|   | 
Details
   web
Records
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Turner, S.; Sada, C.; Depero, L.E.; Van Tendeloo, G.; Barreca, D.
Title Fluorine doped Fe2O3 nanostructures by a one-pot plasma-assisted strategy Type A1 Journal article
Year 2013 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 3 Issue 45 Pages 23762-23768
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The present work reports on the synthesis of fluorine doped Fe2O3 nanomaterials by a single-step plasma enhanced-chemical vapor deposition (PE-CVD) strategy. In particular, Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) was used as molecular source for both Fe and F in Ar/O2 plasmas. The structure, morphology and chemical composition of the synthesized nanosystems were thoroughly analyzed by two-dimensional X-ray diffraction (XRD2), field emission-scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM). A suitable choice of processing parameters enabled the selective formation of α-Fe2O3 nanomaterials, characterized by an homogeneous F doping, even at 100 °C. Interestingly, a simultaneous control of the system nanoscale organization and fluorine content could be achieved by varying the sole growth temperature. The tailored properties of the resulting materials can be favourably exploited for several technological applications, ranging from photocatalysis, to photoelectrochemical cells and gas sensing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326395800141 Publication Date 2013-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 23 Open Access
Notes Fwo Approved Most recent IF: 3.108; 2013 IF: 3.708
Call Number UA @ lucian @ c:irua:111091 Serial 1237
Permanent link to this record
 

 
Author Filippousi, M.; Altantzis, T.; Stefanou, G.; Betsiou, M.; Bikiaris, D.N.; Angelakeris, M.; Pavlidou, E.; Zamboulis, D.; Van Tendeloo, G.
Title Polyhedral iron oxide coreshell nanoparticles in a biodegradable polymeric matrix : preparation, characterization and application in magnetic particle hyperthermia and drug delivery Type A1 Journal article
Year 2013 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 3 Issue 46 Pages 24367-24377
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polyhedral magnetic iron oxide nanocrystals with multiple facets have been embedded in biocompatible and biodegradable polymeric matrices in order to study their structural, magnetic features and alternating-current (AC) magnetic heating efficiency. The encapsulation of iron oxide nanoparticles into a polymer matrix was confirmed by transmission electron microscopy and further corroborated by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). HAADF-STEM tomography proved that the iron oxide nanocrystals consist of well-defined polyhedral structures with multiple facets. The magnetic features were found to be in good agreement with the structural and morphological features and are maintained even after encapsulation. Furthermore, the magnetic nanoparticles inside these matrices may be considered as good candidates for biomedical applications in hyperthermia treatments because of their high heating capacity exhibited under an alternating magnetic field. The anticancer Taxol drug was encapsulated in these nanoparticles and its physical state and release rate at 37 and 42 °C was studied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326745100068 Publication Date 2013-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 19 Open Access
Notes Countatoms; IAP Approved Most recent IF: 3.108; 2013 IF: 3.708
Call Number UA @ lucian @ c:irua:111395 Serial 2671
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M.
Title Influence of vacancy defects on the thermal stability of silicene: a reactive molecular dynamics study Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 3 Pages 1133-1137
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of vacancy defects on the structural properties and the thermal stability of free standing silicene – a buckled structure of hexagonally arranged silicon atoms – is studied using reactive molecular dynamics simulations. Pristine silicene is found to be stable up to 1500 K, above which the system transits to a three-dimensional amorphous configuration. Vacancy defects result in local structural changes in the system and considerably reduce the thermal stability of silicene: depending on the size of the vacancy defect, the critical temperature decreases by more than 30%. However, the system is still found to be stable well above room temperature within our simulation time of 500 ps. We found that the, stability of silicene can be increased by saturating the dangling bonds at the defect edges by foreign atoms (e.g., hydrogen).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000327868400015 Publication Date 2013-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 62 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. The authors are grateful to Prof. Adri van Duin for his support with the ReaxFF force field. ; Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:112829 Serial 1658
Permanent link to this record
 

 
Author Damm, H.; Kelchtermans, A.; Bertha, A.; Van den Broeck, F.; Elen, K.; Martins, J.C.; Carleer, R.; D'Haen, J.; De Dobbelaere, C.; Hadermann, J.; Hardy, A.; Van Bael, M.K.;
Title Thermal decomposition synthesis of Al-doped ZnO nanoparticles : an in-depth study Type A1 Journal article
Year 2013 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 3 Issue 45 Pages 23745-23754
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Al-doped ZnO nanoparticles are synthesized by means of a heating up solution based thermal decomposition method. The synthesis involves a reaction of zinc acetylacetonate hydrate, aluminium acetylacetonate and 1,2-hexadecanediol in the presence of oleic acid and oleyl amine. A proposed reaction mechanism from reagents to monomers is corroborated by analysis of the evolving gases using headspace GC-MS analysis. The Al-doped ZnO nanoparticles synthesized are dynamically stabilized by adsorbed oleate ions, after deprotonation of oleic acid by oleyl amine, as was found by NOESY proton NMR and complementary FTIR spectroscopy. Precession electron diffraction shows a simultaneous increase in lattice parameters with Al concentration. This, together with HAADF-STEM and EDX maps, indicates the incorporation of Al into the ZnO nanoparticles. By the combination of complementary characterization methods during all stages of the synthesis, it is concluded that Al is incorporated into the ZnO wurtzite lattice as a dopant.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326395800139 Publication Date 2013-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 10 Open Access
Notes Approved Most recent IF: 3.108; 2013 IF: 3.708
Call Number UA @ lucian @ c:irua:112753 Serial 3627
Permanent link to this record
 

 
Author Deng, S.; Verbruggen, S.W.; He, Z.; Cott, D.J.; Vereecken, P.M.; Martens, J.A.; Bals, S.; Lenaerts, S.; Detavernier, C.
Title Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 23 Pages 11648-11653
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Highly ordered and self supported anatase TiO2 nanoparticle chains were fabricated by calcining conformally TiO2 coated multi-walled carbon nanotubes (MWCNTs). During annealing, the thin tubular TiO2 coating that was deposited onto the MWCNTs by atomic layer deposition (ALD) was transformed into chains of TiO2 nanoparticles ([similar]12 nm diameter) with an ultrahigh surface area (137 cm2 per cm2 of substrate), while at the same time the carbon from the MWCNTs was removed. Photocatalytic tests on the degradation of acetaldehyde proved that these forests of TiO2 nanoparticle chains are highly photoactive under UV light because of their well crystallized anatase phase.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332470000017 Publication Date 2014-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 45 Open Access Not_Open_Access
Notes ; The authors wish to thank the Research Foundation – Flanders (FWO) and UGENT-GOA-01G01513 for financial support. The authors acknowledge the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 239865-COCOON and no. 246791-COUNTATOMS. JAM acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:117298 Serial 168
Permanent link to this record
 

 
Author Elliott, J.A.; Shibuta, Y.; Amara, H.; Bichara, C.; Neyts, E.C.
Title Atomistic modelling of CVD synthesis of carbon nanotubes and graphene Type A1 Journal article
Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 5 Issue 15 Pages 6662-6676
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We discuss the synthesis of carbon nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD), summarising the state-of-the-art understanding of mechanisms controlling their growth rate, chiral angle, number of layers (walls), diameter, length and quality (defects), before presenting a new model for 2D nucleation of a graphene sheet from amorphous carbon on a nickel surface. Although many groups have modelled this process using a variety of techniques, we ask whether there are any complementary ideas emerging from the different proposed growth mechanisms, and whether different modelling techniques can give the same answers for a given mechanism. Subsequently, by comparing the results of tight-binding, semi-empirical molecular orbital theory and reactive bond order force field calculations, we demonstrate that graphene on crystalline Ni(111) is thermodynamically stable with respect to the corresponding amorphous metal and carbon structures. Finally, we show in principle how a complementary heterogeneous nucleation step may play a key role in the transformation from amorphous carbon to graphene on the metal surface. We conclude that achieving the conditions under which this complementary crystallisation process can occur may be a promising method to gain better control over the growth processes of both graphene from flat metal surfaces and CNTs from catalyst nanoparticles.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000321675600003 Publication Date 2013-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 52 Open Access
Notes Approved Most recent IF: 7.367; 2013 IF: 6.739
Call Number UA @ lucian @ c:irua:109231 Serial 200
Permanent link to this record
 

 
Author Sree, S.P.; Dendooven, J.; Masschaele, K.; Hamed, H.M.; Deng, S.; Bals, S.; Detavernier, C.; Martens, J.A.
Title Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition Type A1 Journal article
Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 5 Issue 11 Pages 5001-5008
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Amorphous titanium dioxide was introduced into the pores of mesoporous silica thin films with 75% porosity and 12 nm average pore diameter via Atomic Layer Deposition (ALD) using alternating pulses of tetrakis(dimethylamino)titanium and water. Calcination provoked fragmentation of the deposited amorphous TiO2 phase and its crystallization into anatase nanoparticles inside the nanoporous film. The narrow particle size distribution of 4 ± 2 nm and the uniform dispersion of the particles over the mesoporous silica support were uniquely revealed using electron tomography. These anatase nanoparticle bearing films showed photocatalytic activity in methylene blue degradation. This new synthesis procedure of the anatase nanophase in mesoporous silica films using ALD is a convenient fabrication method of photocatalytic coatings amenable to application on very small as well as very large surfaces
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000319008700056 Publication Date 2013-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 22 Open Access
Notes Fwo; Iap-Pai; Erc Approved Most recent IF: 7.367; 2013 IF: 6.739
Call Number UA @ lucian @ c:irua:108774 Serial 3460
Permanent link to this record
 

 
Author Neyts, E.C.; van Duin, A.C.T.; Bogaerts, A.
Title Formation of single layer graphene on nickel under far-from-equilibrium high flux conditions Type A1 Journal article
Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 5 Issue 16 Pages 7250-7255
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We investigate the theoretical possibility of single layer graphene formation on a nickel surface at different substrate temperatures under far-from-equilibrium high precursor flux conditions, employing state-of-the-art hybrid reactive molecular dynamics/uniform acceptance force bias Monte Carlo simulations. It is predicted that under these conditions, the formation of a single layer graphene-like film may proceed through a combined depositionsegregation mechanism on a nickel substrate, rather than by pure surface segregation as is typically observed for metals with high carbon solubility. At 900 K and above, nearly continuous graphene layers are obtained. These simulations suggest that single layer graphene deposition is theoretically possible on Ni under high flux conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000322315600019 Publication Date 2013-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 25 Open Access
Notes Approved Most recent IF: 7.367; 2013 IF: 6.739
Call Number UA @ lucian @ c:irua:109249 Serial 1264
Permanent link to this record
 

 
Author Borgatti, F.; Park, C.; Herpers, A.; Offi, F.; Egoavil, R.; Yamashita, Y.; Yang, A.; Kobata, M.; Kobayashi, K.; Verbeeck, J.; Panaccione, G.; Dittmann, R.;
Title Chemical insight into electroforming of resistive switching manganite heterostructures Type A1 Journal article
Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 5 Issue 9 Pages 3954-3960
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We have investigated the role of the electroforming process in the establishment of resistive switching behaviour for Pt/Ti/Pr0.5Ca0.5MnO3/SrRuO3 layered heterostructures (Pt/Ti/PCMO/SRO) acting as non-volatile Resistance Random Access Memories (RRAMs). Electron spectroscopy measurements demonstrate that the higher resistance state resulting from electroforming of as-prepared devices is strictly correlated with the oxidation of the top electrode Ti layer through field-induced electromigration of oxygen ions. Conversely, PCMO exhibits oxygen depletion and downward change of the chemical potential for both resistive states. Impedance spectroscopy analysis, supported by the detailed knowledge of these effects, provides an accurate model description of the device resistive behaviour. The main contributions to the change of resistance from the as-prepared (low resistance) to the electroformed (high resistance) states are respectively due to reduced PCMO at the boundary with the Ti electrode and to the formation of an anisotropic np junction between the Ti and the PCMO layers.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000317859400051 Publication Date 2013-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 40 Open Access
Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 7.367; 2013 IF: 6.739
Call Number UA @ lucian @ c:irua:108710UA @ admin @ c:irua:108710 Serial 348
Permanent link to this record
 

 
Author Borovinskaya, O.; Aghaei, M.; Flamigni, L.; Hattendorf, B.; Tanner, M.; Bogaerts, A.; Günther, D.
Title Diffusion- and velocity-driven spatial separation of analytes from single droplets entering an ICP off-axis Type A1 Journal article
Year 2014 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 29 Issue 2 Pages 262-271
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The reproducible temporal separation of ion signals generated from a single multi-element droplet, observed in previous studies, was investigated in detail in this work using an ICPTOFMS with high temporal resolution. It was shown that the signal peak intensities of individual elements temporally shift relative to each other only for droplets moving through the plasma off-axis. The magnitude of these shifts correlated with the vaporization temperatures of the analytes and depended on the radial position of the droplets as well as on the thermal properties and velocity profiles of the carrier gases of the ICP. The occurrence of the signal shifting was explained by a spatial separation of analytes already present in the vapor phase in the ICP from a yet unvaporized residue of the droplet. This separation is most likely driven by anisotropic diffusion of vaporized analytes towards the plasma axis and a radial velocity gradient. The proposed explanation is supported by modeling of the gas velocities inside the ICP and imaging of the atomic and ionic emissions produced from single droplets, whose patterns were sloping towards the center of the torch. The effects observed in these studies are important not only for the fundamental understanding of analyteplasma interactions but have also a direct impact on the signal intensities and stability.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000329934000006 Publication Date 2013-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 18 Open Access
Notes Approved Most recent IF: 3.379; 2014 IF: 3.466
Call Number UA @ lucian @ c:irua:112897 Serial 697
Permanent link to this record
 

 
Author Aghaei, M.; Flamigni, L.; Lindner, H.; Günther, D.; Bogaerts, A.
Title Occurrence of gas flow rotational motion inside the ICP torch : a computational and experimental study Type A1 Journal article
Year 2014 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 29 Issue 2 Pages 249-261
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma, connected to the sampling cone of a mass spectrometer, is computationally investigated. The occurrence of rotational motion of the auxiliary and carrier gas flows is studied. The effects of operating parameters, i.e., applied power and gas flow rates, as well as geometrical parameters, i.e., sampler orifice diameter and injector inlet diameter, are investigated. Our calculations predict that at higher applied power the auxiliary and carrier gas flows inside the torch move more forward to the sampling cone, which is validated experimentally for the auxiliary gas flow, by means of an Elan 6000 ICP-MS. Furthermore, an increase of the gas flow rates can also modify the occurrence of rotational motion. This is especially true for the carrier gas flow rate, which has a more pronounced effect to reduce the backward motion than the flow rates of the auxiliary and cooling gas. Moreover, a larger sampler orifice (e.g., 2 mm instead of 1 mm) reduces the backward flow of the auxiliary gas path lines. Finally, according to our model, an injector inlet of 2 mm diameter causes more rotations in the carrier gas flow than an injector inlet diameter of 1.5 mm, which can be avoided again by changing the operating parameters.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000329934000005 Publication Date 2013-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 21 Open Access
Notes Approved Most recent IF: 3.379; 2014 IF: 3.466
Call Number UA @ lucian @ c:irua:112896 Serial 2427
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A.
Title The effect of the sampling cone position and diameter on the gas flow dynamics in an ICP Type A1 Journal article
Year 2013 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 28 Issue 9 Pages 1485-1492
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma, connected to a sampling cone of a mass spectrometer, is computationally investigated. The effects of the sampler orifice diameter (ranging from 1 to 2 mm) and distance of the sampler cone from the load coil (ranging from 7 to 17 mm) are studied. An increase in sampler orifice diameter leads to a higher central plasma temperature at the place of the sampler, as well as more efficient gas transfer through the sampler, by reducing the interaction of the plasma gas with the sampling cone. However, the flow velocity at the sampler position is found to be independent of the sampler orifice diameter. Moreover, by changing the sampler orifice diameter, we can control whether only the central gas or also the auxiliary gas can exit through the sampler. Finally, with the increasing distance of the sampler from the load coil, the plasma temperature at the place of the sampler decreases slightly, which might also have consequences for the ion generation and transport through the sampling cone.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000322922300016 Publication Date 2013-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 14 Open Access
Notes Approved Most recent IF: 3.379; 2013 IF: 3.396
Call Number UA @ lucian @ c:irua:109204 Serial 848
Permanent link to this record
 

 
Author Alfeld, M.; Pedroso, J.V.; van Hommes, M.E.; van der Snickt, G.; Tauber, G.; Blaas, J.; Haschke, M.; Erler, K.; Dik, J.; Janssens, K.
Title A mobile instrument for in situ scanning macro-XRF investigation of historical paintings Type A1 Journal article
Year 2013 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 28 Issue 5 Pages 760-767
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Scanning macro-X-ray fluorescence analysis (MA-XRF) is rapidly being established as a technique for the investigation of historical paintings. The elemental distribution images acquired by this method allow for the visualization of hidden paint layers and thus provide insight into the artist's creative process and the painting's conservation history. Due to the lack of a dedicated, commercially available instrument the application of the technique was limited to a few groups that constructed their own instruments. We present the first commercially available XRF scanner for paintings, consisting of an X-ray tube mounted with a Silicon-Drift (SD) detector on a motorized stage to be moved in front of a painting. The scanner is capable of imaging the distribution of the main constituents of surface and sub-surface paint layers in an area of 80 by 60 square centimeters with dwell times below 10 ms and a lateral resolution below 100 mu m. The scanner features for a broad range of elements between Ti (Z = 22) and Mo (Z = 42) a count rate of more than 1000 counts per second (cps)?mass percent and detection limits of 100 ppm for measurements of 1 s duration. Next to a presentation of spectrometric figures of merit, the value of the technique is illustrated through a case study of a painting by Rembrandt's student Govert Flinck (1615-1660).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000317674200019 Publication Date 2013-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 106 Open Access
Notes ; This research was supported by the Interuniversity Attraction Poles Programme – Belgian Science Policy (IUAP VI/16). The text also presents the results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. M. Alfeld receives a Ph. D. fellowship of the Research Foundation-Flanders (FWO). We thank J. Langerock for allowing us to examine the portable altar triptych shown in Fig. 5. ; Approved Most recent IF: 3.379; 2013 IF: 3.396
Call Number UA @ admin @ c:irua:108517 Serial 5453
Permanent link to this record
 

 
Author Cagno, S.; Hellemans, K.; Lind, O.C.; Skipperud, L.; Janssens, K.; Salbu, B.
Title LA-ICP-MS for Pu source identification at Mayak PA, the Urals, Russia Type A1 Journal article
Year 2014 Publication Environmental science : processes & impacts Abbreviated Journal Environ Sci-Proc Imp
Volume 16 Issue 2 Pages 306-312
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Information on Pu in environmental samples is traditionally based on the determination of the 240+239PU activity via Alpha Spectrometry (AS). A large number of alpha spectrometry sources (planchettes) containing radiochemically separated Pu are therefore stored worldwide and are available for further analyses. These archive samples represent a resource from which valuable information on isotopic composition of alpha emitters including Pu can be obtained. The relative abundances of Pu isotopes can be used to trace specific Pu sources and characterize the relative contributions of different Pu sources in a sample. Thus, in addition to the total 239+240PU activity, determination of the Pu-240/Pu-239 ratio can provide valuable information on the nature of the Pu emitting sources. The Pu isotopic ratios can be determined by mass spectrometry techniques such as Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICPMS) or Accelerator Mass Spectrometry (AMS) that require dissolution and complete destruction of the material deposited on the planchettes. In this study Laser Ablation (LA)-quadrupole-ICP-MS has been employed for the analysis of Pu-239/Pu-240 ratios from alpha-planchettes prepared from samples originating from the Mayak PA nuclear facility, Russia. The results are compared with data from AMS and show that the Pu-240/Pu-239 ratios obtained by LA-ICP-MS can be utilized to distinguish weapons-grade Pu from civil reprocessing sources. Moreover, isotope ratio mapping can also be performed across the planchettes, allowing e.g. the visualization of possible inhomogeneities in the Pu-isotope distribution on their surface. Thus, this solid sample technique can be applied to extract additional information from existing archives of samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000331504100015 Publication Date 2013-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7887; 2050-7895 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.592 Times cited 10 Open Access
Notes ; This work was supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 223268/F50, and the Hercules fund, Brussels (grant A11/0387). ; Approved Most recent IF: 2.592; 2014 IF: 2.171
Call Number UA @ admin @ c:irua:115791 Serial 5684
Permanent link to this record
 

 
Author Boënne, W.; Desmet, N.; Van Looy, S.; Seuntjens, P.
Title Use of online water quality monitoring for assessing the effects of WWTP overflows in rivers Type A1 Journal article
Year 2014 Publication Environmental science : processes & impacts Abbreviated Journal
Volume 16 Issue 6 Pages 1510-1518
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The effects on river water quality of sewer overflows are not well known. Since the duration of the overflow is in the order of magnitude of minutes to hours, continuous measurements of water quality are needed and traditional grab sampling is unable to quantify the pollution loads. The objective of this paper was to demonstrate the applicability of high frequency measurements for assessing the impacts of waste water treatment plants on the water quality of the receiving surface water. In our in situ water quality monitoring setup, two types of multiparameter sensors mounted on a floating fixed platform were used to determine the dynamics of dissolved oxygen, specific conductivity, ammonium-N, nitrate-N and dissolved organic carbon downstream of a waste water treatment plant (WWTP), in combination with data on rainfall, river discharge and WWTP overflow discharge. The monitoring data for water quantity and water quality were used to estimate the pollution load from waste water overflow events and to assess the impact of waste water overflows on the river water quality. The effect of sewer overflow on a small river in terms of N load was shown to be significant. The WWTP overflow events accounted for about 1/3 of the river discharge. The NH4-N loads during overflow events contributed 29% and 21% to the August 2010 and June 2011 load, respectively, in only 8% and 3% of the monthly time span. The results indicate that continuous monitoring is needed to accurately represent the effects of sewer overflows in river systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336841600031 Publication Date 2014-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7887; 2050-7895 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:118390 Serial 8722
Permanent link to this record
 

 
Author Lizin, S.; Van Passel, S.; De Schepper, E.; Maes, W.; Lutsen, L.; Manca, J.; Vanderzande, D.
Title Life cycle analyses of organic photovoltaics : a review Type A1 Journal article
Year 2013 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci
Volume 6 Issue 11 Pages 3136-3149
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This paper reviews the available life cycle analysis (LCA) literature on organic photovoltaics (OPVs). This branch of OPV research has focused on the environmental impact of single-junction bulk heterojunction polymer solar cells using a P3HT/PC60BM active layer blend processed on semi-industrial pilot lines in ambient surroundings. The environmental impact was found to be strongly decreasing through continuous innovation of the manufacturing procedures. The current top performing cell regarding environmental performance has a cumulative energy demand of 37.58 MJp m(-2) and an energy payback time in the order of months for cells having 2% efficiency, thereby rendering OPV cells one of the best performing PV technologies from an environmental point of view. Nevertheless, we find that LCA literature is lagging behind on the main body of OPV literature due to the lack of readily available input data. Still, LCA research has led us to believe that in the quest for higher efficiencies, environmental sustainability is being disregarded on the materials' side. Hence, we advise the scientific community to take the progress made on environmental sustainability aspects of OPV preparations into account not only because standard procedures put a bigger strain on the environment, but also because these methods may not be transferrable to an industrial process. Consequently, we recommend policy makers to subsidize research that bridges the gaps between fundamental materials research, stability, and scalability given that these constraints have to be fulfilled simultaneously if OPVs are ever to be successful on the market. Additionally, environmental sustainability will have to keep on being monitored to steer future developments in the right direction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000325946400002 Publication Date 2013-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.518 Times cited 124 Open Access
Notes ; The authors are much obliged to both the INTERREG ORGAN-EXT project and FP7 MOLESOL project for their financial support, without which it would have been impossible to conduct this research. ; Approved Most recent IF: 29.518; 2013 IF: 15.490
Call Number UA @ admin @ c:irua:127548 Serial 6223
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Rosciano, F.; Put, B.; Vereecken, P.M.; Stesmans, A.
Title First-principles material modeling of solid-state electrolytes with the spinel structure Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2...0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0...1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000332395700048 Publication Date 2014-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 8 Open Access
Notes Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:128893 Serial 4520
Permanent link to this record
 

 
Author Amini, M.N.; Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B.
Title The origin of p-type conductivity in ZnM2O4 (M = Co, Rh, Ir) spinels Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 16 Issue 6 Pages 2588-2596
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract ZnM2O4 (M = Co, Rh, Ir) spinels are considered as a class of potential p-type transparent conducting oxides (TCOs). We report the formation energy of acceptor-like defects using first principles calculations with an advanced hybrid exchange-correlation functional (HSE06) within density functional theory (DFT). Due to the discrepancies between the theoretically obtained band gaps with this hybrid functional and the – scattered – experimental results, we also perform GW calculations to support the validity of the description of these spinels with the HSE06 functional. The considered defects are the cation vacancy and antisite defects, which are supposed to be the leading source of disorder in the spinel structures. We also discuss the band alignments in these spinels. The calculated formation energies indicate that the antisite defects ZnM (Zn replacing M, M = Co, Rh, Ir) and VZn act as shallow acceptors in ZnCo2O4, ZnRh2O4 and ZnIr2O4, which explains the experimentally observed p-type conductivity in those systems. Moreover, our systematic study indicates that the ZnIr antisite defect has the lowest formation energy in the group and it corroborates the highest p-type conductivity reported for ZnIr2O4 among the group of ZnM2O4 spinels. To gain further insight into factors affecting the p-type conductivity, we have also investigated the formation of localized small polarons by calculating the self-trapping energy of the holes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000329926700040 Publication Date 2013-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 47 Open Access
Notes Fwo; Goa; Hercules Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:114829 Serial 2525
Permanent link to this record
 

 
Author Verberck, B.; Okazaki, T.; Tarakina, N.V.
Title Ordered and disordered packing of coronene molecules in carbon nanotubes Type A1 Journal article
Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 15 Issue 41 Pages 18108-18114
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Monte Carlo simulations of coronene molecules in single-walled carbon nanotubes (SWCNTs) and dicoronylene molecules in SWCNTs are performed. Depending on the diameter D of the encapsulating SWCNT, regimes favoring the formation of ordered, one-dimensional (1D) stacks of tilted molecules (D <= 1.7 nm for coronene@SWCNT, 1.5 nm <= D <= 1.7 nm for dicoronylene@SWCNT) and regimes with disordered molecular arrangements and increased translational mobilities enabling the thermally induced polymerization of neighboring molecules resulting in the formation of graphene nanoribbons (GNRs) are observed. The results show that the diameter of the encapsulating nanotube is a crucial parameter for the controlled synthesis of either highly ordered 1D structures or GNR precursors.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000325400600045 Publication Date 2013-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 9 Open Access
Notes ; B.V. is a Postdoctoral Fellow of the Research Foundation Flanders (FWO-VI). N.V.T. acknowledges funding by the Bavarian Ministry of Sciences, Research and the Arts. ; Approved Most recent IF: 4.123; 2013 IF: 4.198
Call Number UA @ lucian @ c:irua:112212 Serial 2502
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title An electric field tunable energy band gap at silicene/(0001) ZnS interfaces Type A1 Journal article
Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 15 Issue 11 Pages 3702-3705
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The interaction of silicene, the silicon counterpart of graphene, with (0001) ZnS surfaces is investigated theoretically, using first-principles simulations. The charge transfer occurring at the silicene/(0001) ZnS interface leads to the opening of an indirect energy band gap of about 0.7 eV in silicene. Remarkably, the nature (indirect or direct) and magnitude of the energy band gap of silicene can be controlled by an external electric field: the energy gap is predicted to become direct for electric fields larger than about 0.5 V angstrom(-1), and the direct energy gap decreases approximately linearly with the applied electric field. The predicted electric field tunable energy band gap of the silicene/(0001) ZnS interface is very promising for its potential use in nanoelectronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000315165100002 Publication Date 2013-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 74 Open Access
Notes Approved Most recent IF: 4.123; 2013 IF: 4.198
Call Number UA @ lucian @ c:irua:107702 Serial 94
Permanent link to this record
 

 
Author Hadad, C.; Ke, X.; Carraro, M.; Sartorel, A.; Bittencourt, C.; Van Tendeloo, G.; Bonchio, M.; Quintana, M.; Prato, M.
Title Positive graphene by chemical design : tuning supramolecular strategies for functional surfaces Type A1 Journal article
Year 2014 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 50 Issue 7 Pages 885-887
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A diazonium based-arylation reaction was efficiently used for the covalent addition of 4-amino-N,N,N-trimethylbenzene ammonium to stable dispersions of few layer graphene (FLG) yielding an innovative FLG platform with positive charges to immobilize inorganic polyanions.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000328884500036 Publication Date 2013-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 19 Open Access
Notes Approved Most recent IF: 6.319; 2014 IF: 6.834
Call Number UA @ lucian @ c:irua:113733 Serial 2678
Permanent link to this record
 

 
Author Ceglia, A.; Nuyts, G.; Cagno, S.; Meulebroeck, W.; Baert, K.; Cosyns, P.; Nys, K.; Thienpont, H.; Janssens, K.; Terryn, H.
Title A XANES study of chromophores : the case of black glass Type A1 Journal article
Year 2014 Publication Analytical methods Abbreviated Journal Anal Methods-Uk
Volume 6 Issue 8 Pages 2662-2671
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract We studied the Fe K-edge X-ray absorption near edge (XANES) spectra of several Roman black glass fragments in order to determine the Fe3+/ΣFe ratio of these materials. The selected archaeological glass samples cover the period 1st5th century AD in nine different sites of the North Western provinces of the Roman Empire. The fragments belong to two different compositional groups demonstrating a diachronic evolution: early Roman HMG (High Magnesia Glass) and Roman Imperial LMG (Low Magnesia Glass). The first group contains natural Fe levels (below 2 wt% as Fe2O3), while the LMG has concentrations above 5 wt%. This difference is also reflected by Fe3+/ΣFe values. Low iron glass was produced under strongly reducing conditions in order to obtain the black colour, with average Fe3+/ΣFe values ≈ 0.17. LMG glass is somewhat more oxidised (Fe3+/ΣFe ≈ 0.40.5). While HMG glass required active control of the furnace environment, LMG was made under ambient atmosphere and its higher oxidation degree is mainly determined by the chemistry of the raw glass.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000333524200032 Publication Date 2014-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1759-9660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.9 Times cited 14 Open Access
Notes ; The authors are grateful to the staff of beamline L in HASYLAB for their helpful support. The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no. 265010. Support from the University of Antwerp Research Council through GOA Programme “XANES meets ELNES” is gratefully acknowledged. This work was partly supported by the Research Council of Norway through its Centres of Excellence funding scheme, project number 223268/F50. We would like to thank M. P. Riccardi and E. Basso of the University of Pavia and R. Falcone of the Stazione Sperimentale del Vetro who provided us with the reference glasses. ; Approved Most recent IF: 1.9; 2014 IF: 1.821
Call Number UA @ admin @ c:irua:116596 Serial 5919
Permanent link to this record
 

 
Author Legrand, S.; Alfeld, M.; Vanmeert, F.; de Nolf, W.; Janssens, K.
Title Macroscopic Fourier transform infrared scanning in reflection mode (MA-rFTIR), a new tool for chemical imaging of cultural heritage artefacts in the mid-infrared range Type A1 Journal article
Year 2014 Publication The analyst Abbreviated Journal Analyst
Volume 139 Issue 10 Pages 2489-2498
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In this paper we demonstrate that by means of scanning reflection FTIR spectroscopy, it is possible to record highly specific distribution maps of organic and inorganic compounds from flat, macroscopic objects with cultural heritage value in a non-invasive manner. Our previous work involved the recording of macroscopic distributions of chemical elements or crystal phases from painted works of art based on respectively macroscopic X-ray fluorescence or X-ray powder diffraction analysis. The use of infrared radiation instead of X-rays has the advantage that more specific information about the nature and distribution of the chemical compounds present can be gathered. This higher imaging specificity represents a clear advantage for the characterization of painting and artist materials. It allows the distribution of metallo-organic compounds to be visualized and permits distinguishing between pigmented materials containing the same key metal. The prototype instrument allows the recording of hyperspectral datacubes by scanning the surface of the artefact in a contactless and sequential single-point measuring mode, while recording the spectrum of reflected infrared radiation. After the acquisition, spectral line intensities of individual bands and chemical distribution maps can be extracted from the datacube to identify the compounds present and/or to highlight their spatial distribution. Not only is information gained on the surface of the investigated artefacts, but also images of overpainted paint layers and, if present, the underdrawing may be revealed in this manner. A current major limitation is the long scanning times required to record these maps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000334734200028 Publication Date 2014-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.885 Times cited 25 Open Access
Notes ; ; Approved Most recent IF: 3.885; 2014 IF: 4.107
Call Number UA @ admin @ c:irua:116595 Serial 5699
Permanent link to this record
 

 
Author Qurashi, A.; Rather, J.A.; De Wael, K.; Merzougui, B.; Tabet, N.; Faiz, M.
Title Rapid microwave synthesis of high aspect-ration ZnO nanotetrapods for swift bisphenol A detection Type A1 Journal article
Year 2013 Publication The analyst Abbreviated Journal Analyst
Volume 138 Issue 17 Pages 4764-4768
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322389600011 Publication Date 2013-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.885 Times cited 15 Open Access
Notes ; One of the authors (Jahangir Ahmad Rather) is highly thankful for the mobility grant (Non-Europe Postdoc Fellowship) supported by the Belgian Federal Science Policy (Belspo) co-funded by the Marie Curie Actions from the European Commission. ; Approved Most recent IF: 3.885; 2013 IF: 3.906
Call Number UA @ admin @ c:irua:108959 Serial 5801
Permanent link to this record
 

 
Author Vasiliev, R.B.; Babynina, A.V.; Maslova, O.A.; Rumyantseva, M.N.; Ryabova, L.I.; Dobrovolsky, A.A.; Drozdov, K.A.; Khokhlov, D.R.; Abakumov, A.M.; Gaskov, A.M.
Title Photoconductivity of nanocrystalline SnO2 sensitized with colloidal CdSe quantum dots Type A1 Journal article
Year 2013 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 1 Issue 5 Pages 1005-1010
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A highly reproducible photoresponse is observed in nanocrystalline SnO2 thick films sensitized with CdSe quantum dots. The effect of the SnO2 matrix microstructure on the photoconductivity kinetics and photoresponse amplitude is demonstrated. The photoresponse of the sensitized SnO2 thick films reaches more than two orders of magnitude under illumination with the wavelength of the excitonic transition of the quantum dots. Long-term photoconductivity kinetics and photoresponse dependence on illumination intensity reveal power-law behavior inherent to the disordered nature of SnO2. The photoconductivity of the samples rises with the coarsening of the granular structure of the SnO2 matrix. At the saturation region, the photoresponse amplitude remains stable under 10(4) pulses of illumination switching, demonstrating a remarkably high stability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000314803600016 Publication Date 2012-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 13 Open Access
Notes Approved Most recent IF: 5.256; 2013 IF: NA
Call Number UA @ lucian @ c:irua:107705 Serial 2610
Permanent link to this record
 

 
Author Yang, W.; Misko, V.R.; Nelissen, K.; Kong, M.; Peeters, F.M.
Title Using self-driven microswimmers for particle separation Type A1 Journal article
Year 2012 Publication Soft matter Abbreviated Journal Soft Matter
Volume 8 Issue 19 Pages 5175-5179
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Microscopic self-propelled swimmers capable of autonomous navigation through complex environments provide appealing opportunities for localization, pick-up and delivery of micro and nanoscopic objects. Inspired by motile cells and bacteria, man-made microswimmers have been fabricated, and their motion in patterned surroundings has been experimentally studied. We propose to use self-driven artificial microswimmers for the separation of binary mixtures of colloids. We revealed different regimes of separation, including one with a velocity inversion. Our findings could be of use for various biological and medical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000303208700009 Publication Date 2012-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1744-683X;1744-6848; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.889 Times cited 45 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-V1) (Belgium), the National Natural Science Foundation of China (No. 11047111), the State Key Program of National Natural Science of China (No. 51135007), the Research Fund for the Doctoral Program of Higher Education of China (No. 20111415120002), and the Major State Basic Research Development Program of China (973) (No. 2009CB724201). ; Approved Most recent IF: 3.889; 2012 IF: 3.909
Call Number UA @ lucian @ c:irua:98326 Serial 3826
Permanent link to this record
 

 
Author Van Eynde, E.; Tytgat, T.; Smits, M.; Verbruggen, S.W.; Hauchecorne, B.; Lenaerts, S.
Title Biotemplated diatom silica-titania materials for air purification Type A1 Journal article
Year 2013 Publication Photochemical & photobiological sciences Abbreviated Journal Photoch Photobio Sci
Volume 12 Issue 4 Pages 690-695
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract We present a novel manufacture route for silicatitania photocatalysts using the diatom microalga Pinnularia sp. Diatoms self-assemble into porous silica cell walls, called frustules, with periodic micro-, meso- and macroscale features. This unique hierarchical porous structure of the diatom frustule is used as a biotemplate to incorporate titania by a solgel methodology. Important material characteristics of the modified diatom frustules under study are morphology, crystallinity, surface area, pore size and optical properties. The produced biosilicatitania material is evaluated towards photocatalytic activity for NOx abatement under UV radiation. This research is the first step to obtain sustainable, well-immobilised silicatitania photocatalysts using diatoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316572500016 Publication Date 2012-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1474-905x; 1474-9092 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.344 Times cited 18 Open Access
Notes ; ; Approved Most recent IF: 2.344; 2013 IF: 2.939
Call Number UA @ admin @ c:irua:106625 Serial 5930
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C.
Title Reactive molecular dynamics simulations on SiO2-coated ultra-small Si-nanowires Type A1 Journal article
Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 5 Issue 2 Pages 719-725
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of coreshell SiSiO2 nanowires as nanoelectronic devices strongly depends on their structure, which is difficult to tune precisely. In this work, we investigate the formation of the coreshell nanowires at the atomic scale, by reactive molecular dynamics simulations. The occurrence of two temperature-dependent oxidation mechanisms of ultra-small diameter Si-NWs is demonstrated. We found that control over the Si-core radius and the SiOx (x ≤ 2) oxide shell is possible by tuning the growth temperature and the initial Si-NW diameter. Two different structures were obtained, i.e., ultrathin SiO2 silica nanowires at high temperature and Si core|ultrathin SiO2 silica nanowires at low temperature. The transition temperature is found to linearly decrease with the nanowire curvature. Finally, the interfacial stress is found to be responsible for self-limiting oxidation, depending on both the initial Si-NW radius and the oxide growth temperature. These novel insights allow us to gain control over the exact morphology and structure of the wires, as is needed for their application in nanoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000313426200036 Publication Date 2012-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 17 Open Access
Notes Approved Most recent IF: 7.367; 2013 IF: 6.739
Call Number UA @ lucian @ c:irua:102584 Serial 2824
Permanent link to this record
 

 
Author Lebedev, O.I.; Turner, S.; Liu, S.; Cool, P.; Van Tendeloo, G.
Title New nano-architectures of mesoporous silica spheres analyzed by advanced electron microscopy Type A1 Journal article
Year 2012 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 4 Issue 5 Pages 1722-1727
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Using template-containing silica microspheres as a precursor, novel ordered mesoporous silica nanoparticles with a narrow pore size distribution and high crystallinity have been synthesized by various hydrothermal merging processes. Several architectures like chains, dumbbells, triangles, squares and flowers have been discovered. The linking mechanisms of these interacting silica spheres leading to the formation of ordered nano-structures are studied by HRTEM, HAADF-STEM and electron tomography and a plausible model is presented for several merging processes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000300433700051 Publication Date 2011-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 5 Open Access
Notes Fwo Approved Most recent IF: 7.367; 2012 IF: 6.233
Call Number UA @ lucian @ c:irua:95038 Serial 2328
Permanent link to this record
 

 
Author Simon, Q.; Barreca, D.; Gasparotto, A.; Maccato, C.; Montini, T.; Gombac, V.; Fornasiero, P.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.
Title Vertically oriented CuO/ZnO nanorod arrays : from plasma-assisted synthesis to photocatalytic H2 production Type A1 Journal article
Year 2012 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 22 Issue 23 Pages 11739-11747
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract 1D CuO/ZnO nanocomposites were grown on Si(100) substrates by means of an original two-step synthetic strategy. ZnO nanorod (NR) arrays were initially deposited by plasma enhanced-chemical vapor deposition (PE-CVD) from an ArO2 atmosphere. Subsequently, tailored amounts of CuO were dispersed over zinc oxide matrices by radio frequency (RF)-sputtering of Cu from Ar plasmas, followed by thermal treatment in air. A thorough characterization of the obtained systems was carried out by X-ray photoelectron and X-ray excited-Auger electron spectroscopies (XPS and XE-AES), glancing incidence X-ray diffraction (GIXRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS), atomic force microscopy (AFM), transmission electron microscopy (TEM), electron diffraction (ED) and energy filtered-TEM (EF-TEM). Pure and highly oriented CuO/ZnO NR arrays, free from ternary ZnCuO phases and characterized by a copper(II) oxide content controllable as a function of the adopted RF-power, were successfully obtained. Interestingly, the structural relationships between the two oxides at the CuO/ZnO interface were found to depend on the overall CuO loading. The obtained nanocomposites displayed promising photocatalytic performances in H2 production by reforming of ethanolwater solutions under simulated solar illumination, paving the way to the sustainable conversion of solar light into chemical energy.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000304351400046 Publication Date 2012-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 74 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:98382 Serial 3840
Permanent link to this record