 Publication Date 2015-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 10 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 3.127; 2015 IF: 2.670  
  Call Number c:irua:126857 Serial 2682  
Permanent link to this record
 

 
Author Lebedev, O.I.; Van Tendeloo, G.; Collart, O.; Cool, P.; Vansant, E.F. pdf  doi
openurl 
  Title Structure and microstructure of nanoscale mesoporous silica spheres Type A1 Journal article
  Year 2004 Publication Solid state sciences Abbreviated Journal Solid State Sci  
  Volume (up) 6 Issue Pages 489-498  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000221604500011 Publication Date 2004-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.811 Times cited 42 Open Access  
  Notes Pai/Iuap P5/01 Approved Most recent IF: 1.811; 2004 IF: 1.598  
  Call Number UA @ lucian @ c:irua:46262 Serial 3289  
Permanent link to this record
 

 
Author Deng, S.; Kurttepeli, M.; Deheryan, S.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Van Tendeloo, G.; Detavernier, C. pdf  url
doi  openurl
  Title Synthesis of a 3D network of Pt nanowires by atomic layer deposition on a carbonaceous template Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) 6 Issue 12 Pages 6939-6944  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The formation of a 3D network composed of free standing and interconnected Pt nanowires is achieved by a two-step method, consisting of conformal deposition of Pt by atomic layer deposition (ALD) on a forest of carbon nanotubes and subsequent removal of the carbonaceous template. Detailed characterization of this novel 3D nanostructure was carried out by transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS). The characterization showed that this pure 3D nanostructure of platinum is self-supported and offers an enhancement of the electrochemically active surface area by a factor of 50.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000337143900086 Publication Date 2014-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 14 Open Access OpenAccess  
  Notes The authors wish to thank the Research Foundation – Flanders (FWO) for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERCgrant agreement N°239865-COCOON, N°246791-COUNTATOMS and N°335078–COLOURATOM). The authors would also want to thank the support from UGENT-GOA-01G01513, IWT-SBO SOSLion and the Belgian government through Interuniversity Attraction Poles (IAPPAI).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:118393 Serial 3454  
Permanent link to this record
 

 
Author Van Tendeloo, G. openurl 
  Title TEM of phase transitions in tridymite and cristobalite based materials Type A3 Journal article
  Year 2000 Publication Microscoy and microanalysis Abbreviated Journal  
  Volume (up) 6 Issue S2 Pages  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:54726 Serial 3483  
Permanent link to this record
 

 
Author Bertoni, G.; Fabbri, F.; Villani, M.; Lazzarini, L.; Turner, S.; Van Tendeloo, G.; Calestani, D.; Gradečak, S.; Zappettini, A.; Salviati, G. pdf  url
doi  openurl
  Title Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume (up) 6 Issue 6 Pages 19168  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present the direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules. This results in clean interfaces, enabling to prove the occurrence of the plasmon-exciton coupling and the straightforward mapping of its spatial localization. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presenting an isotropic distribution around the nanoparticle. On the contrary, a strong localization of the ZnO excitons, has been observed inside the Au nanoparticle, revealing the existence of the plasmon-exciton coupling, as also confirmed by numerical simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368111900001 Publication Date 2016-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 15 Open Access  
  Notes The research leading to these results has received funding from the European Union FP7 Grant Agreement n. 265073 ITN-Nanowiring, and FP7 Grant Agreement n. 312483 ESTEEM2 for Integrated Infrastructure Initiative – I3. S.T. gratefully acknowledges the FWO Vlaanderen. G.V.T. acknowledges the European Research Council (ERC grant N°246791 – COUNTATOMS). The authors thank Alessandra Catellani and Arrigo Calzolari for helpful discussions.; Esteem2_jra3 Approved Most recent IF: 4.259  
  Call Number c:irua:130406 c:irua:130406 Serial 3999  
Permanent link to this record
 

 
Author Leus, K.; Dendooven, J.; Tahir, N.; Ramachandran, R.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Goeman, J.; Van der Eycken, J.; Detavernier, C.; Van Der Voort, P. url  doi
openurl 
  Title Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst Type A1 Journal article
  Year 2016 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume (up) 6 Issue 6 Pages 45  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier) by means of atomic layer deposition (ALD). The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD) measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF) and transmission electron microscopy (TEM) analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373533300009 Publication Date 2016-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 19 Open Access  
  Notes Karen Leus acknowledges the financial support from the Ghent University “Bijzonder Onderzoeksfonds” BOF post-doctoral Grant 01P06813T and UGent “Geconcentreeerde Onderzoekacties” GOA Grant 01G00710. Jolien Dendooven and Stuart Turner gratefully acknowledges the “Fonds Wetenschappelijk Onderzoek” FWO Vlaanderen for a post-doctoral scholarship. Christophe Detavernier thanks the FWO Vlaanderen, BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014) for financial support. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the “Belgian Interuniversitaire Attractie Pool-Pôle d'Attraction Interuniversitaire” IAP-PAI network. Approved Most recent IF: 3.553  
  Call Number c:irua:131902 Serial 4015  
Permanent link to this record
 

 
Author Ren, X.-N.; Wu, L.; Jin, J.; Liu, J.; Hu, Z.-Y.; Li, Y.; Hasan, T.; Yang, X.-Y.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title 3D interconnected hierarchically macro-mesoporous TiO2networks optimized by biomolecular self-assembly for high performance lithium ion batteries Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume (up) 6 Issue 6 Pages 26856-26862  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Biomolecular self-assembly is an effective synthesis strategy for materials fabrication with unique structural complexity and properties. For the first time, we intergrate inner-particle mesoporosity in a three-dimensional (3D) interconnected macroporous TiO2 structure via the mediation of biomolecular self-assembly of the lipids and proteins from rape pollen coats and P123 to optimize the structure for high performance lithium storage. Benefitting from the hierarchically 3D interconnected macro-mesoporous structure with high surface area, small nanocrystallites and good electrolyte permeation, such unique porous structure demonstrates superior electrochemical performance, with high initial coulombic efficiency (94.4% at 1C) and a reversible discharge capacity of 161, 145, 127 and 97 mA h g-1 at 2, 5, 10 and 20C for 1000 cycles, with 79.3%, 89.9%, 90.1% and 87.4% capacity retention, respectively. Using SEM, TEM and HRTEM observations on the TiO2 materials before and after cycling, we verify that the inner-particle mesoporosity and the Li2Ti2O4 nanocrystallites formed during the cycling process in interconnected macroporous structure largely enhance the cycle life and rate performance. Our demonstration here offers opportunities towards developing and optimizing hierarchically porous structures for energy storage applications via biomolecular self-assembly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372253700043 Publication Date 2016-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 16 Open Access  
  Notes G. Van Tendeloo and Z. Y. Hu acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483).; esteem2_jra4 Approved Most recent IF: 3.108  
  Call Number c:irua:131915 c:irua:131915 c:irua:131915 Serial 4022  
Permanent link to this record
 

 
Author Opherden, L.; Sieger, M.; Pahlke, P.; Hühne, R.; Schultz, L.; Meledin, A.; Van Tendeloo, G.; Nast, R.; Holzapfel, B.; Bianchetti, M.; MacManus-Driscoll, J.L.; Hänisch, J. url  doi
openurl 
  Title Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume (up) 6 Issue 6 Pages 21188  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370364500001 Publication Date 2016-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 39 Open Access  
  Notes The authors gratefully acknowledge J. Scheiter, U. Besold, and U. Fiedler for technical assistance. This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007-2013) under Grant Agreement no. 280432. Approved Most recent IF: 4.259  
  Call Number c:irua:131920 Serial 4026  
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Poelman, H.; Galvita, V.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B. pdf  doi
openurl 
  Title One-pot synthesis of Pt catalysts based on layered double hydroxides: an application in propane dehydrogenation Type A1 Journal article
  Year 2016 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol  
  Volume (up) 6 Issue 6 Pages 1863-1869  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Simple methods for producing noble metal catalysts with well-defined active sites and improved performance are highly desired in the chemical industry. However, the development of such methods still presents a formidable synthetic challenge. Here, we demonstrate a one-pot synthesis route for the controlled production of bimetallic Pt–In catalysts based on the single-step formation of Mg,Al,Pt,In-containing layered double hydroxides (LDHs). Besides their simple synthesis, these Pt–In catalysts exhibit superior propane dehydrogenation activity compared to their multi-step synthesized analogs. The presented material serves as a showcase for the one-pot synthesis of a broader class of LDH-derived mono- and multimetallic Pt catalysts. The compositional flexibility provided by LDH materials can pave the way towards highperforming Pt-based catalysts with tunable physicochemical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372172800031 Publication Date 2015-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.773 Times cited 12 Open Access  
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) by supplying financing of beam time at the DUBBLE beamline of the ESRF and travel costs and a post-doctoral fellowship for S. T. The authors acknowledge the assistance from the DUBBLE (XAS campaign 26-01-979) and SuperXAS staff (Proposal 20131191). E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to O. Janssens for performing ex situ XRD characterization. Approved Most recent IF: 5.773  
  Call Number c:irua:133167 Serial 4057  
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Custers, K.; Kerkhofs, S.; Sree, S.P.; Gobechiya, E.; Kirschhock, C.E.A.; Van Tendeloo, G.; Martens, J.A. pdf  url
doi  openurl
  Title Anatase TiO2nanoparticle coating on porous COK-12 platelets as highly active and reusable photocatalysts Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume (up) 6 Issue 6 Pages 46678-46685  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale TiO2 photocatalysts are widely used for biomedical applications, self-cleaning processes and wastewater treatments. The impregnation/deposition of TiO2 nanoparticles is indispensable for facile handling and separation as well as the improvement of their photocatalytic performance. In the present study, ordered mesoporous COK-12 silica thin platelets with a high-aspect-ratio and rough surfaces are demonstrated as a potential nanoporous support for homogeneous TiO2 nanoparticle coatings with high loading up to 16.7 wt%. The photocatalytic composite of COK-12 platelets and TiO2 nanoparticles is characterized in detail by HRSEM, SAXS, XRD, N2 physisorption analysis, solid-state UV-vis spectroscopy, HAADF-STEM, EDX analysis, and electron tomography. HAADF-STEM-EDX and electron tomography studies reveal a homogeneous dispersion of nanosized TiO2 nanoparticles over COK-12 platelets. The final composite material with anatase TiO2 nanoparticles that demonstrate a blueshifted semiconductor band gap energy of 3.2 eV coated on a highly porous COK-12 support shows exceptional photocatalytic catalytic activity for photodegradation of organic dyes (rhodamine 6G and methylene blue) and an organic pollutant (1-adamantanol) under UV light radiation, outperforming the commercial P25 TiO2 (Degussa) catalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377254800070 Publication Date 2016-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 6 Open Access  
  Notes L. H. W. and S. T. thanks the FWO-Vlaanderen for a postdoctoral research fellowships under contract number (12M1415N) and (G004613N), respectively. J. A.Mgratefully acknowledge nancial supports from Flemish Government (Long-term structural funding-Methusalem). Collaboration among universities was supported by the Belgium Government (IAP-PAI networking). Approved Most recent IF: 3.108  
  Call Number c:irua:133775 Serial 4074  
Permanent link to this record
 

 
Author Yu, W.-B.; Hu, Z.-Y.; Yi, M.; Huang, S.-Z.; Chen, D.-S.; Jin, J.; Li, Y.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title Probing the electrochemical behavior of {111} and {110} faceted hollow Cu2O microspheres for lithium storage Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume (up) 6 Issue 6 Pages 97129-97136  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Transition metal oxides with exposed highly active facets have become of increasing interest as anode materials for lithium ion batteries, because more dangling atoms exposed at the active surface facilitate the reaction between the transition metal oxides and lithium. In this work, we probed the electrochemical behavior of hollow Cu2O microspheres with {111} and {110} active facets on the polyhedron surface as anodes for lithium storage. Compared to commercial Cu2O nanoparticles, hollow Cu2O microspheres with {111} and {110} active facets show a rising specific capacity at 30 cycles which then decreases after 110 cycles during the cycling process. Via advanced electron microscopy characterization, we reveal that this phenomenon can be attributed to the highly active {111} and {110} facets with dangling “Cu” atoms facilitating the conversion reaction of Cu2O and Li, where part of the Cu2O is oxidized to CuO during the charging process. However, as the reaction proceeds, more and more formed Cu nanoparticles cannot be converted to Cu2O or CuO. This leads to a decrease of the specific capacity. We believe that our study here sheds some light on the progress of the electrochemical behavior of transition metal oxides with respect to their increased specific capacity and the subsequent decrease via a conversion reaction mechanism. These results will be helpful to optimize the design of transition metal oxide micro/nanostructures for high performance lithium storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386242500084 Publication Date 2016-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 5 Open Access  
  Notes Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 3.108  
  Call Number EMAT @ emat @ c:irua:138199 Serial 4322  
Permanent link to this record
 

 
Author Abakumov, A.M.; Kalyuzhnaya, A.S.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Compositionally induced phase transition in the Ca2MnGa1-xAlxO5 solid solutions: ordering of tetrahedral chains in brownmillerite structure Type A1 Journal article
  Year 2005 Publication Solid state sciences Abbreviated Journal Solid State Sci  
  Volume (up) 7 Issue 7 Pages 801-811  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000230259500001 Publication Date 2005-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.811 Times cited 38 Open Access  
  Notes IAP V-1; RFBR 04-03-32785-a. Approved Most recent IF: 1.811; 2005 IF: 1.708  
  Call Number UA @ lucian @ c:irua:54700 Serial 448  
Permanent link to this record
 

 
Author Raveau, B.; Michel, C.; Hervieu, M.; Van Tendeloo, G.; Martin, C.; Maignan, A. doi  openurl
  Title Copper oxycarbonates and mercury-based cuprates: promising high Tc superconductors Type A1 Journal article
  Year 1994 Publication Journal of superconductivity Abbreviated Journal  
  Volume (up) 7 Issue Pages 9-18  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1994NH48800002 Publication Date 2004-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0896-1107;1572-9605; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 6 Open Access  
  Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #  
  Call Number UA @ lucian @ c:irua:10042 Serial 516  
Permanent link to this record
 

 
Author Milat, O.; Van Tendeloo, G.; Amelinckx, S.; Wright, A.J.; Greaves, C. pdf  doi
openurl 
  Title Effect of the substitution Ba\leftrightarrow Sr on the Ga-1222 superstructure : an electron diffraction study Type A1 Journal article
  Year 1995 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume (up) 7 Issue 9 Pages 1709-1715  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The superstructure of the RE(2)(Sr0.85-xBaxNd0.15)(2)GaCU2O9 compound is found to change significantly with increasing substitution of Ba for Sr. Most of the changes take place in the (Sr0.85-xBaxNd0.15)O-GaO-(Sr0.85-xBaxNd0.15)O lamella, the rest of the basic structure being hardly affected. The structural changes for O less than or equal to x less than or equal to 0.65 are studied by electron diffraction. The arrangement of the chains of GaO4 tetrahedra in the Ba-free compound becomes disordered at x > 0.25. At x similar to 0.65 a rearrangement of the chains in the GaO layers takes place; they form a meandering arrangement, which can be described on a 4a(p) x 2a(p) x c(p) superlattice. This rearrangement is accompanied by ordering of Ba and Sr atoms in the adjacent (ST0.85-xBaxNd0.15)O layers. A simple scheme is proposed to explain the influence of the substitution of Ba for Sr on the linking of the GaO4 tetrahedra and on the geometry of the ''chains'' in the GaO layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos A1995RW21200021 Publication Date 2005-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.354 Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13326 Serial 850  
Permanent link to this record
 

 
Author Leroux, C.; Badeche, T.; Nihoul, G.; Richard, O.; Van Tendeloo, G. doi  openurl
  Title A homologous series Pb2n+1Nb2n-1O7n-1 studied by electron microscopy Type A1 Journal article
  Year 1999 Publication European physical journal: applied physics Abbreviated Journal Eur Phys J-Appl Phys  
  Volume (up) 7 Issue Pages 33-40  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000082211000005 Publication Date 2003-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-0042;1286-0050; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.684 Times cited 4 Open Access  
  Notes Approved Most recent IF: 0.684; 1999 IF: 0.208  
  Call Number UA @ lucian @ c:irua:29717 Serial 1488  
Permanent link to this record
 

 
Author Verbist, K.; Van Tendeloo, G.; Ye, M.; Schroeder, J.; Mehbod, M.; Deltour, R. doi  openurl
  Title Inclusions in magnetron sputtered YBa2Cu3-x MxO7-d thin films: a study by means of electron microscopy Type A1 Journal article
  Year 1996 Publication Microscopy, microanalysis, microstructures Abbreviated Journal  
  Volume (up) 7 Issue Pages 17-25  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Ivry Editor  
  Language Wos A1996UD94200002 Publication Date 2003-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1154-2799; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 6 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15463 Serial 1592  
Permanent link to this record
 

 
Author Quintana, M.; López, A.M.; Rapino, S.; Toma, F.M.; Iurlo, M.; Carraro, M.; Sartorel, A.; Maccato, C.; Ke, X.; Bittencourt, C.; Da Ros, T.; Van Tendeloo, G.; Marcaccio, M.; Paolucci, F.; Prato, M.; Bonchio, M.; pdf  doi
openurl 
  Title Knitting the catalytic pattern of artificial photosynthesis to a hybrid graphene nanotexture Type A1 Journal article
  Year 2013 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume (up) 7 Issue 1 Pages 811-817  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The artificial leaf project calls for new materials enabling multielectron catalysis with minimal overpotential, high turnover frequency, and long-term stability. Is graphene a better material than carbon nanotubes to enhance water oxidation catalysis for energy applications? Here we show that functionalized graphene with a tailored distribution of polycationic, quaternized, ammonium pendants provides an sp(2) carbon nanoplatform to anchor a totally inorganic tetraruthenate catalyst, mimicking the oxygen evolving center of natural PSII. The resulting hybrid material displays oxygen evolution at overpotential as low as 300 mV at neutral pH with negligible loss of performance after 4 h testing. This multilayer electroactive asset enhances the turnover frequency by 1 order of magnitude with respect to the isolated catalyst, and provides a definite up-grade of the carbon nanotube material, with a similar surface functionalization. Our innovation is based on a noninvasive, synthetic protocol for graphene functionalization that goes beyond the ill-defined oxidation-reduction methods, allowing a definite control of the surface properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314082800088 Publication Date 2012-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 69 Open Access  
  Notes 246791 COUNTATOMS; 262348 ESMI; ESF Cost Action NanoTP MP0901 Approved Most recent IF: 13.942; 2013 IF: 12.033  
  Call Number UA @ lucian @ c:irua:107707 Serial 1766  
Permanent link to this record
 

 
Author Malakho, A.P.; Morozov, V.A.; Pokholok, K.V.; Lazoryak, B.I.; Van Tendeloo, G. pdf  doi
openurl 
  Title Layered ordering of vacancies of lead iron phosphate Pb3Fe2(PO4)4 Type A1 Journal article
  Year 2005 Publication Solid state sciences Abbreviated Journal Solid State Sci  
  Volume (up) 7 Issue 4 Pages 397-404  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000228951300007 Publication Date 2005-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.811 Times cited 7 Open Access  
  Notes Approved Most recent IF: 1.811; 2005 IF: 1.708  
  Call Number UA @ lucian @ c:irua:54701 Serial 1806  
Permanent link to this record
 

 
Author Meledina, M.; Turner, S.; Galvita, V.V.; Poelman, H.; Marin, G.B.; Van Tendeloo, G. doi  openurl
  Title Local environment of Fe dopants in nanoscale Fe : CeO2-x oxygen storage material Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) 7 Issue 7 Pages 3196-3204  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale Fe : CeO2-x oxygen storage material for the process of chemical looping has been investigated by advanced transmission electron microscopy and electron energy-loss spectroscopy before and after a model looping procedure, consisting of redox cycles at heightened temperature. Separately, the activity of the nanomaterial has been tested in a toluene total oxidation reaction. The results show that the material consists of ceria nanoparticles, doped with single Fe atoms and small FeOx clusters. The iron ion is partially present as Fe3+ in a solid solution within the ceria lattice. Furthermore, enrichment of reduced Fe2+ species is observed in nanovoids present in the ceria nanoparticles, as well as at the ceria surface. After chemical looping, agglomeration occurs and reduced nanoclusters appear at ceria grain boundaries formed by sintering. These clusters originate from surface Fe2+ aggregation, and from bulk Fe3+, which “leaks out” in reduced state after cycling to a slightly more agglomerated form. The activity of Fe : CeO2 during the toluene total oxidation part of the chemical looping cycle is ensured by the dopant Fe in the Fe1-xCexO2 solid solution, and by surface Fe species. These measurements on a model Fe : CeO2-x oxygen storage material give a unique insight into the behavior of dopants within a nanosized ceria host, and allow to interpret a plethora of (doped) cerium oxide-based reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000349473200046 Publication Date 2015-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 17 Open Access  
  Notes Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number c:irua:125299 Serial 1828  
Permanent link to this record
 

 
Author Chen, J.-J.; Ke, X.; Van Tendeloo, G.; Meng, J.; Zhou, Y.-B.; Liao, Z.-M.; Yu, D.-P. pdf  doi
openurl 
  Title Magnetotransport across the metal-graphene hybrid interface and its modulation by gate voltage Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) 7 Issue 7 Pages 5516-5524  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The graphene-metal contact is very important for optimizing the performance of graphene based electronic devices. However, it is difficult to probe the properties of the graphene/metal interface directly via transport measurements in traditional graphene lateral devices, because the dominated transport channel is graphene, not the interface. Here, we employ the Au/graphene/Au vertical and lateral hybrid structure to unveil the metal-graphene interface properties, where the transport is dominated by the charge carriers across the interface. The magnetoresistance (MR) of Au/monolayer graphene/Au and Au/stacked two-layered graphene/Au devices is measured and modulated by gate voltage, demonstrating that the interface is a device. The gate-tunable MR is identified from the graphene lying on the SiO2 substrate and underneath the top metal electrode. Our unique structures couple the in-plane and out-of-plane transport and display linear MR with small amplitude oscillations at low temperatures. Under a magnetic field, the electronic coupling between the graphene edge states and the electrode leads to the appearance of quantum oscillations. Our results not only provide a new pathway to explore the intrinsic transport mechanism at the graphene/metal interface but also open up new vistas of magnetoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000351372400050 Publication Date 2015-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 3 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number c:irua:125533 Serial 1931  
Permanent link to this record
 

 
Author Hervieu; Van Tendeloo, G.; Michel; Pelloquin; Raveau doi  openurl
  Title Mixed layers in copper based superconducting materials Type A1 Journal article
  Year 1996 Publication Microscopy, microanalysis, microstructures Abbreviated Journal  
  Volume (up) 7 Issue 2 Pages 107-141  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Recently discovered series of high Tc superconductors, characterized by the existence of two types of cations within the same layer, are presented. The first family concerns the mercury based cuprates, Hg(1-x)M(x)A(2)Ca(m-1)Cu(m)O(2m+2+delta), with A = Ba and/or Sr, which exhibit structures closely related to that of the thallium cuprates TlBa2Cam-1CumO2m+3. They differ from the thallium cuprates by a high oxygen deficiency at the level of the mercury layer. It is shown that cations such as M = Cu, Pb, Tl, Bi, Ce, Pr, Cr, V, Mo, W, Ti, Sr, Ca,... can partially substitute for mercury ions, stabilizing the structures. The cationic composition of the layer depends indeed on the nature of the M cation but also on that of the alkaline earth A. For given A and M cations, the a: value remains unchanged even when the number of copper layers varies. M and Hg cations are either statistically distributed over the same site or ordered. Different types of ordering have been detected. Another way of generating mixed layers is to shear periodically the structure, leading to the formation of the so called ''collapsed phase''. In the collapsed bismuth cuprates, bismuth and copper segments, a few octahedra long, alternate in strongly waving layers. In the collapsed oxycarbonates, carbonate groups and M cations are ordered within the intermediate layer so that they can be simply described from a partial and ordered substitution of carbon for Hg,TI, Bi and other M cations building the intermediate layer. The oxycarbonitrates (Y1-xCax)(n)Ba2nCu3n-1(C,N)O3O7n-3 can also be described as an ordered substitution of carbon for copper in the 123 matrix. The different families of superconducting materials which are generated by such mechanisms are described as well as the way the different species are distributed within the mixed layers. Their influence on the physical properties are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Ivry Editor  
  Language Wos A1996VA22000004 Publication Date 2003-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1154-2799; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:95287 Serial 2088  
Permanent link to this record
 

 
Author de Witte, K.; Cool, P.; de Witte, I.; Ruys, L.; Rao, J.; Van Tendeloo, G.; Vansant, E.F. doi  openurl
  Title Multistep loading of titania nanoparticles in the mesopores of SBA-15 for enhanced photocatalytic activity Type A1 Journal article
  Year 2007 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno  
  Volume (up) 7 Issue 7 Pages 2511-2515  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000246347700042 Publication Date 2007-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1533-4880;0000-0000; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.483 Times cited 13 Open Access  
  Notes Approved Most recent IF: 1.483; 2007 IF: 1.987  
  Call Number UA @ lucian @ c:irua:64773 Serial 2240  
Permanent link to this record
 

 
Author Khobrakova, E.T.; Morozov, V.A.; Khasanov, S.S.; Tsyrenova, G.D.; Khaikina, E.G.; Lebedev, O.I.; Van Tendeloo, G.; Lazoryak, B.I. pdf  doi
openurl 
  Title New molybdenum oxides Ag4M2Zr(MoO4)6 (M=Mg, Mn, Co, Zn) with a channel-like structure Type A1 Journal article
  Year 2005 Publication Solid state sciences Abbreviated Journal Solid State Sci  
  Volume (up) 7 Issue 11 Pages 1397-1405  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000233620600014 Publication Date 2005-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.811 Times cited 9 Open Access  
  Notes Approved Most recent IF: 1.811; 2005 IF: 1.708  
  Call Number UA @ lucian @ c:irua:54703 Serial 2327  
Permanent link to this record
 

 
Author Egoavil, R.; Huehn, S.; Jungbauer, M.; Gauquelin, N.; Béché, A.; Van Tendeloo, G.; Verbeeck; Moshnyaga, V. pdf  url
doi  openurl
  Title Phase problem in the B-site ordering of La2CoMnO6 : impact on structure and magnetism Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) 7 Issue 7 Pages 9835-9843  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial double perovskite La2CoMnO6 (LCMO) films were grown by metalorganic aerosol deposition on SrTiO3(111) substrates. A high Curie temperature, T-C = 226 K, and large magnetization close to saturation, M-S(5 K) = 5.8 mu(B)/f.u., indicate a 97% degree of B-site (Co,Mn) ordering within the film. The Co/Mn ordering was directly imaged at the atomic scale by scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDX). Local electron-energy-loss spectroscopy (EELS) measurements reveal that the B-sites are predominantly occupied by Co2+ and Mn4+ ions in quantitative agreement with magnetic data. Relatively small values of the (1/2 1/2 1/2) superstructure peak intensity, obtained by X-ray diffraction (XRD), point out the existence of ordered domains with an arbitrary phase relationship across the domain boundary. The size of these domains is estimated to be in the range 35-170 nm according to TEM observations and modelling the magnetization data. These observations provide important information towards the complexity of the cation ordering phenomenon and its implications on magnetism in double perovskites, and similar materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000354983100060 Publication Date 2015-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 37 Open Access  
  Notes 312483 ESTEEM2; FWO G004413N; 246102 IFOX; Hercules; esteem2_jra3 Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number c:irua:126423 c:irua:126423 Serial 2586  
Permanent link to this record
 

 
Author Bals, S.; Batenburg, J.; Verbeeck, J.; Sijbers, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes Type A1 Journal article
  Year 2007 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume (up) 7 Issue 12 Pages 3669-3674  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The three-dimensional (3D) structure and chemical composition of bamboo-like carbon nanotubes including the catalyst particles that are. used during their growth are studied by discrete electron tomography in combination with energy-filtered transmission electron microscopy. It is found that cavities are present in the catalyst particles. Furthermore, only a small percentage of the catalyst particles consist of pure Cu, since a large volume fraction of the particles is oxidized to CU(2)0. These volume fractions are determined quantitatively from 3D reconstructions obtained by discrete tomography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000251581600022 Publication Date 2007-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 78 Open Access  
  Notes Fwo; Esteem Approved Most recent IF: 12.712; 2007 IF: 9.627  
  Call Number UA @ lucian @ c:irua:66762UA @ admin @ c:irua:66762 Serial 2768  
Permanent link to this record
 

 
Author Groeneveld, E.; Witteman, L.; Lefferts, M.; Ke, X.; Bals, S.; Van Tendeloo, G.; de Mello Donega, C. pdf  doi
openurl 
  Title Tailoring ZnSe-CdSe colloidal quantum dots via cation exchange : from core/shell to alloy nanocrystals Type A1 Journal article
  Year 2013 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume (up) 7 Issue 9 Pages 7913-7930  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report a study of Zn2+ by Cd2+ cation exchange (CE) in colloidal ZnSe nanocrystals (NCs). Our results reveal that CE in ZnSe NCs is a thermally activated isotropic process. The CE efficiency (i.e., fraction of Cd2+ ions originally in solution, Cdsol, that is incorporated in the ZnSe NC) increases with temperature and depends also on the Cdsol/ZnSe ratio. Interestingly, the reaction temperature can be used as a sensitive parameter to tailor both the composition and the elemental distribution profile of the product (Zn,Cd)Se NCs. At 150 °C ZnSe/CdSe core/shell hetero-NCs (HNCs) are obtained, while higher temperatures (200 and 220 °C) produce (Zn1xCdx)Se gradient alloy NCs, with increasingly smoother gradients as the temperature increases, until homogeneous alloy NCs are obtained at T ≥ 240 °C. Remarkably, sequential heating (150 °C followed by 220 °C) leads to ZnSe/CdSe core/shell HNCs with thicker shells, rather than (Zn1xCdx)Se gradient alloy NCs. Thermal treatment at 250 °C converts the ZnSe/CdSe core/shell HNCs into (Zn1xCdx)Se homogeneous alloy NCs, while preserving the NC shape. A mechanism for the cation exchange in ZnSe NCs is proposed, in which fast CE takes place at the NC surface, and is followed by relatively slower thermally activated solid-state cation diffusion, which is mediated by Frenkel defects. The findings presented here demonstrate that cation exchange in colloidal ZnSe NCs provides a very sensitive tool to tailor the nature and localization regime of the electron and hole wave functions and the optoelectronic properties of colloidal ZnSeCdSe NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000330016900051 Publication Date 2013-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 153 Open Access  
  Notes 262348 Esmi; 246791 Countatoms Approved Most recent IF: 13.942; 2013 IF: 12.033  
  Call Number UA @ lucian @ c:irua:110038 Serial 3469  
Permanent link to this record
 

 
Author Warwick, M.E.A.; Kaunisto, K.; Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Sada, C.; Ruoko, T.P.; Turner, S.; Van Tendeloo, G.; pdf  doi
openurl 
  Title Vapor phase processing of \alpha-Fe2O3 photoelectrodes for water splitting : an insight into the structure/property interplay Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume (up) 7 Issue 7 Pages 8667-8676  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Harvesting radiant energy to trigger water photoelectrolysis and produce clean hydrogen is receiving increasing attention in the search of alternative energy resources. In this regard, hematite (alpha-Fe2O3) nanostructures with controlled nano-organization have been fabricated and investigated for use as anodes in photoelectrochemical (PEC) cells. The target systems have been grown on conductive substrates by plasma enhanced-chemical vapor deposition (PE-CVD) and subjected to eventual ex situ annealing in air to further tailor their structure and properties. A detailed multitechnique approach has enabled to elucidate between system characteristics and the generated photocurrent. The present alpha-Fe2O3 systems are characterized by a high purity and hierarchical morphologies consisting of nanopyramids/organized dendrites, offering a high contact area with the electrolyte. PEC data reveal a dramatic response enhancement upon thermal treatment, related to a more efficient electron transfer. The reasons underlying such a phenomenon are elucidated and discussed by transient absorption spectroscopy (TAS) studies of photogenerated charge carrier kinetics, investigated on different time scales for the first time on PE-CVD Fe2O3 nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353931300037 Publication Date 2015-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 51 Open Access  
  Notes 246791 Countatoms; Fwo Approved Most recent IF: 7.504; 2015 IF: 6.723  
  Call Number c:irua:126059 Serial 3836  
Permanent link to this record
 

 
Author Li, Y.; Tan, H.; Yang, X.-Y.; Goris, B.; Verbeeck, J.; Bals, S.; Colson, P.; Cloots, R.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title Well shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties Type A1 Journal article
  Year 2011 Publication Small Abbreviated Journal Small  
  Volume (up) 7 Issue 4 Pages 475-483  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Very uniform and well shaped Mn3O4 nano-octahedra are synthesized using a simple hydrothermal method under the help of polyethylene glycol (PEG200) as a reductant and shape-directing agent. The nano-octahedra formation mechanism is monitored. The shape and crystal orientation of the nanoparticles is reconstructed by scanning electron microscopy and electron tomography, which reveals that the nano-octahedra only selectively expose {101} facets at the external surfaces. The magnetic testing demonstrates that the Mn3O4 nano-octahedra exhibit anomalous magnetic properties: the Mn3O4 nano-octahedra around 150 nm show a similar Curie temperature and blocking temperature to Mn3O4 nanoparticles with 10 nm size because of the vertical axis of [001] plane and the exposed {101} facets. With these Mn3O4 nano-octahedra as a catalyst, the photodecomposition of rhodamine B is evaluated and it is found that the photodecomposition activity of Mn3O4 nano-octahedra is much superior to that of commercial Mn3O4 powders. The anomalous magnetic properties and high superior photodecomposition activity of well shaped Mn3O4 nano-octahedra should be related to the special shape of the nanoparticles and the abundantly exposed {101} facets at the external surfaces. Therefore, the shape preference can largely broaden the application of the Mn3O4 nano-octahedra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000288080400008 Publication Date 2011-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 131 Open Access  
  Notes This work was realized in the frame of an Interuniversity Attraction Poles Program (Inanomat-P6/17)-Belgian State-Belgian Science Policy and the project “Redugaz”, financially supported by the European community and the Wallon government in the frame of Interreg IV (France-Wallonie). B. L. S. acknowledges the Chinese Central Government for an “Expert of the State” position in the program of “Thousand talents” and the Chinese Ministry of Education for a Changjiang Scholar position at the Wuhan University of Technology. H. T. acknowledges the financial support from FWO-Vlaanderen (Project nr. G.0147.06). J.V. thanks the financial support from the European Union under Framework 6 program for Integrated Infrastructure Initiative, Reference 026019 ESTEEM. Approved Most recent IF: 8.643; 2011 IF: 8.349  
  Call Number UA @ lucian @ c:irua:87908 Serial 3914  
Permanent link to this record
 

 
Author Kremer, S.P.B.; Kirschhock, C.E.A.; Aerts, A.; Aerts, C.A.; Houthoofd, K.J.; Grobet, P.J.; Jacobs, P.A.; Lebedev, O.I.; Van Tendeloo, G.; Martens, J.A. pdf  doi
openurl 
  Title Zeotile-2: a microporous analogue of MCM-48 Type A1 Journal article
  Year 2005 Publication Solid state sciences Abbreviated Journal Solid State Sci  
  Volume (up) 7 Issue 7 Pages 861-867  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000230259500006 Publication Date 2005-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.811 Times cited 10 Open Access  
  Notes Approved Most recent IF: 1.811; 2005 IF: 1.708  
  Call Number UA @ lucian @ c:irua:54702 Serial 3931  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: