toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Milagres de Oliveira, T. url  openurl
  Title Three-dimensional characterisation of nanomaterials : from model-like systems to real nanostructures Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 230 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:170020 Serial 6627  
Permanent link to this record
 

 
Author Arslan Irmak, E. url  openurl
  Title Modelling three-dimensional nanoparticle transformations based on quantitative transmission electron microscopy Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 169 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Nanomaterials are materials that have at least one dimension in the nanometer length scale, which corresponds to a billionth of a meter. When three dimensions are confined to the nanometer scale, these materials are referred to as nanoparticles. These materials are of great interest since they exhibit unique physical and chemical properties that cannot be observed for bulk systems. Due to their unique and often superior properties, nanomaterials have become central in the field of electronics, catalysis, and medicine. Moreover, they are expected to be one of the most promising systems to tackle many challenges that our society is facing, such as reducing the emission of greenhouse gases and finding effective treatments for cancer. The unique properties of nanomaterials are linked to their size, shape, structure, and composition. If one is able to measure the positions of the atoms, their chemical nature, and the bonding between them, it becomes possible to predict the physicochemical properties of nanomaterials. In this manner, the development of novel nanostructures can be triggered. However, the morphology and structure of nanomaterials are highly sensitive to the conditions for relevant applications, such as elevated temperatures or intense light illumination. Furthermore, any small change in the local structure at higher temperatures or pressures may significantly modify their performance. Hence, three-dimensional (3D) characterization of nanomaterials under application-relevant conditions is important in designing them with desired functional properties for specific applications. Among different structural characterization approaches, transmission electron microscopy (TEM) is one of the most efficient and versatile tools to investigate the structure and composition of nanomaterials since it can provide atomically resolved images, which are sensitive to the local 3D structure of the investigated sample. However, TEM only provides two-dimensional (2D) images of the 3D nanoparticle, which may lead to an incomplete understanding of their structure-property relationship. The most known and powerful technique for the 3D characterization of nanomaterials is electron tomography, where the images of a nanostructured material taken from different directions are mathematically combined to retrieve its 3D structure. Although these experiments are already state-of-the-art, 3D characterization by TEM is typically performed under ultra-high vacuum conditions and at room temperature. Such conditions are unfortunately not sufficient to understand transformations during synthesis or applications of nanomaterials. This limitation can be overcome by in situ TEM where external stimuli, such as heat, gas, and liquids, can be controllably introduced inside the TEM using specialized holders. However, there are some technical limitations to successful perform 3D in situ electron tomography experiments. For example, the long acquisition time required to collect a tilt series limits this technique when one wants to observe 3D dynamic changes with atomic resolution. A solution for this problem is the estimation of the 3D structure of nanomaterials from 2D projection images acquired along a single viewing direction. For this purpose, annular dark field scanning TEM (ADF STEM) imaging mode provides a valuable tool for quantitative structural investigation of nanomaterials from single 2D images due to its thickness and mass sensitivity. For quantitative analysis, an ADF STEM image is considered as a 2D array of pixels where relative variation of pixel intensity values is proportional to the total number of atoms and the atomic number of the elements in the sample. By applying advanced statistical approaches to these images, structural information, such as the number or types of atoms, can be retrieved with high accuracy and precision. The outcome can then be used to build a 3D starting model for energy minimization by atomistic simulations, for example, molecular dynamics simulations or the Monte Carlo method. However, this methodology needs to be further evaluated for in situ experiments. This thesis is devoted to presenting robust approaches to accurately define the 3D atomic structure of nanoparticles under application-relevant conditions and understand the mechanism behind the atomic-scale dynamics in nanoparticles in response to environmental stimuli.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188295 Serial 7063  
Permanent link to this record
 

 
Author van 't Veer, K.C. url  openurl
  Title Plasma kinetics modelling of nitrogen fixation : ammonia synthesis in dielectric barrier discharges with catalysts Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 241 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ammonia (NH3) synthesis is crucial for the production of artificial fertilizer and is carried out through the Haber-Bosch process. With an energy consumption of 30 GJ/t-NH3 and the emission of 2 kg-CO2/kg-NH3, ammonia is the chemical with the largest environmental footprint. Haber-Bosch operates under high pressure and high temperature conditions. Plasma technology potentially allows greener ammonia production. Dielectric barrier discharges are a popular plasma source in which a catalyst is easily incorporated. The combination of plasma and catalyst can circumvent the harsh reaction conditions of the Haber-Bosch process. Plasma kinetics modelling is used to gain insight into the mechanisms of such plasma-catalytic systems. Special attention is given to the instantaneous power absorbed by the electrons, the relevant fraction of the microdischarges and the discharge volumes. The importance of vibrational excitation is investigated. Depending on the exact discharge conditions, it was found that both the strong microdischarges and vibrational excitation can be simultaneously important for the ammonia yield. The temporal behavior of filamentary dielectric barrier discharges was explicitly taken into account. Ammonia was found to decompose during the microdischarges due to electron impact dissociation. At the same time atomic nitrogen and other excited species are created. Those reactive species recombine to ammonia in the afterglow through various elementary Eley-Rideal and Langmuir-Hinshelwood surface reaction steps with a net ammonia gain. Finally, the concept of the fraction of microdischarges was generalized. It directly represents the efficiency with which the applied electric power is transferred to each individual particle in the plasma reactor. It is argued that any type of spatial or temporal non-uniformity of the plasma will cause unequal treatment of the gas molecules in the reactor, corresponding to a lower efficiency at which the power is transferred to the gas molecules. All of those insights aid in an increased understanding of plasma-catalytic ammonia synthesis as a potential green chemistry solution to the synthesis of ammonia on small scale.    
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188246 Serial 7193  
Permanent link to this record
 

 
Author Vanrompay, H. url  openurl
  Title Toward fast and dose efficient electron tomography Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 207 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169852 Serial 6632  
Permanent link to this record
 

 
Author De Tommasi, E.; Rogato, A.; Caratelli, D.; Mescia, L.; Gielis, J. url  isbn
openurl 
  Title Following the photons route : mathematical models describing the interaction of diatoms with light Type H1 Book chapter
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 1-53  
  Keywords H1 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The interaction of diatoms with sunlight is fundamental in order to deeply understand their role in terrestrial ecology and biogeochemistry, essentially due to their massive contribution to global primary production through photosynthesis and its e↵ect on carbon, oxygen and silicon cycles. Following the journey of light through natural waters, its propagation through the intricate frustule micro- and nano-structure and, finally, its fate inside the photosynthetic machinery of the living cell requires several mathematical and computational models in order to accurately describe all the involved phenomena taking place at di↵erent space scales and physical regimes. In this chapter, we review the main analytical models describing the underwater optical field, the essential numerical algorithms for the study of photonic properties of the diatom frustule seen as a natural metamaterial, as well as the principal models describing photon harvesting in diatom plastids and methods for complex EM propagation problems and wave propagation in dispersive materials with multiple relaxation times. These mathematical methods will be integrated in a unifying geometric perspective.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-119-74985-1 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:186731 Serial 7165  
Permanent link to this record
 

 
Author Nakhaee, M. url  openurl
  Title Tight-binding model for two-dimensional materials Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 139 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract abstract not available  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:166134 Serial 8671  
Permanent link to this record
 

 
Author Van Hal, M. url  openurl
  Title Photo(electro)catalytic air purification and soot degradation with simultaneous energy recovery Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages XXXII, 203 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Today’s society is increasingly challenged by a range of urgent environmental problems. Air pollution is one of these pressing topics. This thesis will mainly focus on the degradation of volatile organic compounds (VOCs) and particulate matter (PM) – more specifically soot. A second globally urging topic is the quest for sustainable energy production. To simultaneously target both environmental problems, a photoelectrochemical (PEC) cell will be studied in this thesis, combining air purification and sustainable energy production in a single device. Photocatalysis is used at the anode of the PEC cell to drive the air purification process, while the energy contained in the degraded compounds is (partially) recovered at the cathode, either as H2 gas or electricity. The first two experimental chapters focus on the proof of concept of such an unbiased all-gas phase PEC cell targeting VOC degradation, using both TiO2- and WO3-based photocatalysts. In the two following experimental chapters the photocatalytic soot oxidation capacity of these TiO2- and WO3-based photocatalysts was studied. In the final experimental chapter the previously obtained results were combined, striving towards an efficient, sunlight-driven and soot-degrading waste gas-to-energy PEC cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184521 Serial 8378  
Permanent link to this record
 

 
Author Asapu, R. url  openurl
  Title A study of plasmonic systems using Layer-by-Layer synthesized core-shell nanoparticles Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 142 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:153373 Serial 8603  
Permanent link to this record
 

 
Author Berthelot, A. url  openurl
  Title Modeling of microwave plasmas for carbon dioxide conversion Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher University of Antwerp Place of Publication Antwerp Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:150338 Serial 4944  
Permanent link to this record
 

 
Author Grubova, I.Y. url  openurl
  Title Density functional theory study of interface interactions in hydroxyapatite/rutile composites for biomedical applications Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 251 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:158087 Serial 7760  
Permanent link to this record
 

 
Author Ribeiro Gomes, R. url  openurl
  Title The first order equations for the Ginzburg-Landau theory and the vortex states near a permalloy disk Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 220 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:152233 Serial 5213  
Permanent link to this record
 

 
Author Heyne, M.H. url  openurl
  Title Chemistry and plasma physics challenges for 2D materials technology Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 167 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Transition-metal dichalcogenides such as MoS2 or WS2 are semiconducting materials with a layered structure. One single layer consists of a plane of metal atoms terminated on the top and bottom by the chalcogen atoms sulfur, selenium, or tellurium. These layers show strong in-plane covalent bonding, whereas the Van-der-Waals bonds in between adjacent layers are weak. Those weak bonds allow the microcleavage and extraction of a monolayer. Transistors built on such monolayer nanosheets are promising due to high electrostatic controllability in comparison to a bulk semiconductor. This is important for fast switching speed and low-power consumption in the OFF-state. Nonetheless, prototypes of such nanosheet transistors show non-idealities due to the fabrication process. Closed films on a large area cannot be obtained by mechanical exfoliation from mm-sized crystals. For wafer-level processing, synthetic growth methods are needed. It is a challenge to obtain a few layer thick crystals with large lateral grains or even without grain boundaries with synthetic growth techniques. This requires pre-conditioned monocrystalline substrates, high-temperature deposition, and polymer-assisted transfer to other target substrates after the growth. Such transfer is a source of cracks in the film and degrades the layers' promising properties by residual polymer from the bond material. Apart from transfer, patterning of the stacked 2D layers is necessary to build devices. The patterning of a 2D material itself or another material on top of it is challenging. The integration of the nanosheets into miniaturized devices cannot be done by conventional continuous-wave dry etching techniques due to the absence of etch stop layers and the vulnerability of these thin layers. To eliminate these issues in growth and integration, we explored the deposition methods on wafer-level and low-damage integration schemes. To this end, we studied the growth of MoS2 by a hybrid physical-chemical vapor deposition for which metal layers were deposited and subsequently sulfurized in H2S to obtain large area 2D layers. The impact of sulfurization temperature, time, partial H2S pressure, and H2 addition on the stoichiometry, crystallinity, and roughness were explored. Furthermore, a selective low-temperature deposition and conversion process at 450 °C for WS2 by the precursors WF6, H2S, and Si was considered. Si was used as a reducing agent for WF6 to deposit thin W films and H2S sulfurized this film in situ. The impact of the reducing agent amount, its surface condition, the temperature window, and the necessary time for the conversion of Si into W and W into WS2 were studied. Further quality improvement strategies on the WS2 were implemented by using extra capping layers in combination with annealing. Capping layers such as Ni and Co for metal-induced crystallization were compared to dielectric capping layers. The impact of the metal capping layer and its thickness on the recrystallization was evaluated. The dielectric capping layer's property to suppress sulfur loss under high temperature was explored. The annealings, which were done by rapid thermal annealing and nanosecond laser annealing, were discussed. Eventually, the fabrication of a heterostack with a MoS2 base layer and selectively grown WS2 was studied. Atomic layer etching was identified as attractive technique to remove the solid precursor Si from MoS2 in a layer-by-layer fashion. The in-situ removal of native SiO2 and the impact towards MoS2 was determined. The created patterned Si on MoS2 was then converted into patterned WS2 on MoS2 by the selective WF6/H2S process developed earlier. This procedure offers an attractive, scalable way to enable the fabrication of 2D devices with CMOS-compatible processes and contributes essential progress in the field 2D materials technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162027 Serial 7662  
Permanent link to this record
 

 
Author van den Bos, K.H.W. url  openurl
  Title Quantitative atomic resolution transmission electron microscopy for heterogeneous nanomaterials Type Doctoral thesis
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:147953 Serial 4892  
Permanent link to this record
 

 
Author Yao, X. url  openurl
  Title An advanced TEM study on quantification of Ni4Ti3 precipitates in low temperature aged Ni-Ti shape memory alloy Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 149 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:164987 Serial 6284  
Permanent link to this record
 

 
Author Callewaert, V. url  openurl
  Title Development and application of a non-local theory for the description of positron surface states Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:155688 Serial 5089  
Permanent link to this record
 

 
Author Callewaert, V. url  openurl
  Title Development and application of a non-local theory for the description of positron surface states Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 151 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:155688 Serial 5204  
Permanent link to this record
 

 
Author Snoeckx, R. url  openurl
  Title Plasma technology : a novel solution for CO2 conversion? Type Doctoral thesis
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:143110 Serial 4680  
Permanent link to this record
 

 
Author Chuon, S. url  openurl
  Title Simulation numérique multi-échelles du procédé de dépôt par pulvérisation cathodique magnétron Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 137 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:166091 Serial 6322  
Permanent link to this record
 

 
Author Vanmeert, F. url  openurl
  Title Highly specific X-ray powder diffraction imaging at the macroscopic and microscopic scale Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract At or below the surface of painted works of art, valuable information is present that provides insights into an object’s past, such as the artist’s technique and the creative process that was followed or its conservation history, but also on its current state of preservation. Typically, a (very) limited set of small paint samples is taken which provide direct access to the individual paint layers. The chemical build-up of these layers can then be investigated in great detail using various microscopic analytical methods. However, in recent years a new trend towards both elemental and chemical imaging techniques has been set which are capable of visualizing the (often) heterogeneous composition of painted objects on a macroscopic scale. In this dissertation, various forms of specificity attainable with X‑ray powder diffraction (XRPD) imaging are explored: at the chemical, material and spatial level. This high specificity is illustrated throughout several applications stemming from the field of cultural heritage, both at the macroscopic (MA) and microscopic (µ) scale. As a first step, XRPD imaging was transformed to a transportable instrument that can be employed for the in situ investigation of artworks, e.g., inside museums and conservation workshops. With this unique instrument large‑scale maps (cm2 – dm2) reflecting the distribution of crystalline phases on/below the surface of flat painted artefacts can be visualized in a noninvasive manner. In this way compound-specific information was attained which can be related to original pigments or materials that have been added in a later stage and even degradation/secondary products that have formed spontaneously inside the paint layers. Additionally, with MA‑XRPD imaging it was possible to link quantitative information of pigment compositions and preferred orientation effects to the 2D compound‑specific distribution images, allowing for a further distinction between very similar artists’ materials. Furthermore, promising results for the limited depth-selectivity of this technique, obtained by exploiting the small shift in the position of the diffraction signals originating from the layered sequence of the pigments, are shown. Finally, a minute paint sample from Wheat stack under a cloudy sky by Van Gogh was investigated at a synchrotron radiation facility with tomographic µ‑XRPD imaging at the microscopic scale. The high chemical and spatial specificity of this imaging method was exploited to further elucidate the degradation pathway of the red lead pigment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:159805 Serial 8043  
Permanent link to this record
 

 
Author Einhäupl, P.; Krook, J.; Svensson, N.; Van Acker, K.; Van Passel, S. url  isbn
openurl 
  Title Enhanced landfill mining at the REMO site : assessing stakeholders' perspectives for implementation Type P3 Proceeding
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title Proceedings of the 4th International Symposium on Enhanced Landfill Mining, February 5-6, 2018, Mechelen, Belgium / Jones, Peter Tom [edit.]; Machiels, Lieven [edit.]  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-828259-0-9 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:161512 Serial 6194  
Permanent link to this record
 

 
Author Bottari, F. url  openurl
  Title Bio(inspired) strategies for the electro-sensing of β-lactam antibiotics Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 205 p.  
  Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In the broad context of food and environmental safety, the development of selective and sensitive analytical tools for the detection of β-lactam antibiotics in milk down to their Maximum Residues Limits (MRL), is still an open challenge. To address this need, the design of new bio(mimetic) electrochemical sensors was investigated in the present thesis. These sensors are based on the intrinsic electrochemistry of β-lactam antibiotics, taking advantages of the characteristic electrochemical fingerprints of the core structures and redox active side chain groups. The electrochemistry of nafcillin (NAF) and the isoxazolyl penicillins (ISOXA) was investigated, identifying the peculiar electrochemical fingerprint of each antibiotic, proving that it is possible to use electrochemistry for the selective detection of these antimicrobial drugs. Once verified the applicability of a direct detection, different sensor configurations were tested mainly focusing on: – the selection and validation of aptamers to be used as bioreceptors in the development of β-lactam biosensors; – the design of biomimetic receptors, particularly molecularly imprinted polymers, and other synthetic electrode modifiers compatible with a direct detection strategy. The selection of novel aptamers was performed following both a traditional FluMag SELEX protocol and a novel variant based on graphene oxide (GO). First results with the modified GO-SELEX are promising but more work still needs to be done to validate this novel approach. The few aptamers for β-lactam antibiotics, already reported in literature by other groups, were poorly characterized up to now. For this reason, a multi-analytical characterization protocol for aptamer binding studies was optimized and validated by focusing on aptamer AMP17 against ampicillin. The protocol combines ITC, nESI-MS and 1H-NMR. Very striking was the fact that the aptamer sequence did not show any sign of specific binding for its target, even if it was used in many other studies in the past. This thesis now offers a validated protocol for testing the affinity and binding capabilities of aptamer sequences. In parallel, the functionalization of the electrode surface with polymer modifiers was studied. In particular we optimized a MIP electrochemical sensor based on 4-aminobenzoic acid for the direct electrochemical detection of CFQ. Another approach was tested based on the intrinsic affinity of NAF for an oPD electropolymerized film on the electrode surface. Both sensors were found to be sensitive and selective for the detection of CFQ and NAF at MRLs in buffer solutions. The proposed protocols are robust and promising for technological transfer. Lastly, the research activity was directed towards milk sample analysis following two parallel routes: the development of a pre-treatment protocol for raw milk, based on solvent addition (ACN or ISO), and the study of β-lactam antibiotics electrochemistry in undiluted raw milk with addition of KNO3 as supporting electrolyte. Both approaches gave encouraging results and the detection of NAF, CFQ and CFU in the micromolar range was achieved, with the second approach in undiluted raw milk.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:164996 Serial 7557  
Permanent link to this record
 

 
Author de Nolf, W. url  openurl
  Title Imaging of crystalline phase distributions by means of scanning and tomographic X-ray powder diffraction Type Doctoral thesis
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages 407 p.  
  Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:110910 Serial 8057  
Permanent link to this record
 

 
Author Bal, K. url  openurl
  Title New ways to bridge the gap between microscopic simulations and macroscopic chemistry Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:154836 Serial 5118  
Permanent link to this record
 

 
Author Ozkan, A. url  openurl
  Title CO2 splitting in a dielectric barrier discharge plasma : understanding of physical and chemical aspects Type Doctoral thesis
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Université Libre de Bruxelles/Universiteit Antwerpen Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:136265 Serial 4470  
Permanent link to this record
 

 
Author Samaee, V. url  openurl
  Title In-situ transmission electron microscopic nanomechanical investigations of Ni Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 172 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156143 Serial 8075  
Permanent link to this record
 

 
Author Van der Paal, J. url  openurl
  Title Generation, transport and molecular interactions of reactive species in plasma medicine Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 237 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:162591 Serial 6297  
Permanent link to this record
 

 
Author Domingos, J.L.C. url  openurl
  Title Study of colloidal systems of anisotropic magnetic particles Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 114 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:152284 Serial 5232  
Permanent link to this record
 

 
Author Bekaert, J. url  openurl
  Title Ab initio description of multicomponent superconductivity in bulk to atomically thin materials Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:151304 Serial 4961  
Permanent link to this record
 

 
Author Bekaert, J. url  openurl
  Title Ab initio description of multicomponent superconductivity in bulk to atomically thin materials Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 290 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:151304 Serial 5192  
Permanent link to this record
 

 
Author Moldovan, D. url  openurl
  Title Electronic properties of strained graphene and supercritical charge centers Type Doctoral thesis
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:135792 Serial 4352  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: