toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Xu, B.; Milošević, M.V.; Peeters, F.M.
  Title Vortex matter in oblate mesoscopic superconductors with a hole: broken symmetry vortex states and multi-vortex entry Type A1 Journal article
  Year 2009 Publication New journal of physics Abbreviated Journal New J Phys
  Volume (up) 11 Issue Pages 013020,1-013020,21
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using three-dimensional (3D) numerical discretization of the GinzburgLandau (GL) equations, we investigate the superconducting state of a sphere with a piercing hole in the presence of a magnetic field. In the case of samples with central perforation, in axially applied homogeneous magnetic field, we realized unconventional vortex states of broken symmetry due to complex, 3D competing interactions, which depend on the GL parameter ê. For certain sizes of the sample, non-hysteretic multi-vortex entry and exit is predicted with the non-existence of some vorticities as stable states. In a tilted magnetic field, we studied the gradual transformation of 3D flux patterns into 1D vortex chains, where vortices align along the perforation, and the evolvement of the multi-vortex entry as well. We analyze the flux-guiding ability of the hole in a tilted field, which leads to fractional flux response in magnetization M(H) curves.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000262932500003 Publication Date 2009-01-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.786 Times cited 8 Open Access
  Notes Approved Most recent IF: 3.786; 2009 IF: 3.312
  Call Number UA @ lucian @ c:irua:75986 Serial 3873
Permanent link to this record
 

 
Author Ghorbanfekr, H.; Behler, J.; Peeters, F.M.
  Title Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
  Volume (up) 11 Issue 17 Pages 7363-7370
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 A confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 A, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000569375400061 Publication Date 2020-08-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.7 Times cited 35 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program (Grant Number: G099219N). The authors thank Arham Amouei for the helpful discussion regarding MD simulations. ; Approved Most recent IF: 5.7; 2020 IF: 9.353
  Call Number UA @ admin @ c:irua:171996 Serial 6546
Permanent link to this record
 

 
Author Rzeszotarski, B.; Mrenca-Kolasinska, A.; Peeters, F.M.; Szafran, B.
  Title Effective Landé factors for an electrostatically defined quantum point contact in silicene Type A1 Journal article
  Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk
  Volume (up) 11 Issue 1 Pages 19892
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The transconductance and effective Lande g* factors for a quantum point contact defined in silicene by the electric field of a split gate is investigated. The strong spin-orbit coupling in buckled silicene reduces the g* factor for in-plane magnetic field from the nominal value 2 to around 1.2 for the first-to 0.45 for the third conduction subband. However, for perpendicular magnetic field we observe an enhancement of g* factors for the first subband to 5.8 in nanoribbon with zigzag and to 2.5 with armchair edge. The main contribution to the Zeeman splitting comes from the intrinsic spin-orbit coupling defined by the Kane-Mele form of interaction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000706380800089 Publication Date 2021-10-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record
  Impact Factor 4.259 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.259
  Call Number UA @ admin @ c:irua:182502 Serial 6983
Permanent link to this record
 

 
Author Pandey, T.; Peeters, F.M.; Milošević, M.V.
  Title High thermoelectric figure of merit in p-type Mg₃Si₂Te₆: role of multi-valley bands and high anharmonicity Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal
  Volume (up) 11 Issue 33 Pages 11185-11194
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Silicon-based materials are attractive for thermoelectric applications due to their thermal stability, chemical inertness, and natural abundance of silicon. Here, using a combination of first-principles and Boltzmann transport calculations we report the thermoelectric properties of the recently synthesized compound Mg3Si2Te6. Our analysis reveals that Mg3Si2Te6 is a direct bandgap semiconductor with a bandgap of 1.6 eV. The combination of heavy and light valence bands, along with a high valley degeneracy, results in a large power factor under p-type doping. We also find that Mg is weakly bonded both within and between the layers, leading to low phonon group velocities. The vibrations of the Mg atoms are localized and make a significant contribution to phonon-phonon scattering. This high anharmonicity, coupled with low phonon group velocity, results in a low lattice thermal conductivity of & kappa;(l) = 0.5 W m(-1) K-1 at room temperature, along the cross-plane direction. Combining excellent electronic transport properties and low & kappa;(l), p-type Mg3Si2Te6 achieves figure-of-merit (zT) values greater than 1 at temperatures above 600 K. Specifically, a zT of 2.0 is found at 900 K along the cross-plane direction. Our findings highlight the importance of structural complexity and chemical bonding in electronic and phonon transport, providing guiding insights for further design of Si-based thermoelectrics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001041124900001 Publication Date 2023-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record
  Impact Factor 6.4 Times cited 1 Open Access Not_Open_Access
  Notes Approved Most recent IF: 6.4; 2023 IF: 5.256
  Call Number UA @ admin @ c:irua:198296 Serial 8821
Permanent link to this record
 

 
Author Tadic; Peeters, F.M.
  Title Electronic structure of the valence band in cylindrical strained InP/InGaP quantum dots in an external magnetic field Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, July 30-August 03, 2001, Prague, Czech Republic Abbreviated Journal Physica E
  Volume (up) 12 Issue 1-4 Pages 880-883
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The multiband effective-mass model of cylindrical self-assembled quantum dots in a magnetic field normal to the layer of the quantum dots is presented. The strain distribution is computed by the valence force field method. The strain-dependent multiband Hamiltonian is modified into an axially symmetric form, which commutes with the total angular momentum F-2 = fh. where f denotes the total magnetic quantum number. The heavy hole and the light hole parts in the mixed hole state are resolved. It is found that the heavy hole component dominates in the ground states for both f = 1/2 and 3/2. The electronic structure exhibits numerous anticrossings between the hole levels. The Zeeman splitting between the +\f\ and -\f\ states is also computed. (C) 2002 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000175206300217 Publication Date 2002-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 1 Open Access
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
  Call Number UA @ lucian @ c:irua:95138 Serial 1016
Permanent link to this record
 

 
Author Freire, J.A.K.; Studart, N.; Peeters, F.M.; Farias, G.A.; Freire, V.N.
  Title Magnetic confinement of electrons into quantum wires and dots on a liquid helium surface Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, July 30-August 03, 2001, Prague, Czech Republic Abbreviated Journal Physica E
  Volume (up) 12 Issue 1-4 Pages 946-949
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate the possibility to laterally confine surface electrons on a liquid helium surface by inserting magnetic discs and stripes which generate nonhomogeneous magnetic field profiles. (C) 2002 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000175206300233 Publication Date 2002-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 2 Open Access
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
  Call Number UA @ lucian @ c:irua:95139 Serial 1864
Permanent link to this record
 

 
Author Schweigert, I.V.; Schweigert, V.A.; Peeters, F.M.
  Title Perturbation of collisional plasma flow around a charged dust particle: kinetic analysis Type A1 Journal article
  Year 2005 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
  Volume (up) 12 Issue 11 Pages 113501,1-9
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Woodbury, N.Y. Editor
  Language Wos 000233569600046 Publication Date 2005-11-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.115 Times cited 15 Open Access
  Notes Approved Most recent IF: 2.115; 2005 IF: 2.182
  Call Number UA @ lucian @ c:irua:56048 Serial 2575
Permanent link to this record
 

 
Author Novoselov, K.S.; Geim, A.K.; Dubonos, S.V.; Cornelissens, Y.G.; Peeters, F.M.; Maan, J.C.
  Title Quenching of the Hall effect in localised high magnetic field regions Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
  Volume (up) 12 Issue 1/4 Pages 244-247
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We report the suppression of the Hall effect in a mesoscopic Hall cross with a strong magnetic field only in the centre and vanishingly small outside, The local magnetic field is produced by placing Dy pillar on top of a structure with a high-mobility two-dimensional electron gas. The effect is found to be due to a sharp increase of the number of back-scattered and quasi-localised electron orbits. The possibility of localising electrons inside the magnetic inhomogeneity region is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000175206300061 Publication Date 2002-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 3 Open Access
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
  Call Number UA @ lucian @ c:irua:94939 Serial 2804
Permanent link to this record
 

 
Author Masir, M.R.; Peeters, F.M.
  Title Scattering of Dirac electrons by a random array of magnetic flux tubes Type A1 Journal article
  Year 2013 Publication Journal of computational electronics Abbreviated Journal J Comput Electron
  Volume (up) 12 Issue 2 Pages 115-122
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The scattering of two-dimensional (2D) massless electrons as presented in graphene in the presence of a random array of circular magnetic flux tubes is investigated. The momentum relaxation time and the Hall factor are obtained using optical theorem techniques for scattering. Electrons with energy close to those of the Landau levels of the flux tubes exhibit resonant scattering and have a long life-time to reside inside the magnetic flux tube. These resonances appear as sharp structures in the Hall factor and the magneto-resistance.
  Address
  Corporate Author Thesis
  Publisher Place of Publication S.l. Editor
  Language Wos 000320044900007 Publication Date 2013-02-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.526 Times cited 2 Open Access
  Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN and the Flemish Science Foundation (FWO-Vl). We acknowledge fruitful discussions with A. Matulis. ; Approved Most recent IF: 1.526; 2013 IF: 1.372
  Call Number UA @ lucian @ c:irua:109615 Serial 2950
Permanent link to this record
 

 
Author Reijniers, J.; Peeters, F.M.
  Title Snake orbits and related magnetic edge states Type A1 Journal article
  Year 2000 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume (up) 12 Issue Pages 9771-9786
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Engineering Management (ENM)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000165795500009 Publication Date 2002-08-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.649 Times cited 66 Open Access
  Notes Approved Most recent IF: 2.649; 2000 IF: 1.608
  Call Number UA @ lucian @ c:irua:34352 Serial 3045
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K.
  Title Theory of trions in quantum wells Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, JUL 30-AUG 03, 2001, PRAGUE, CZECH REPUBLIC Abbreviated Journal Physica E
  Volume (up) 12 Issue 1-4 Pages 543-545
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We investigate the energy levels of the negatively and positively charged excitons (also called trions) in a 200 Angstrom wide GaAs quantum well in the presence of a perpendicular magnetic field. A comparison is made with the experimental results of Glasberg et al. (Phys. Rev. B. 59 (1999) R10 425) and of Yusa et al. (cond-mat/0103505). (C) 2002 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000175206300134 Publication Date 2002-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 2 Open Access
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
  Call Number UA @ lucian @ c:irua:103903 Serial 3624
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M.
  Title Transport of magnetic edge states in a quantum wire exposed to a non-homogeneous magnetic field Type A1 Journal article
  Year 2001 Publication Nanotechnology Abbreviated Journal Nanotechnology
  Volume (up) 12 Issue Pages 570-576
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000173305300041 Publication Date 2002-08-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.44 Times cited 5 Open Access
  Notes Approved Most recent IF: 3.44; 2001 IF: 1.621
  Call Number UA @ lucian @ c:irua:37276 Serial 3727
Permanent link to this record
 

 
Author Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y.
  Title Tuning a circular p-n junction in graphene from quantum confinement to optical guiding Type A1 Journal article
  Year 2017 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol
  Volume (up) 12 Issue 11 Pages 1045-+
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract <script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.'));
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000414531800011 Publication Date 2017-09-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 38.986 Times cited 65 Open Access
  Notes ; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; Approved Most recent IF: 38.986
  Call Number UA @ lucian @ c:irua:147406 Serial 4902
Permanent link to this record
 

 
Author Sun, P.Z.; Yagmurcukardes, M.; Zhang, R.; Kuang, W.J.; Lozada-Hidalgo, M.; Liu, B.L.; Cheng, H.-M.; Wang, F.C.; Peeters, F.M.; Grigorieva, I.V.; Geim, A.K.
  Title Exponentially selective molecular sieving through angstrom pores Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun
  Volume (up) 12 Issue 1 Pages 7170
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Two-dimensional crystals with angstrom-scale pores are widely considered as candidates for a next generation of molecular separation technologies aiming to provide extreme, exponentially large selectivity combined with high flow rates. No such pores have been demonstrated experimentally. Here we study gas transport through individual graphene pores created by low intensity exposure to low kV electrons. Helium and hydrogen permeate easily through these pores whereas larger species such as xenon and methane are practically blocked. Permeating gases experience activation barriers that increase quadratically with molecules' kinetic diameter, and the effective diameter of the created pores is estimated as similar to 2 angstroms, about one missing carbon ring. Our work reveals stringent conditions for achieving the long sought-after exponential selectivity using porous two-dimensional membranes and suggests limits on their possible performance. Two-dimensional membranes with angstrom-sized pores are predicted to combine high permeability with exceptional selectivity, but experimental demonstration has been challenging. Here the authors realize angstrom-sized pores in monolayer graphene and demonstrate gas transport with activation barriers increasing quadratically with the molecular kinetic diameter.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000728562700016 Publication Date 2021-12-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 28 Open Access OpenAccess
  Notes Approved Most recent IF: 12.124
  Call Number UA @ admin @ c:irua:184840 Serial 6989
Permanent link to this record
 

 
Author Lyu, Y.-Y.; Jiang, J.; Wang, Y.-L.; Xiao, Z.-L.; Dong, S.; Chen, Q.-H.; Milošević, M.V.; Wang, H.; Divan, R.; Pearson, J.E.; Wu, P.; Peeters, F.M.; Kwok, W.-K.
  Title Superconducting diode effect via conformal-mapped nanoholes Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun
  Volume (up) 12 Issue 1 Pages 2703
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract A superconducting diode is an electronic device that conducts supercurrent and exhibits zero resistance primarily for one direction of applied current. Such a dissipationless diode is a desirable unit for constructing electronic circuits with ultralow power consumption. However, realizing a superconducting diode is fundamentally and technologically challenging, as it usually requires a material structure without a centre of inversion, which is scarce among superconducting materials. Here, we demonstrate a superconducting diode achieved in a conventional superconducting film patterned with a conformal array of nanoscale holes, which breaks the spatial inversion symmetry. We showcase the superconducting diode effect through switchable and reversible rectification signals, which can be three orders of magnitude larger than that from a flux-quantum diode. The introduction of conformal potential landscapes for creating a superconducting diode is thereby proven as a convenient, tunable, yet vastly advantageous tool for superconducting electronics. This could be readily applicable to any superconducting materials, including cuprates and iron-based superconductors that have higher transition temperatures and are desirable in device applications. A superconducting diode is dissipationless and desirable for electronic circuits with ultralow power consumption, yet it remains challenging to realize it. Here, the authors achieve a superconducting diode in a conventional superconducting film patterned with a conformal array of nanoscale holes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000658724200018 Publication Date 2021-05-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 71 Open Access OpenAccess
  Notes Approved Most recent IF: 12.124
  Call Number UA @ admin @ c:irua:179611 Serial 7024
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.; Partoens, B.; Janssens, K.L.
  Title Electron and hole localization in coupled InP/InGaP self-assembled quantum dots Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
  Volume (up) 13 Issue 2/4 Pages 237-240
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000176869100035 Publication Date 2002-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 5 Open Access
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
  Call Number UA @ lucian @ c:irua:62427 Serial 905
Permanent link to this record
 

 
Author Freire, J.A.K.; Peeters, F.M.; Freire, V.N.; Farias, G.A.
  Title Exciton trapping in magnetic wire structures Type A1 Journal article
  Year 2001 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume (up) 13 Issue Pages 3283-3295
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000168269200006 Publication Date 2002-08-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.649 Times cited 3 Open Access
  Notes Approved Most recent IF: 2.649; 2001 IF: 1.611
  Call Number UA @ lucian @ c:irua:37302 Serial 1121
Permanent link to this record
 

 
Author Bruno-Alfonso, A.; Hai, G.-Q.; Peeters, F.M.; Yeo, T.; Ryu, S.R.; McCombe, B.D.
  Title High energy transitions of shallow magneto-donors in a GaAs/Al0.3Ga0.7As multiple quantum well Type A1 Journal article
  Year 2001 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume (up) 13 Issue Pages 9761-9772
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000172233300007 Publication Date 2002-08-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.649 Times cited 7 Open Access
  Notes Approved Most recent IF: 2.649; 2001 IF: 1.611
  Call Number UA @ lucian @ c:irua:37301 Serial 1426
Permanent link to this record
 

 
Author Leao, S.A.; Hipolito, O.; Peeters, F.M.
  Title Inter and intrasubband transitions via lo phonons in quantum wires Type A1 Journal article
  Year 1993 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst
  Volume (up) 13 Issue 1 Pages 37-40
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate the effects of the finite confining potential V0 on the absorption and emission scattering rates of electrons interacting with LO phonons for a cylindrical GaAs quantum wire. The emission rates are qualitatively similar to those of the 2D case. The absorption rates on the other hand exhibit two different regimes: 1) for a wire radius smaller than a certain value (80 Å in the case where V0 = 190 meV) the behavior is similar to the 2D and 3D analogues, but 2) for larger radius the absorption rates initially increase with increasing energy, reach a maximum value and then decrease monotonicaly. A complete study is made as a function of wire radius, and electron energy.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1993KK13700007 Publication Date 2002-10-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.097 Times cited 8 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:103011 Serial 1680
Permanent link to this record
 

 
Author Domingos, J.L.C.; Peeters, F.M.; Ferreira, W.P.
  Title Self-assembly and clustering of magnetic peapod-like rods with tunable directional interaction Type A1 Journal article
  Year 2018 Publication PLoS ONE Abbreviated Journal Plos One
  Volume (up) 13 Issue 4 Pages e0195552
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Based on extensive Langevin Dynamics simulations we investigate the structural properties of a two-dimensional ensemble of magnetic rods with a peapod-like morphology, i.e, rods consisting of aligned single dipolar beads. Self-assembled configurations are studied for different directions of the dipole with respect to the rod axis. We found that with increasing misalignment of the dipole from the rod axis, the smaller the packing fraction at which the percolation transition is found. For the same density, the system exhibits different aggregation states for different misalignment. We also study the stability of the percolated structures with respect to temperature, which is found to be affected by the microstructure of the assembly of rods.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.806 Times cited Open Access
  Notes Approved Most recent IF: 2.806
  Call Number UA @ lucian @ c:irua:150778UA @ admin @ c:irua:150778 Serial 4977
Permanent link to this record
 

 
Author Hu, S.; Gopinadhan, K.; Rakowski, A.; Neek-Amal, M.; Heine, T.; Grigorieva, I.V.; Haigh, S.J.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M.
  Title Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals Type A1 Journal article
  Year 2018 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol
  Volume (up) 13 Issue 6 Pages 468-+
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Atoms start behaving as waves rather than classical particles if confined in spaces commensurate with their de Broglie wavelength. At room temperature this length is only about one angstrom even for the lightest atom, hydrogen. This restricts quantum-confinement phenomena for atomic species to the realm of very low temperatures(1-5). Here, we show that van der Waals gaps between atomic planes of layered crystals provide angstrom-size channels that make quantum confinement of protons apparent even at room temperature. Our transport measurements show that thermal protons experience a notably higher barrier than deuterons when entering van der Waals gaps in hexagonal boron nitride and molybdenum disulfide. This is attributed to the difference in the de Broglie wavelengths of the isotopes. Once inside the crystals, transport of both isotopes can be described by classical diffusion, albeit with unexpectedly fast rates comparable to that of protons in water. The demonstrated angstrom-size channels can be exploited for further studies of atomistic quantum confinement and, if the technology can be scaled up, for sieving hydrogen isotopes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000434715700015 Publication Date 2018-04-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 38.986 Times cited 32 Open Access
  Notes ; The authors acknowledge support from the Lloyd's Register Foundation, EPSRC – EP/N010345/1, the European Research Council ARTIMATTER project – ERC-2012-ADG and from Graphene Flagship. M.L.-H. acknowledges a Leverhulme Early Career Fellowship. ; Approved Most recent IF: 38.986
  Call Number UA @ lucian @ c:irua:152014UA @ admin @ c:irua:152014 Serial 5046
Permanent link to this record
 

 
Author Jalali, H.; Khoeini, F.; Peeters, F.M.; Neek-Amal, M.
  Title Hydration effects and negative dielectric constant of nano-confined water between cation intercalated MXenes Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume (up) 13 Issue 2 Pages 922-929
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Using electrochemical methods a profound enhancement of the capacitance of electric double layer capacitor electrodes was reported when water molecules are strongly confined into the two-dimensional slits of titanium carbide MXene nanosheets [A. Sugahara et al., Nat. Commun., 2019, 10, 850]. We study the effects of hydration on the dielectric properties of nanoconfined water and supercapacitance properties of the cation intercalated MXene. A model for the electric double layer capacitor is constructed where water molecules are strongly confined in two-dimensional slits of MXene. We report an abnormal dielectric constant and polarization of nano-confined water between MXene layers. We found that by decreasing the ionic radius of the intercalated cations and in a critical hydration shell radius the capacitance of the system increases significantly (similar or equal to 200 F g(-1)) which can be interpreted as a negative permittivity. This study builds a bridge between the fundamental understanding of the dielectric properties of nanoconfined water and the capability of using MXene films for supercapacitor technology, and in doing so provides a solid theoretical support for recent experiments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000610368100035 Publication Date 2020-12-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 7 Open Access Not_Open_Access
  Notes ; ; Approved Most recent IF: 7.367
  Call Number UA @ admin @ c:irua:176141 Serial 6690
Permanent link to this record
 

 
Author Javdani, Z.; Hassani, N.; Faraji, F.; Zhou, R.; Sun, C.; Radha, B.; Neyts, E.; Peeters, F.M.; Neek-Amal, M.
  Title Clogging and unclogging of hydrocarbon-contaminated nanochannels Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
  Volume (up) 13 Issue 49 Pages 11454-11463
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The recent advantages of the fabrication of artificial nanochannels enabled new research on the molecular transport, permeance, and selectivity of various gases and molecules. However, the physisorption/chemisorption of the unwanted molecules (usually hydrocarbons) inside nanochannels results in the alteration of the functionality of the nanochannels. We investigated contamination due to hydrocarbon molecules, nanochannels made of graphene, hexagonal boron nitride, BC2N, and molybdenum disulfide using molecular dynamics simulations. We found that for a certain size of nanochannel (i.e., h = 0.7 nm), as a result of the anomalous hydrophilic nature of nanochannels made of graphene, the hydrocarbons are fully adsorbed in the nanochannel, giving rise to full uptake. An increasing temperature plays an important role in unclogging, while pressure does not have a significant role. The results of our pioneering work contribute to a better understanding and highlight the important factors in alleviating the contamination and unclogging of nanochannels, which are in good agreement with the results of recent experiments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000893147700001 Publication Date 2022-12-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
  Impact Factor 5.7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 5.7
  Call Number UA @ admin @ c:irua:192815 Serial 7263
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M.
  Title Wien effect in interfacial water dissociation through proton-permeable graphene electrodes Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
  Volume (up) 13 Issue 1 Pages 5776-5777
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10(7) V m(-1), sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O reversible arrow H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 10(8) V m(-1). The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000862552600012 Publication Date 2022-10-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 16.6 Times cited 14 Open Access OpenAccess
  Notes Approved Most recent IF: 16.6
  Call Number UA @ admin @ c:irua:191575 Serial 7228
Permanent link to this record
 

 
Author Zhou, Z.; Tan, Y.; Yang, Q.; Bera, A.; Xiong, Z.; Yagmurcukardes, M.; Kim, M.; Zou, Y.; Wang, G.; Mishchenko, A.; Timokhin, I.; Wang, C.; Wang, H.; Yang, C.; Lu, Y.; Boya, R.; Liao, H.; Haigh, S.; Liu, H.; Peeters, F.M.; Li, Y.; Geim, A.K.; Hu, S.
  Title Gas permeation through graphdiyne-based nanoporous membranes Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal Nat Commun
  Volume (up) 13 Issue 1 Pages 4031-4036
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Nanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows. Using isotope and cryogenic temperature measurements, the seemingly conflicting characteristics are explained by a high density of straight-through holes (direct porosity of similar to 0.1%), in which heavy atoms are adsorbed on the walls, partially blocking Knudsen flows. Our work offers important insights into intricate transport mechanisms playing a role at nanoscale.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000918423100001 Publication Date 2022-07-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 16.6 Times cited 21 Open Access OpenAccess
  Notes Approved Most recent IF: 16.6
  Call Number UA @ admin @ c:irua:194402 Serial 7308
Permanent link to this record
 

 
Author Zhao, H.J.; Misko, V.R.; Peeters, F.M.
  Title Analysis of pattern formation in systems with competing range interactions Type A1 Journal article
  Year 2012 Publication New journal of physics Abbreviated Journal New J Phys
  Volume (up) 14 Issue Pages 063032
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We analyzed pattern formation and identified various morphologies in a system of particles interacting through a non-monotonic potential with a competing range interaction characterized by a repulsive core (r < r(c)) and an attractive tail (r > r(c)), using molecular-dynamics simulations. Depending on parameters, the interaction potential models the inter-particle interaction in various physical systems ranging from atoms, molecules and colloids to vortices in low kappa type-II superconductors and in recently discovered 'type-1.5' superconductors. We constructed a 'morphology diagram' in the plane 'critical radius r(c)-density n' and proposed a new approach to characterizing the different types of patterns. Namely, we elaborated a set of quantitative criteria in order to identify the different pattern types, using the radial distribution function (RDF), the local density function and the occupation factor.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000306946600003 Publication Date 2012-06-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.786 Times cited 45 Open Access
  Notes ; We acknowledge useful discussions with Ernst Helmut Brandt, Charles Reichhardt and Cynthia Olson Reichhardt. This work was supported by the 'Odysseus' Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.786; 2012 IF: 4.063
  Call Number UA @ lucian @ c:irua:101140 Serial 102
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P.; Shi, J.
  Title Density of states and Fermi level of a periodically modulated two-dimensional electron gas Type A1 Journal article
  Year 2002 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume (up) 14 Issue 38 Pages 8803-8816
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Explicit analytic expressions are obtained for the density of states D(E) and Fermi energy E-F of a two-dimensional electron gas in the presence of a weak and periodic unidirectional electric or magnetic modulation and of a uniform perpendicular magnetic field B. The Landau levels broaden into bands and their width, proportional to the modulation strength, oscillates with B and gives rise to Weiss oscillations in D(E), E-F and the transport coefficients. When both electric and magnetic modulations are present the position of the resulting oscillations depends on the ratio delta between the two modulation strengths. When the modulations are out of phase there is no shift in the position of the oscillations when delta varies and for a particular value of delta the oscillations are suppressed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000178678400008 Publication Date 2002-09-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.649 Times cited 8 Open Access
  Notes Approved Most recent IF: 2.649; 2002 IF: 1.775
  Call Number UA @ lucian @ c:irua:104140 Serial 640
Permanent link to this record
 

 
Author Fleurov, V.; Ivanov, V.A.; Peeters, F.M.; Vagner, I.D.
  Title Spin-engineered quantum dots Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
  Volume (up) 14 Issue 4 Pages 361-365
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to create and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nuclear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of binding electrons with energy up to several meV and the localization radius > 100 Angstrom. (C) 2002 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000177511900003 Publication Date 2002-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 12 Open Access
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
  Call Number UA @ lucian @ c:irua:104150 Serial 3088
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S.
  Title The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene Type A1 Journal article
  Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume (up) 14 Issue 4 Pages 1463-1467
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Nitrogen-doped graphene was recently synthesized and was reported to be a catalyst for hydrogen dissociative adsorption under a perpendicular applied electric field (F). In this work, the diffusion of H atoms on N-doped graphene, in the presence and absence of an applied perpendicular electric field, is studied using density functional theory. We demonstrate that the applied field can significantly facilitate the binding of hydrogen molecules on N-doped graphene through dissociative adsorption and diffusion on the surface. By removing the applied field the absorbed H atoms can be released efficiently. Our theoretical calculation indicates that N-doped graphene is a promising hydrogen storage material with reversible hydrogen adsorption/desorption where the applied electric field can act as a switch for the uptake/release processes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000298754500018 Publication Date 2011-11-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 67 Open Access
  Notes ; Financial support of the Vice-Chancellor's Postdoctoral Research Fellowship Program (SIR50/PS19184) and the ECR grant (SIR30/PS24201) from the University of New South Wales are acknowledged. This work is also supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.123; 2012 IF: 3.829
  Call Number UA @ lucian @ c:irua:96266 Serial 3578
Permanent link to this record
 

 
Author Mukhopadhyay, S.; Peeters, F.M.
  Title The pinning effect in a parabolic quantum dot Type A1 Journal article
  Year 2002 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume (up) 14 Issue 34 Pages 8005-8010
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using improved Wigner-Brillouin perturbation theory we study resonant electron-phonon interaction in a semiconductor quantum dot. We predict pinning of the excited energy levels to the ground state level plus one optical phonon as a function of the strength of the confinement potential. This effect should be observable through optical spectroscopic measurements.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000178051800022 Publication Date 2002-09-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.649 Times cited 4 Open Access
  Notes Approved Most recent IF: 2.649; 2002 IF: 1.775
  Call Number UA @ lucian @ c:irua:102824 Serial 3591
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: