|   | 
Details
   web
Records
Author Yang, Z.; Zhu, W.; Yu, D.; Bo, Y.; Li, J.
Title Enhanced carbon and nitrogen removal performance of simultaneous anammox and denitrification (SAD) with mannitol addition treating saline wastewater Type A1 Journal article
Year 2019 Publication Journal of chemical technology and biotechnology Abbreviated Journal
Volume 94 Issue 2 Pages 377-388
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract BACKGROUND Simultaneous anammox and denitrification (SAD) can remove carbon and nitrogen. However, its performance is suppressed under saline surroundings. In this work, mannitol was used to enhance a SAD process treating saline wastewater. RESULTS The optimum carbon and nitrogen removal was achieved at 0.2 mmol L-1 mannitol, during which ammonium removal efficiency (ARE), nitrite removal efficiency (NRE) and chemical oxygen demand (COD) removal efficiency were 96.95%, 93.70% and 90.05%, respectively. The maximum ammonium removal rate (ARR), nitrite removal rate (NRR) and the specific anammox activity (SAA) were increased by 25.49%, 55.84% and 33.83% with optimum addition (0.2 mmol L-1 mannitol) respectively. The diameter of sludge was enlarged with the addition of mannitol (<= 0.2 mmol L-1). The Tseng-Wayman model was more suitable to simulate the whole SAD process. The modified logistic model, the modified Boltzman model and the modified Gompertz model were all appropriate to describe nitrogen removal in a typical cycle with the addition of mannitol. CONCLUSION Mannitol was effective in enhancing a SAD process treating saline wastewater, and maximum nitrogen removal was achieved at mannitol = 0.2 mmol L-1. The Tseng-Wayman model satisfactorily predicted the whole SAD process treating saline wastewater with mannitol addition. (c) 2018 Society of Chemical Industry
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455262100004 Publication Date 2018-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156712 Serial 7911
Permanent link to this record
 

 
Author Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J.
Title Facile dry coating method of high-nickel cathode material by nanostructured fumed alumina (Al2O3) improving the performance of lithium-ion batteries Type A1 Journal article
Year 2021 Publication Energy technology Abbreviated Journal
Volume 9 Issue 4 Pages 2100028
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Surface coating is a crucial method to mitigate the aging problem of high-Ni cathode active materials (CAMs). By avoiding the direct contact of the CAM and the electrolyte, side reactions are hindered. Commonly used techniques like wet or ALD coating are time consuming and costly. Therefore, a more cost-effective coating technique is desirable. Herein, a facile and fast dry powder coating process for CAMs with nanostructured fumed metal oxides are reported. As the model case, the coating of high-Ni NMC (LiNi0.7Mn0.15Co0.15O2) by nanostructured fumed Al2O3 is investigated. A high coverage of the CAM surface with an almost continuous coating layer is achieved, still showing some porosity. Electrochemical evaluation shows a significant increase in capacity retention, cycle life and rate performance of the coated NMC material. The coating layer protects the surface of the CAM successfully and prevents side reactions, resulting in reduced solid electrolyte interface (SEI) formation and charge transfer impedance during cycling. A mechanism on how the coating layer enhances the cycling performance is hypothesized. The stable coating layer effectively prevents crack formation and particle disintegration of the NMC. In depth analysis indicates partial formation of LixAl2O3/LiAlO2 in the coating layer during cycling, enhancing lithium ion diffusivity and thus, also the rate performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000621000700001 Publication Date 2021-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4296; 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 25 Open Access OpenAccess
Notes The authors would like to thank Erik Peldszus and Steve Rienecker for the support with scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. N.G. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. Funding from the Flemish Research Fund (FWO) project G0F1320N is acknowledged.; Open access funding enabled and organized by Projekt DEAL. Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:176670 Serial 6724
Permanent link to this record
 

 
Author Wu, X.; Ding, J.; Cui, W.; Lin, W.; Xue, Z.; Yang, Z.; Liu, J.; Nie, X.; Zhu, W.; Van Tendeloo, G.; Sang, X.
Title Enhanced electrical properties of Bi2-xSbxTe3 nanoflake thin films through interface engineering Type A1 Journal article
Year 2024 Publication Energy & environment materials Abbreviated Journal
Volume Issue Pages e12755-8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structure-property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi2-xSbxTe3 (x = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi2-xSbxTe3 thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi1.8Sb0.2Te3 nanoflake films reaches 1.72 mW m(-1) K-2, which is 43% higher than that of a pure Bi2Te3 thin film.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001204495900001 Publication Date 2024-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205438 Serial 9148
Permanent link to this record
 

 
Author Lin, S.; Zhang, L.; Reddy, G.V.P.; Hui, C.; Gielis, J.; Ding, Y.; Shi, P.
Title A geometrical model for testing bilateral symmetry of bamboo leaf with a simplified Gielis equation Type A1 Journal article
Year 2016 Publication Ecology and evolution Abbreviated Journal
Volume 6 Issue 19 Pages 6798-6806
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The size and shape of plant leaves change with growth, and an accurate description of leaf shape is crucial for describing plant morphogenesis and development. Bilateral symmetry, which has been widely observed but poorly examined, occurs in both dicot and monocot leaves, including all nominated bamboo species (approximately 1,300 species), of which at least 500 are found in China. Although there are apparent differences in leaf size among bamboo species due to genetic and environmental profiles, bamboo leaves have bilateral symmetry with parallel venation and appear similar across species. Here, we investigate whether the shape of bamboo leaves can be accurately described by a simplified Gielis equation, which consists of only two parameters (leaf length and shape) and produces a perfect bilateral shape. To test the applicability of this equation and the occurrence of bilateral symmetry, we first measured the leaf length of 42 bamboo species, examining >500 leaves per species. We then scanned 30 leaves per species that had approximately the same length as the median leaf length for that species. The leaf-shape data from scanned profiles were fitted to the simplified Gielis equation. Results confirmed that the equation fits the leaf-shape data extremely well, with the coefficients of determination being 0.995 on average. We further demonstrated the bilateral symmetry of bamboo leaves, with a clearly defined leaf-shape parameter of all 42 bamboo species investigated ranging from 0.02 to 0.1. This results in a simple and reliable tool for precise determination of bamboo species, with applications in forestry, ecology, and taxonomy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385626100003 Publication Date 2016-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:144547 Serial 7998
Permanent link to this record
 

 
Author Shi, P.-J.; Xu, Q.; Sandhu, H.S.; Gielis, J.; Ding, Y.-L.; Li, H.-R.; Dong, X.-B.
Title Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant Type A1 Journal article
Year 2015 Publication Ecology and evolution Abbreviated Journal
Volume 5 Issue 20 Pages 4578-4589
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a −3/2 power between average biomass and density or a −1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363731500008 Publication Date 2015-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:128662 Serial 7691
Permanent link to this record
 

 
Author de Jong, M.; Van Echelpoel, R.; Langley, A.R.; Eliaerts, J.; van den Berg, J.; De Wilde, M.; Somers, N.; Samyn, N.; De Wael, K.
Title Real-time electrochemical screening of cocaine in lab and field settings with automatic result generation Type A1 Journal article
Year 2022 Publication Drug testing and analysis Abbreviated Journal
Volume 14 Issue 8 Pages 1471-1481
Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract This work presents the results of a novel application for the fast on-site screening of cocaine and its main cutting agents in suspicious and confiscated samples. The methodology behind the novel application consists of portable electrochemical detection coupled with a peak-recognition algorithm for automated result output generation, validated both in laboratory and field settings. Currently used field tests, predominantly colorimetric tests, are lacking accuracy, often giving false positive or negative results. This presses the need for alternative approaches to field testing. By combining portable electrochemical approaches with peak-recognition algorithms, an accuracy of 98.4% concerning the detection of cocaine was achieved on a set of 374 powder samples. In addition, the approach was tested on multiple 'smuggled', colored cocaine powders and cocaine mixtures in solid and liquid states, typically in matrices such as charcoal, syrup and clothing. Despite these attempts to hide cocaine, our approach succeeded in detecting cocaine during on-site screening scenarios. This feature presents an advantage over colorimetric and optical detection techniques, which can fail with colored sample matrices. This enhanced accuracy on smuggled samples will lead to increased efficiency in confiscation procedures in the field, thus significantly reducing societal economic and safety concerns and highlighting the potential for electrochemical approaches in on-the-spot identification of drugs of abuse.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000790965700001 Publication Date 2022-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:187767 Serial 8921
Permanent link to this record
 

 
Author Gao, Y.-J.; Jin, H.; Esteban, D.A.; Weng, B.; Saha, R.A.; Yang, M.-Q.; Bals, S.; Steele, J.A.; Huang, H.; Roeffaers, M.B.J.
Title 3D-cavity-confined CsPbBr₃ quantum dots for visible-light-driven photocatalytic C(sp³)-H bond activation Type A1 Journal article
Year 2024 Publication Carbon Energy Abbreviated Journal
Volume Issue Pages e559
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Metal halide perovskite (MHP) quantum dots (QDs) offer immense potential for several areas of photonics research due to their easy and low-cost fabrication and excellent optoelectronic properties. However, practical applications of MHP QDs are limited by their poor stability and, in particular, their tendency to aggregate. Here, we develop a two-step double-solvent strategy to grow and confine CsPbBr3 QDs within the three-dimensional (3D) cavities of a mesoporous SBA-16 silica scaffold (CsPbBr3@SBA-16). Strong confinement and separation of the MHP QDs lead to a relatively uniform size distribution, narrow luminescence, and good ambient stability over 2 months. In addition, the CsPbBr3@SBA-16 presents a high activity and stability for visible-light-driven photocatalytic toluene C(sp(3))-H bond activation to produce benzaldehyde with similar to 730 mu mol g(-1) h(-1) yield rate and near-unity selectivity. Similarly, the structural stability of CsPbBr3@SBA-16 QDs is superior to that of both pure CsPbBr3 QDs and those confined in MCM-41 with 1D channels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001223583600001 Publication Date 2024-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2637-9368 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:206000 Serial 9133
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Pelmuş, M.; Gorun, S.M.; De Wael, K.
Title The role of singlet oxygen, superoxide, hydroxide, and hydrogen peroxide in the photoelectrochemical response of phenols at a supported highly fluorinated zinc phthalocyanine Type A1 Journal article
Year 2022 Publication ChemElectroChem Abbreviated Journal
Volume 9 Issue 6 Pages e202200108-10
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Photoelectrochemical (PEC) sensing of phenolic compounds using singlet oxygen (1O2)-generating photocatalysts has emerged as a powerful detection tool. However, it is currently not known how experimental parameters, such as pH and applied potential, influence the generation of reactive oxygen species (ROS) and their photocurrents. In this article, the PEC response was studied over the 6 to 10 pH range using a rotating (ring) disk (R(R)DE) set-up in combination with quenchers, to identify the ROS formed upon illumination of a supported photosensitizer, F64PcZn. The photocurrents magnitude depended on the applied potential and the pH of the buffer solution. The anodic responses were caused by the oxidation of O2.−, generated due to the quenching of 1O2 with −OH and the reaction of 3O2 with [F64Pc(3-)Zn]. The cathodic responses were assigned to the reduction of 1O2 and O2.−, yielding H2O2. These insights may benefit 1O2 – based PEC sensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000773947300003 Publication Date 2022-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:187524 Serial 8926
Permanent link to this record
 

 
Author Liu, Y.; Ngo, H.H.; Guo, W.; Peng, L.; Chen, X.; Wang, D.; Pan, Y.; Ni, B.-J.
Title Modeling electron competition among nitrogen oxides reduction and N2Oaccumulation in hydrogenotrophic denitrification Type A1 Journal article
Year 2018 Publication Biotechnology and bioengineering Abbreviated Journal
Volume 115 Issue 4 Pages 978-988
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Hydrogenotrophic denitrification is a novel and sustainable process for nitrogen removal, which utilizes hydrogen as electron donor, and carbon dioxide as carbon source. Recent studies have shown that nitrous oxide (N2O), a highly undesirable intermediate and potent greenhouse gas, can accumulate during this process. In this work, a new mathematical model is developed to describe nitrogen oxides dynamics, especially N2O, during hydrogenotrophic denitrification for the first time. The model describes electron competition among the four steps of hydrogenotrophic denitrification through decoupling hydrogen oxidation and nitrogen reduction processes using electron carriers, in contrast to the existing models that couple these two processes and also do not consider N2O accumulation. The developed model satisfactorily describes experimental data on nitrogen oxides dynamics obtained from two independent hydrogenotrophic denitrifying cultures under various hydrogen and nitrogen oxides supplying conditions, suggesting the validity and applicability of the model. The results indicated that N2O accumulation would not be intensified under hydrogen limiting conditions, due to the higher electron competition capacity of N2O reduction in comparison to nitrate and nitrite reduction during hydrogenotrophic denitrification. The model is expected to enhance our understanding of the process during hydrogenotrophic denitrification and the ability to predict N2O accumulation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426493300016 Publication Date 2017-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3592 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:149850 Serial 8261
Permanent link to this record
 

 
Author Bae, J.; Cichocka, M.O.; Zhang, Y.; Bacsik, Z.; Bals, S.; Zou, X.; Willhammar, T.; Hong, S.B.
Title Phase transformation behavior of a two-dimensional zeolite Type A1 Journal article
Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal
Volume 58 Issue 30 Pages 10230-10235
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Understanding the molecular-level mechanisms of phase transformation in solids is of fundamental interest for functional materials such as zeolites. Two-dimensional (2D) zeolites, when used as shape-selective catalysts, can offer improved access to the catalytically active sites and a shortened diffusion length in comparison with their 3D analogues. However, few materials are known to maintain both their intralayer microporosity and structure during calcination for organic structure-directing agent (SDA) removal. Herein we report that PST-9, a new 2D zeolite which has been synthesized via the multiple inorganic cation approach and fulfills the requirements for true layered zeolites, can be transformed into the small-pore zeolite EU-12 under its crystallization conditions through the single-layer folding process, but not through the traditional dissolution/recrystallization route. We also show that zeolite crystal growth pathway can differ according to the type of organic SDAs employed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000476452700030 Publication Date 2019-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access OpenAccess
Notes We acknowledge financial support from National Creative Research Initiative Program (2012R1A3A-2048833) through the National Research Foundation of Korea, the National Research Council of Science & Technology (CRC-14-1-KRICT) grant by the Korea government (MSIP), the Swedish Research Council (2017-04321), and the Knut and Alice Wallenberg Foundation (KAW) through the project grant 3DEM-NATUR (2012.0112). T.W. acknowledges an international postdoc grant from the Swedish Research Council (2014-06948). Approved no
Call Number UA @ admin @ c:irua:181233 Serial 6878
Permanent link to this record
 

 
Author Safdar, M.; Khan, S.U.; Jänis, J.
Title Progress toward catalytic micro- and nanomotors for biomedical and environmental applications Type A1 Journal article
Year 2018 Publication Advanced Materials Abbreviated Journal
Volume 30 Issue 24 Pages 1703660
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Synthetic micro‐ and nanomotors (MNMs) are tiny objects that can autonomously move under the influence of an appropriate source of energy, such as a chemical fuel, magnetic field, ultrasound, or light. Chemically driven MNMs are composed of or contain certain reactive material(s) that convert chemical energy of a fuel into kinetic energy (motion) of the particles. Several different materials have been explored over the last decade for the preparation of a wide variety of MNMs. Here, the discovery of materials and approaches to enhance the efficiency of chemically driven MNMs are reviewed. Several prominent applications of the MNMs, especially in the fields of biomedicine and environmental science, are also discussed, as well as the limitations of existing materials and future research directions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000436455800006 Publication Date 2018-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:175426 Serial 8424
Permanent link to this record
 

 
Author Ozden, A.; Ay, F.; Sevik, C.; Perkgoz, N.K.
Title CVD growth of monolayer MoS2: Role of growth zone configuration and precursors ratio Type A1 Journal article
Year 2017 Publication Japanese journal of applied physics Abbreviated Journal
Volume 56 Issue 6s:[1] Pages 06gg05
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Single-layer, large-scale two-dimensional material growth is still a challenge for their wide-range usage. Therefore, we carried out a comprehensive study of monolayer MoS2 growth by CVD investigating the influence of growth zone configuration and precursors ratio. We first compared the two commonly used approaches regarding the relative substrate and precursor positions, namely, horizontal and face-down configurations where facedown approach is found to be more favorable to obtain larger flakes under identical growth conditions. Secondly, we used different types of substrate holders to investigate the influence of the Mo and S vapor confinement on the resulting diffusion environment. We suggest that local changes of the S to Mo vapor ratio in the growth zone is a key factor for the change of shape, size and uniformity of the resulting MoS2 formations, which is also confirmed by performing depositions under different precursor ratios. Therefore, to obtain continuous monolayer films, the S to Mo vapor ratio is needed to be kept within a certain range throughout the substrate. As a conclusion, we obtained monolayer triangles with a side length of 90 mu m and circles with a diameter of 500 mu m and continuous films with an area of 85 0 mu m x 1 cm when the S-to-Mo vapor ratio is optimized. (C) 2017 The Japan Society of Applied Physics
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401059800003 Publication Date 2017-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-4922; 1347-4065 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:193783 Serial 7747
Permanent link to this record
 

 
Author Janssens, K.; Vanborm, W.; van Espen, P.
Title Increased accuracy in the automated interpretation of large epma data sets by the use of an expert system Type A1 Journal article
Year 1988 Publication Journal of research of the National Bureau of Standards (1934) Abbreviated Journal
Volume 93 Issue 3 Pages 260-264
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Chemometrics (Mitac 3)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1988P035100026 Publication Date 2012-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0091-0635 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:149777 Serial 5660
Permanent link to this record
 

 
Author Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-navarro, N.C.; Miura, A.; Tadanaga, K.
Title CO₂ electrochemical reduction with Zn-Al layered double hydroxide-loaded gas-diffusion electrode Type A1 Journal article
Year 2023 Publication Electrochemistry Abbreviated Journal
Volume 91 Issue 9 Pages 097003-97007
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001082818000001 Publication Date 2023-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200340 Serial 9009
Permanent link to this record
 

 
Author Gielis, J.; Brasili, S.
Title Proceedings of the 1st International Symposium on Square Bamboos and the Geometree (ISSBG 2022) Type ME3 Book as editor
Year 2023 Publication Abbreviated Journal
Volume Issue Pages xi, 175 p.
Keywords ME3 Book as editor; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-833839-0-3 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201049 Serial 9077
Permanent link to this record
 

 
Author Ricci, P.E.; Gielis, J.
Title From Pythagoras to Fourier and from geometry to nature Type MA3 Book as author
Year 2022 Publication Abbreviated Journal
Volume Issue Pages 146 p.
Keywords MA3 Book as author; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2022-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-832323-0-0; 978-90-832323-1-7 Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:186730 Serial 7166
Permanent link to this record
 

 
Author Zhang, Z.; Lobato, I.; Brown, H.; Jannis, D.; Verbeeck, J.; Van Aert, S.; Nellist, P.
Title Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Inelastic excitation as exploited in Electron Energy Loss Spectroscopy (EELS) contains a rich source of information that is revealed in the scattering process. To accurately quantify core-loss EELS, it is common practice to fit the observed spectrum with scattering cross-sections calculated using experimental parameters and a Generalized Oscillator Strength (GOS) database [1].   The GOS is computed using Fermi’s Golden Rule and orbitals of bound and excited states. Previously, the GOS was based on Hartree-Fock solutions [2], but more recently Density Functional Theory (DFT) has been used [3]. In this work, we have chosen to use the Dirac equation to incorporate relativistic effects and have performed calculations using Flexible Atomic Code (FAC) [4]. This repository contains a tabulated GOS database based on Dirac solutions for computing double differential cross-sections under experimental conditions.   We hope the Dirac-based GOS database can benefit the EELS community for both academic use and industry integration.   Database Details: – Covers all elements (Z: 1-108) and all edges – Large energy range: 0.01 – 4000 eV – Large momentum range: 0.05 -50 Å-1 – Fine log sampling: 128 points for energy and 256 points for momentum – Data format: GOSH [3]   Calculation Details: – Single atoms only; solid-state effects are not considered – Unoccupied states before continuum states of ionization are not considered; no fine structure – Plane Wave Born Approximation – Frozen Core Approximation is employed; electrostatic potential remains unchanged for orthogonal states when – core-shell electron is excited – Self-consistent Dirac–Fock–Slater iteration is used for Dirac calculations; Local Density Approximation is assumed for electron exchange interactions; continuum states are normalized against asymptotic form at large distances – Both large and small component contributions of Dirac solutions are included in GOS – Final state contributions are included until the contribution of the previous three states falls below 0.1%. A convergence log is provided for reference.   Version 1.1 release note: – Update to be consistent with GOSH data format [3], all the edges are now within a single hdf5 file. A notable change in particular, the sampling in momentum is in 1/m, instead of previously in 1/Å. Great thanks to Gulio Guzzinati for his suggestions and sending conversion script.  Version 1.2 release note: – Add “File Type / File version” information [1] Verbeeck, J., and S. Van Aert. Ultramicroscopy 101.2-4 (2004): 207-224. [2] Leapman, R. D., P. Rez, and D. F. Mayers. The Journal of Chemical Physics 72.2 (1980): 1232-1243. [3] Segger, L, Guzzinati, G, & Kohl, H. Zenodo (2023). doi:10.5281/zenodo.7645765 [4] Gu, M. F. Canadian Journal of Physics 86(5) (2008): 675-689.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203392 Serial 9042
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
Title Supplementary Information for “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Supplementary information for the article “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” containing the videos of in-situ SEM imaging (mp4 files), raw data/images, and Jupyter notebooks (ipynb files) for data treatment and plots. Link to the preprint: https://doi.org/10.48550/arXiv.2308.15123 Explanation of the data files can be found in the Information.pdf file. The Videos folder contains the in-situ SEM image series mentioned in the paper. If there are any questions/bugs, feel free to contact me at lukas.grunewaldatuantwerpen.be
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203389 Serial 9100
Permanent link to this record
 

 
Author Annys, A.; Jannis, D.; Verbeeck, J.
Title Core-loss EELS dataset and neural networks for element identification Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract We present a large dataset containing simulated core-loss electron energy loss spectroscopy (EELS) spectra with the elemental content as ground-truth labels. Additionally we present some neural networks trained on this data for element identification.  The simulated dataset contains zero padded core-loss spectra from 0 to 3072 eV, which represents 107 core-loss edges through all 80 elements from Be up to Bi. The core-loss edges are calculated from the generalised oscillator strength (GOS) database presented by Zhang et al.[1] Generic fine structures using lifetime broadened peaks are used to imitate fine structure due to solid-state effects in experimental spectra. Generic low-loss regions are used to imitate the effect of multiple scattering. Each spectrum contains at least one edge of a given query element and possibly additional edges depending on samples drawn from The Materials Project [2]. The dataset contains for each of the 80 elements: 7000 training spectra, 1500 test spectra, 600 validation spectra and 100 spectra representing only the query element. This results in a total 736 000 labeled spectra. Code on how to  – read the simulated data – transform HDF5 format to TFRecord format – train and evaluate neural networks using the simulated data – use the trained networks for automated element identification is available on GitHub at arnoannys/EELS_ID A full report on the simulation of the dataset and the training and evaluation of the neural networks can be found at:                    Annys, A., Jannis, D. & Verbeeck, J. Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy. Sci Rep 13, 13724 (2023). https://doi.org/10.1038/s41598-023-40943-7 [1] Zezhong Zhang, Ivan Lobato, Daen Jannis, Johan Verbeeck, Sandra Van Aert, & Peter Nellist. (2023). Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7729585 [2] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, Kristin A. Persson; Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1 July 2013; 1 (1): 011002. [https://doi.org/10.1063/1.4812323](https://doi.org/10.1063/1.4812323)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203391 Serial 9015
Permanent link to this record
 

 
Author Skorikov, A.; Heyvaert, W.; Albrecht, W.; Pelt, D.M.; Bals, S.
Title EMAT Simulated 3D Nanoparticle Structures Dataset Type Dataset
Year 2021 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract This dataset contains 1000 simulated nanoparticle-like 3D structures and noisy EDX-like elemental maps based on them. These data are intended to be used for quantitative analysis of data processing methods in (EDX) tomography of nanoparticles and training the data-driven approaches for these tasks. The dataset is structured as follows: voxel_data/clean 3D voxel grid representation of the simulated nanoparticles. Voxel intensities are adjusted so that the total intensity equals 103. All 3D structures have unique identifiers in 0..999 range. The data derived from a 3D structure preserves this unique identifier. sinograms/clean Tilt series of projection images obtained from the corresponding 3D structures over an angular range of -75..75 degrees with a tilt step of 10 degrees to simulate a typical tilt series used in EDX tomography. Total intensity in each projection image equals 103. sinograms/noisy Tilt series of projection images corrupted with Poisson noise and an additional spatially uniform background noise. projections/clean Projection images extracted from the clean tilt series at 0 degrees tilt angle. projections/noisy Projection images extracted from the noisy tilt series at 0 degrees tilt angle. images/clean Visualizations of the clean projections as PNG images with the intensity range adjusted to 0..255 images/noisy Visualizations of the noisy projections as PNG images with the intensity range adjusted to 0..255
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:180615 Serial 6838
Permanent link to this record
 

 
Author Guzzinati, G.; Das, P.P.; Zompra, A., A.; Nicopoulos, S.; Verbeeck, J.
Title Electron energy loss spectra of several organic compounds Type Dataset
Year 2020 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract We placed crystals of different compounds to explore the possibility of fingerprinting them through EELS. Here are representative datasets of 7 different compounds: b-cyclodextrin hexacarboxy cyclohexane tannin TH-15 peptide TH-27 peptide two different forms of piroxicam The datasets were collected at EMAT, using a monochromated FEI Titan3 TEM, within the scope of an EUSMI request. More information as well as analysis methodologies adopted for the data are detailed in the paper: Das et al. “Reliable Characterization of Organic & Pharmaceutical Compounds with High Resolution Monochromated EEL Spectroscopy”, Polymers 2020, 12(7), 1434.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:180654 Serial 6866
Permanent link to this record
 

 
Author Samaeeaghmiyoni, V.; Cordier, P.; Demouchy, S.; Bollinger, C.; Gasc, J.; Mussi, A.; Schryvers, D.; Idrissi, H.
Title Research data supporting for Stress-induced amorphization triggers deformation in the lithospheric mantle Type Dataset
Year 2020 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:180668 Serial 6881
Permanent link to this record
 

 
Author Idrissi, H.; Samaee, V.; Lumbeeck, G.; van der Werf, T.; Pardoen, T.; Schryvers, D.; Cordier, P.
Title Supporting data for “In situ Quantitative Tensile Tests on Antigorite in a Transmission Electron Microscope” Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract The determination of the mechanical properties of serpentinites is essential towards the understanding of the mechanics of faulting and subduction. Here, we present the first in situ tensile tests on antigorite in a transmission electron microscope. A push-to-pull deformation device is used to perform quantitative tensile tests, during which force and displacement are measured, while the microstructure is imaged with the microscope. The experiments have been performed at room temperature on beams prepared by focused ion beam. The specimens are not single crystals despite their small sizes. Orientation mapping indicated that some grains were well-oriented for plastic slip. However, no dislocation activity has been observed even though engineering tensile stress went up to 700 MPa. We show also that antigorite does not exhibit an pure elastic-brittle behaviour since, despite the presence of defects, the specimens underwent plastic deformation and did not fail within the elastic regime. Instead, we observe that strain localizes at grain boundaries. All observations concur to show that under our experimental conditions, grain boundary sliding is the dominant deformation mechanism. This study sheds a new light on the mechanical properties of antigorite and calls for further studies on the structure and properties of grain boundaries in antigorite and more generally in phyllosilicates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169107 Serial 6891
Permanent link to this record
 

 
Author Cautaerts, N.; Lamm, S.; Stergar, E.; Pakarinen, J.; Yang, Y.; Hofer, C.; Schnitzer, R.; Felfer, P.; Verwerft, M.; Delville, R.; Schryvers, D.
Title Atom probe tomography data collection from DIN 1.4970 (15-15Ti) austenitic stainless steel irradiated with Fe ions Type Dataset
Year 2020 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract This dataset comprises a large collection of atom probe tomography datasets collected from DIN 1.4970 alloy that was irradiated with Fe ions at different conditions. The DIN 1.4970 alloy is an austenitic stainless steel with 15 wt% Cr, 15 wt% Ni, a small addition of Ti. The full composition and characterization of our material can be found published elsewhere [1,2]. Some of our material was subjected to ageing heat treatments at different temperatures for different times. Small samples of our original material and aged material was irradiated at the Michigan Ion Beam Laboratory in 2017 with 4.5 MeV Fe ions up to 40 dpa at an average dose rate of 2×10−4 dpa/s. This was done at three different temperatures: 300, 450, and 600 ºC. Atom probe samples were made of the irradiated layers (approximately 1.5 micron deep) with focused ion beam and mounted on Microtip coupons. APT measurements took place on three CAMECA LEAP-HR systems located at CAES in Idaho Falls, USA (files beginning with R33), at Montanuniversität Leoben in Leoben, Austria (R21) and at Friedrich–Alexander University in Erlangen, Germany (R56).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:169127 Serial 6454
Permanent link to this record
 

 
Author Guzzinati, G.; Béché, A.; McGrouther, D.; Verbeeck, J.
Title Rotation of electron beams in the presence of localised, longitudinal magnetic fields Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Electron Bessel beams have been generated by inserting an annular aperture in the illumination system of a TEM. These beams have passed through a localised magnetic field. As a result a low amount of image rotation (which is expected to be proportional to the longitudinal component of the magnetic field) is observed in the far field. A measure of this rotation should give access to the magneti field. The two datasets have been acquired in a FEI Titan3 microscope, operated at 300kV. The file focalseries.tif contains a series of images acquired varying the magnetic field through the objective lens. The file lineprofile.ser contains a series of images acquired by scanning the beam over a sample with several magnetised nanopillars. For reference, check the associated publication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169135 Serial 6883
Permanent link to this record
 

 
Author Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J.
Title Electron Bessel beam diffraction patterns, line scan of Si/SiGe multilayer Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169114 Serial 6865
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Oelsner, A.; Verbeeck, J.
Title Spectrocopic coincidence experiment in transmission electron microscopy Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract This dataset contains individual EEL and EDX events where for every event (electron or X-ray), their energy and time of arrival is stored. The experiment was performed in a transmission electron microscope (Tecnai Osiris) at 200 keV. The material investigated is an Al-Mg-Si-Cu alloy. The 'full_dataset.mat' contains the full dataset and the 'subset.mat' has the first five frames of the full dataset. The attached 'EELS-EDX.ipynb' is a jupyter notebook file. This file describes the data processing in order to observe the temporal correlation between the electrons and X-rays.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169112 Serial 6888
Permanent link to this record
 

 
Author Cioni, M.; Delle Piane, M.; Polino, D.; Rapetti, D.; Crippa, M.; Arslan Irmak, E.; Pavan, G.M.; Van Aert, S.; Bals, S.
Title Data for Sampling Real‐Time Atomic Dynamics in Metal Nanoparticles by Combining Experiments, Simulations, and Machine Learning Type Dataset
Year 2024 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Even at low temperatures, metal nanoparticles (NPs) possess atomic dynamics that are key for their properties but challenging to elucidate. Recent experimental advances allow obtaining atomic‐resolution snapshots of the NPs in realistic regimes, but data acquisition limitations hinder the experimental reconstruction of the atomic dynamics present within them. Molecular simulations have the advantage that these allow directly tracking the motion of atoms over time. However, these typically start from ideal/perfect NP structures and, suffering from sampling limits, provide results that are often dependent on the initial/putative structure and remain purely indicative. Here, by combining state‐of‐the‐art experimental and computational approaches, how it is possible to tackle the limitations of both approaches and resolve the atomistic dynamics present in metal NPs in realistic conditions is demonstrated. Annular dark‐field scanning transmission electron microscopy enables the acquisition of ten high‐resolution images of an Au NP at intervals of 0.6 s. These are used to reconstruct atomistic 3D models of the real NP used to run ten independent molecular dynamics simulations. Machine learning analyses of the simulation trajectories allows resolving the real‐time atomic dynamics present within the NP. This provides a robust combined experimental/computational approach to characterize the structural dynamics of metal NPs in realistic conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205843 Serial 9143
Permanent link to this record
 

 
Author Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-Navarro, N.C.; Miura, A.; Tadanaga, K.
Title CO2 Electrochemical Reduction with Zn-Al Layered Double Hydroxide-Loaded Gas-Diffusion Electrode (Supporting Information) Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001079191200001 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200933 Serial 9010
Permanent link to this record
 

 
Author Lembrechts, J.; Clavel, J.; Lenoir, J.; Haider, S.; McDougall, K.; Nunez, M.; Alexander, J.; Barros, A.; Milbau, A.; Seipel, T.; Verbruggen, E.; Nijs, I.
Title Dataset: Roadside disturbance promotes plant communities with arbuscular mycorrhizal associations in mountain regions worldwide Type Dataset
Year 2024 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Aim: We aimed to assess the impact of road disturbances on the dominant mycorrhizal types in ecosystems at the global level and how this mechanism can potentially lead to lasting plant community changes. Location: Globally distributed mountain regions Time Period: 2007-2018 Taxa studied: Plants (linked to their associated mycorrhizal fungi) Methods: We used a database of coordinated plant community surveys following mountain roads from 894 plots in 11 mountain regions across the globe in combination with an existing database of mycorrhizal-plant associations in order to approximate the relative abundance of mycorrhizal types in natural and disturbed environments. Results: Our findings show that roadside disturbance promotes the cover of plants associated with arbuscular mycorrhizal (AM) fungi. This effect is especially strong in colder mountain environments and in mountain regions where plant communities are dominated by ectomycorrhizal (EcM) or ericoid-mycorrhizal (ErM) associations. Furthermore, non-native plant species, which we confirmed to be mostly AM plants, are more successful in environments dominated by AM associations. Main Conclusions: These biogeographical patterns suggest that changes in mycorrhizal types could be a crucial factor in the worldwide impact of anthropogenic disturbances on mountain ecosystems. Indeed, roadsides foster AM-dominated systems, where AM-fungi might aid AM-associated plant species while potentially reducing the biotic resistance against invasive non-native species, often also associated with AM networks. Restoration efforts in mountain ecosystems will have to contend with changes in the fundamental make-up of EcM- and ErM plant communities induced by roadside disturbance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:206132 Serial 9198
Permanent link to this record