|   | 
Details
   web
Records
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting nanowires: quantum-confinement effect on the critical magnetic field and supercurrent Type A1 Journal article
Year 2009 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics T2 – 32nd International Workshop on Condensed Matter Theories, Aug 12-19, 2008, Loughborough Univ, Loughborough, England Abbreviated Journal Int J Mod Phys B
Volume 23 Issue 20-21 Pages 4257-4268
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract We study the effect of electron confinement on the superconducting-to-normal phase transition driven by a magnetic field and/or on the current-carrying state of the superconducting condensate in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We show that in a parallel magnetic field and/or in the presence of supercurrent the transition from superconducting to normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magnetic field exhibits quantum-size oscillations with pronounced resonant enhancements.
Address
Corporate Author Thesis
Publisher World scientific Place of Publication Singapore Editor
Language Wos 000274525500026 Publication Date 2009-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.736 Times cited 1 Open Access
Notes Approved Most recent IF: 0.736; 2009 IF: 0.408
Call Number UA @ lucian @ c:irua:95673 Serial 3362
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Mints, R.G.; Peeters, F.M.
Title Andreev-type states induced by quantum confinement Type A1 Journal article
Year 2008 Publication Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Abbreviated Journal J Surf Investig-X-Ra
Volume 2 Issue 4 Pages 611-615
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract The properties of a clean superconductor with nanoscale dimensions are governed by quantum confinement of the electrons. This results in a spatially inhomogeneous superconducting condensate and in the formation of new Andreev-type quasiparticle states. These states are mainly located beyond regions where the superconducting condensate is enhanced. A numerical self-consistent solution of the Bogoliubov-de Gennes equations for a cylindrical metallic nanowire shows that these new Andreev-type states decrease the ratio of the energy gap to the critical temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000262864600021 Publication Date 2008-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1027-4510;1819-7094; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:75991 Serial 113
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Magnetic-field induced quantum-size cascades in superconducting nanowires Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 78 Issue 2 Pages 024505,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000258190200105 Publication Date 2008-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 42 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:70559 Serial 1876
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.
Title Shape resonances in the superconducting order parameter of ultrathin nanowires Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 73 Issue 1 Pages 012510,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000235009000033 Publication Date 2006-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:56613 Serial 2990
Permanent link to this record
 

 
Author Chen, Y.; Hong-Yu, W.; Peeters, F.M.; Shanenko, A.A.
Title Quantum-size effects and thermal response of anti-Kramer-Pesch vortex core Type A1 Journal article
Year 2015 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 27 Issue 27 Pages 125701
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Since the 1960's it has been well known that the basic superconductive quantities can exhibit oscillations as functions of the thickness (diameter) in superconducting nanofilms (nanowires) due to the size quantization of the electronic spectrum. However, very little is known about the effects of quantum confinement on the microscopic properties of vortices. Based on a numerical solution to the Bogoliubov-de Gennes equations, we study the quantum-size oscillations of the vortex core resulting from the sequential interchange of the Kramer-Pesch and anti-Kramer-Pesch regimes with changing nanocylinder radius. The physics behind the anti-Kramer-Pesch anomaly is displayed by utilizing a semi-analytical Anderson approximate solution. We also demonstrate that the anti-Kramer-Pesch vortex core is robust against thermal smearing and results in a distinctive two-maxima structure in the local density of states, which can be used to identify the existence of the anti-Kramer-Pesch vortex.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000351294700018 Publication Date 2015-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 4 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. NSFC-11304134, the Flemish Science Foundation (FWO-Vl), and the Methusalem program. AAS acknowledges the support of the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). WHY acknowledges the support of Scientific Research Fund of Zhejiang Provincial Education Department (Y201120994). ; Approved Most recent IF: 2.649; 2015 IF: 2.346
Call Number c:irua:125460 Serial 2787
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M.
Title Ultra-small metallic grains : effect of statistical fluctuations of the chemical potential on superconducting correlations and vice versa Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 27 Pages 275701
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superconducting correlations in an isolated metallic grain are governed by the interplay between two energy scales: the mean level spacing delta and the bulk pairing gap Delta(0), which are strongly influenced by the position of the chemical potential with respect to the closest single-electron level. In turn superconducting correlations affect the position of the chemical potential. Within the parity projected BCS model we investigate the probability distribution of the chemical potential in a superconducting grain with randomly distributed single-electron levels. Taking into account statistical fluctuations of the chemical potential due to the pairing interaction, we find that such fluctuations have a significant impact on the critical level spacing delta(c) at which the superconducting correlations cease: the critical ratio delta(c)/Delta(0) at which superconductivity disappears is found to be increased.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000305653100012 Publication Date 2012-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 9 Open Access
Notes ; This work was supported by the European Community under the Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF network INSTANS. MDC and AAS are grateful to A Vagov for stimulating discussions. ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:100280 Serial 3793
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Quantum cascades in nano-engineered superconductors : geometrical, thermal and paramagnetic effects Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 26 Pages 265702
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of a parallel magnetic field on the orbital motion of electrons in high-quality superconducting nanowires resulting in a superconductor-to-normal transition which occurs through a cascade of jumps in the order parameter as a function of the magnetic field. Such cascades originate from the transverse size quantization that splits the conduction band into a series of subbands. Here, based on a numerical solution of the Bogoliubov-de Gennes equations for a hollow nanocylinder, we investigate how the quantum-size cascades depend on the confining geometry, i.e., by changing the cylinder radius R and its thickness d we cover the range from the nanowire-like to the nanofilm-like regime. The cascades are shown to become much less pronounced when increasing R/d, i.e., when the nanofilm-like regime is approached. When the temperature is non-zero they are thermally smoothed. This includes the spin-magnetic-field interaction which reduces the critical (depairing) parallel magnetic field H-c,H-parallel to but does not have any qualitative effect on the quantum cascades. From our calculations it is seen that the paramagnetic limiting field H-par significantly exceeds H-c,H-parallel to even in extremely narrow nanocylinders, i.e., when R, d are down to a few nanometers, and H-c,H-parallel to is only about 10% larger when switching-off the spin-magnetic-field interaction in this case. Both characteristic fields, H-c,H-parallel to and H-par, exhibit pronounced quantum-size oscillations. We demonstrate that the quantum cascades and the quantum-size oscillations survive in the presence of surface roughness.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000305640800014 Publication Date 2012-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 6 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the ESF-AQDJJ network. MDC acknowledges the support of the EU Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:100281 Serial 2773
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Perali, A.; Peeters, F.M.
Title Superconducting nanofilms : molecule-like pairing induced by quantum confinement Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 18 Pages 185701-185701,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Quantum confinement of the perpendicular motion of electrons in single-crystalline metallic superconducting nanofilms splits the conduction band into a series of single-electron subbands. A distinctive feature of such a nanoscale multi-band superconductor is that the energetic position of each subband can vary significantly with changing nanofilm thickness, substrate material, protective cover and other details of the fabrication process. It can occur that the bottom of one of the available subbands is situated in the vicinity of the Fermi level. We demonstrate that the character of the superconducting pairing in such a subband changes dramatically and exhibits a clear molecule-like trend, which is very similar to the well-known crossover from the Bardeen-Cooper-Schrieffer regime to Bose-Einstein condensation (BCS-BEC) observed in trapped ultracold fermions. For Pb nanofilms with thicknesses of 4 and 5 monolayers (MLs) this will lead to a spectacular scenario: up to half of all the Cooper pairs nearly collapse, shrinking in the lateral size (parallel to the nanofilm) down to a few nanometers. As a result, the superconducting condensate will be a coherent mixture of almost molecule-like fermionic pairs with ordinary, extended Cooper pairs.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000303500900018 Publication Date 2012-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 26 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). AAS thanks A Bianconi, M D Croitoru and A V Vagov for useful discussions. AAS acknowledges the hospitality and fruitful interactions with G C Strinati, P Pieri and D Neilson during his visit to the University of Camerino, supported by the School of Advanced Studies of the University of Camerino. ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:98223 Serial 3357
Permanent link to this record
 

 
Author Chen, Y.; Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Superconducting nanowires: quantum confinement and spatially dependent Hartree-Fock potential Type A1 Journal article
Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 21 Issue 43 Pages 435701,1-435701,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract It is well known that, in bulk, the solution of the Bogoliubovde Gennes equations is the same whether or not the HartreeFock term is included. Here the HartreeFock potential is position independent and so gives the same contribution to both the single-electron energies and the Fermi level (the chemical potential). Thus, the single-electron energies measured from the Fermi level (they control the solution) stay the same. This is not the case for nanostructured superconductors, where quantum confinement breaks the translational symmetry and results in a position-dependent HartreeFock potential. In this case its contribution to the single-electron energies depends on the relevant quantum numbers. We numerically solved the Bogoliubovde Gennes equations with the HartreeFock term for a clean superconducting nanocylinder and found a shift of the curve representing the thickness-dependent oscillations of the critical superconducting temperature to larger diameters.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000270642700012 Publication Date 2009-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 12 Open Access
Notes Approved Most recent IF: 2.649; 2009 IF: 1.964
Call Number UA @ lucian @ c:irua:79162 Serial 3360
Permanent link to this record
 

 
Author Croitoru, M.D.; Vagov, A.; Shanenko, A.A.; Axt, V.M.
Title The Cooper problem in nanoscale : enhancement of the coupling due to confinement Type A1 Journal article
Year 2012 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 25 Issue 12 Pages 124001-124005
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In 1956 Cooper demonstrated (1956 Phys. Rev. 104 1189) that, no matter how weak the attraction is, two electrons in three-dimensional (3D) space just above the Fermi sea could be bound. In this work we investigate the influence of confinement on the binding energy of a Cooper pair. We show that confinement-induced modification of the Fermi sea results in a significant increase of the binding energy, when the bottom of an energy subband is very close to the Fermi surface.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000311418100004 Publication Date 2012-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 9 Open Access
Notes ; MDC acknowledges support by the European Community under the Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 2.878; 2012 IF: 2.758
Call Number UA @ lucian @ c:irua:105121 Serial 3573
Permanent link to this record
 

 
Author Shanenko, A.A.; Tempère, J.; Brosens, F.; Devreese, J.T.
Title Mesoscopic samples: the superconducting condensate via the Gross.Pitaevskii scenario Type A1 Journal article
Year 2004 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 131 Issue Pages 409-414
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000223011700012 Publication Date 2004-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 1 Open Access
Notes Approved Most recent IF: 1.554; 2004 IF: 1.523
Call Number UA @ lucian @ c:irua:48282 Serial 2000
Permanent link to this record
 

 
Author Shanenko, A.A.; Ivanov, V.A.
Title Effects of confining interaction in meso-superconductors Type A1 Journal article
Year 2004 Publication Physics letters : A Abbreviated Journal Phys Lett A
Volume 322 Issue 5-6 Pages 384-389
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract This Letter presents a generalized Ginzburg-Landau equation for the superconducting order parameter which includes the terms resulting from the confining interaction associated with the specimen boundary. While the original Ginzburg-Landau theory had been developed for a bulk superconductor, this generalization is meant for study of a meso-superconductor. (C) 2004 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000220123600018 Publication Date 2004-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.772 Times cited 1 Open Access
Notes Approved Most recent IF: 1.772; 2004 IF: 1.454
Call Number UA @ lucian @ c:irua:103244 Serial 859
Permanent link to this record
 

 
Author Croitoru, M.D.; Zachmann, M.; Vagov, A.; Axt, V.M.; Shanenko, A.A.; Kettmann, P.; Papenkort, T.; Kuhn, T.
Title Coherent dynamics of confinement-induced multiband superconductors Type A1 Journal article
Year 2014 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 503 Issue Pages 183-186
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the coherent dynamics of pairing in a nanoscale superconductor, that is intrinsically multiband, after an external perturbation in the non-adiabatic regime. The description of the dynamics of the pairing order is within the density-matrix approach based on the BCS model and the Bogoliubov-de Gennes equations. We find that for certain resonant wire widths the superconducting order parameter exhibits two oscillatory frequencies which are determined by the long-time asymptotic values of the subgaps. This in turn leads to a pronounced beating phenomenon. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000340070600040 Publication Date 2014-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 1 Open Access
Notes ; M.D.C. acknowledges the support from the Back to Belgium Grant of the federal Science Policy (BELSPO). ; Approved Most recent IF: 1.404; 2014 IF: 0.942
Call Number UA @ lucian @ c:irua:118745 Serial 378
Permanent link to this record
 

 
Author Komendová, L.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.
Title The healing lengths in two-band superconductors in extended Ginzburg-Landau theory Type A1 Journal article
Year 2012 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 479 Issue Pages 126-129
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the vortex profiles in two-gap superconductors using the extended Ginzburg-Landau theory. The results shed more light on the disparity between the effective length scales in two bands. We compare the behavior expected from the standard Ginzburg-Landau theory with this new approach, and find good qualitative agreement in the case of LiFeAs. (C) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000308580600029 Publication Date 2012-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 1 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. ; Approved Most recent IF: 1.404; 2012 IF: 0.718
Call Number UA @ lucian @ c:irua:101871 Serial 3585
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Nanoscale superconductivity: nanowires and nanofilms Type A1 Journal article
Year 2008 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 468 Issue 7/10 Pages 593-598
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000257355300021 Publication Date 2008-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 6 Open Access
Notes Approved Most recent IF: 1.404; 2008 IF: 0.740
Call Number UA @ lucian @ c:irua:69623 Serial 2273
Permanent link to this record
 

 
Author Peeters, F.M.; Croitoru, M.D.; Shanenko, A.A.
Title Nanowires and nanofilms: superconductivity in quantum-size regime Type A1 Journal article
Year 2008 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 468 Issue 4 Pages 326-330
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000254816500017 Publication Date 2007-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 3 Open Access
Notes Approved Most recent IF: 1.404; 2008 IF: 0.740
Call Number UA @ lucian @ c:irua:69621 Serial 2283
Permanent link to this record
 

 
Author Shanenko, A.A.; Vagov, A.; Peeters, F.M.; Aguiar, J.A.
Title Nanofilms as effectively multiband superconductors: Intraband-pairing approximation and Ginzburg-Landau theory Type A1 Journal article
Year 2014 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 455 Issue Pages 3-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract It is well-known that the Ginzburg-Landau (GL) theory is a reliable and powerful theoretical tool to investigate the magnetic response of a superconducting state. However, in its standard form, this approach is not applicable to atomically uniform nano-thin superconducting films which are effective multiband superconductors. Here we discuss a relevant generalization of the GL theory, focusing on the underlying intraband-pairing approximation. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000344239200002 Publication Date 2014-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.386 Times cited 1 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-VI), and the Methusalem program. A.A.S. acknowledges the support of the Brazilian agencies CNPq and FACEPE (APQ-0589-1.05/08). ; Approved Most recent IF: 1.386; 2014 IF: 1.319
Call Number UA @ lucian @ c:irua:121192 Serial 2256
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M.
Title Superconducting nanowires : new type of BCS-BEC crossover driven by quantum-size effects Type P1 Proceeding
Year 2011 Publication Abbreviated Journal
Volume Issue Pages 119-127
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We show that a superconducting quantum nanowire undergoes a new type of BCS-BEC crossover each time when an electron subband approaches the Fermi surface. In this case the longitudinal Cooper-pair size drops by two-three orders of magnitude down to a few nanometers. This unconventional BCS-BEC crossover is driven by quantum-size effects rather than by tuning the fermion-fermion interaction.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Dordrecht Editor
Language Wos 000289872900009 Publication Date 2010-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1874-6500;1874-6535; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the ESF-network: INSTANS. M.D.C. acknowledges support from the Alexander von Humboldt Foundation. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:89946 Serial 3359
Permanent link to this record
 

 
Author Shanenko, A.A.; Smondyrev, M.A.; Devreese, J.T.
Title Stabilisation of bipolarons by polaron environment Type A1 Journal article
Year 1996 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 98 Issue Pages 1091
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1996UT02900012 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 11 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:16186 Serial 3115
Permanent link to this record
 

 
Author Smondyrev, M.A.; Shanenko, A.A.; Devreese, J.T.
Title Stability criterion for large bipolarons in a polaron-gas background Type A1 Journal article
Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 63 Issue Pages 024302,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited Open Access
Notes Approved Most recent IF: 3.836; 2001 IF: NA
Call Number UA @ lucian @ c:irua:34310 Serial 3122
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Superconductivity in the quantum-size regime Type P1 Proceeding
Year 2008 Publication Abbreviated Journal
Volume Issue Pages 79-103
Keywords P1 Proceeding; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract Recent technological advances resulted in high-quality superconducting metallic nanofilms and nanowires. The physical properties of such nanostructures are governed by the size-quantization of the transverse electron spectrum. This has a substantial impact on the basic superconducting characteristics, e.g., the order parameter, the critical temperature and the critical magnetic field. In the present paper we give an overview of our theoretical results on this subject. Based on a numerical self-consistent solution of the Bogoliubov-de Gennes equations, we investigate how the superconducting properties are modified in the quantum-size regime.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4020-9144-5 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:75944 Serial 3374
Permanent link to this record