|   | 
Details
   web
Records
Author Muguerra, H.; Pescheux, A.-C.; Meledin, A.; Van Tendeloo, G.; Soubeyroux, J.-L.
Title A La2−xGdxZr2O7layer deposited by chemical solution: a promising seed layer for the fabrication of high Jcand low cost coated conductors Type A1 Journal article
Year 2015 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 3 Issue 3 Pages 11766-11772
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We deposited La2-xGdxZr2O7 seed layers by a chemical solution method on a Ni-5%W substrate to study the influence of these layers on the growth process of a 60 nm-thick La2Zr2O7 layer. We measured the performances of these new buffer layers integrated in a coated conductor with a 300 nm-thick Y0.5Gd0.5Ba2Cu3O7-x layer. For the seed layers{,} we considered two different gadolinium contents (x = 0.2 and x = 0.8) and three different thicknesses for these compositions (20 nm{,} 40 nm{,} and 60 nm). The most promising buffer layer stacks are those with 20 nm of the La1.8Gd0.2Zr2O7 layer or La1.2Gd0.8Zr2O7. Indeed the La2-xGdxZr2O7/La2Zr2O7 films are highly textured{,} similar to a 100 nm-thick La2Zr2O7 layer{,} but their roughness is four times lower. Moreover they contain less and smaller pores in the seed layer than a pure La2Zr2O7 layer. The surface of La2Zr2O7 is also homogenous and crystalline with an orientation deviation from the ideal ?011? (100) direction below 10[degree]. With the 20 nm La2-xGdxZr2O7 seed layers we obtain in the coated conductors an efficiently textured transfer with no gradual degradation from the substrate throughout the superconducting layer. The highest Tc and Jc values are achieved with the La1.8Gd0.2Zr2O7 layer and are{,} respectively{,} 91 K and 1.4 MA cm-2. This trend seems to be due to an improvement of the surface quality of the Ni5%W substrate by the addition of a thin seed layer. Our results offer the potential of the La2-xGdxZr2O7 seed layers as promising alternatives for the classic Ni-5%W/LZO/CeO2/YBCO architectures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364826000024 Publication Date 2015-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 4 Open Access
Notes This work was performed within the framework of the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no. 280438), funded by the European Union. The authors also thank L. Porcar and P. Chometon for superconducting transition temperature and critical current density measurements and P. Odier for fruitful discussion. Approved Most recent IF: 5.256; 2015 IF: 4.696
Call Number c:irua:130181 Serial 3968
Permanent link to this record
 

 
Author Neubert, S.; Mitoraj, D.; Shevlin, S.A.; Pulisova, P.; Heimann, M.; Du, Y.; Goh, G.K.L.; Pacia, M.; Kruczała, K.; Turner, S.; Macyk, W.; Guo, Z.X.; Hocking, R.K.; Beranek, R.;
Title Highly efficient rutile TiO2 photocatalysts with single Cu(II) and Fe(III) surface catalytic sites Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 4 Pages 3127-3138
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Highly active photocatalysts were obtained by impregnation of nanocrystalline rutile TiO2 powders with small amounts of Cu(II) and Fe(III) ions, resulting in the enhancement of initial rates of photocatalytic degradation of 4-chlorophenol in water by factors of 7 and 4, compared to pristine rutile, respectively. Detailed structural analysis by EPR and X-ray absorption spectroscopy (EXAFS) revealed that Cu(II) and Fe(III) are present as single species on the rutile surface. The mechanism of the photoactivity enhancement was elucidated by a combination of DFT calculations and detailed experimental mechanistic studies including photoluminescence measurements, photocatalytic experiments using scavengers, OH radical detection, and photopotential transient measurements. The results demonstrate that the single Cu(II) and Fe(III) ions act as effective cocatalytic sites, enhancing the charge separation, catalyzing “dark” redox reactions at the interface, thus improving the normally very low quantum yields of UV light-activated TiO2 photocatalysts. The exact mechanism of the photoactivity enhancement differs depending on the nature of the cocatalyst. Cu(II)-decorated samples exhibit fast transfer of photogenerated electrons to Cu(II/I) sites, followed by enhanced catalysis of dioxygen reduction, resulting in improved charge separation and higher photocatalytic degradation rates. At Fe(III)-modified rutile the rate of dioxygen reduction is not improved and the photocatalytic enhancement is attributed to higher production of highly oxidizing hydroxyl radicals produced by alternative oxygen reduction pathways opened by the presence of catalytic Fe(III/II) sites. Importantly, it was demonstrated that excessive heat treatment (at 450 degrees C) of photocatalysts leads to loss of activity due to migration of Cu(II) and Fe(III) ions from TiO2 surface to the bulk, accompanied by formation of oxygen vacancies. The demonstrated variety of mechanisms of photoactivity enhancement at single site catalyst-modified photocatalysts holds promise for developing further tailored photocatalysts for various applications.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000371077300040 Publication Date 2015-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 44 Open Access
Notes Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:132322 Serial 4191
Permanent link to this record
 

 
Author Lander, L.; Rousse, G.; Abakumov, A.M.; Sougrati, M.; Van Tendeloo, G.; Tarascon, J.-M.
Title Structural, electrochemical and magnetic properties of a novel KFeSO4F polymorph Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 19754-19764
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In the quest for sustainable and low-cost positive electrode materials for Li-ion batteries, we discovered, as reported herein, a new low temperature polymorph of KFeSO4F. Contrary to the high temperature phase crystallizing in a KTiOPO4-like structure, this new phase adopts a complex layer-like structure built on FeO4F2 octahedra and SO4 tetrahedra, with potassium cations located in between the layers, as solved using neutron and synchrotron diffraction experiments coupled with electron diffraction. The detailed analysis of the structure reveals an alternation of edge-and corner-shared FeO4F2 octahedra leading to a large monoclinic cell of 1771.774(7) angstrom(3). The potassium atoms are mobile within the structure as deduced by ionic conductivity measurements and confirmed by the bond valence energy landscape approach thus enabling a partial electrochemical removal of K+ and uptake of Li+ at an average potential of 3.7 V vs. Li+/Li-0. Finally, neutron diffraction experiments coupled with SQUID measurements reveal a long range antiferromagnetic ordering of the Fe2+ magnetic moments below 22 K with a possible magnetoelectric behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000362041300018 Publication Date 2015-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 11 Open Access
Notes Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number UA @ lucian @ c:irua:132566 Serial 4253
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Custers, K.; Kerkhofs, S.; Van Tendeloo, G.; Martens, J.A.
Title Hematite iron oxide nanorod patterning inside COK-12 mesochannels as an efficient visible light photocatalyst Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 19884-19891
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The uniform dispersion of functional oxide nanoparticles on the walls of ordered mesoporous silica to tailor optical, electronic, and magnetic properties for biomedical and environmental applications is a scientific challenge. Here, we demonstrate homogeneous confined growth of 5 nanometer-sized hematite iron oxide (α-Fe2O3) inside mesochannels of ordered mesoporous COK-12 nanoplates. The three-dimensional inclusion of the α-Fe2O3 nanorods in COK-12 particles is studied using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray (EDX) spectroscopy and electron tomography. High resolution imaging and EDX spectroscopy provide information about the particle size, shape and crystal phase of the loaded α-Fe2O3 material, while electron tomography provides detailed information on the spreading of the nanorods throughout the COK-12 host. This nanocomposite material, having a semiconductor band gap energy of 2.40 eV according to diffuse reflectance spectroscopy, demonstrates an improved visible light photocatalytic degradation activity with rhodamine 6G and 1-adamantanol model compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362041300033 Publication Date 2015-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 9 Open Access
Notes L.H.W. and S.T. thank the FWO-Vlaanderen for a postdoctoral research fellowship (12M1415N) and under contract number G004613N . J.A.M gratefully acknowledge financial supports from Flemish Government (Long-term structural funding-Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:132567 Serial 3959
Permanent link to this record
 

 
Author Zalfani, M.; van der Schueren, B.; Hu, Z.-Y.; Rooke, J.C.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Su, B.-L.
Title Novel 3DOM BiVO4/TiO2nanocomposites for highly enhanced photocatalytic activity Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 21244-21256
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Novel 3DOM BiVO4/TiO2 nanocomposites with intimate contact were for the first time synthesized by a hydrothermal method in order to elucidate their visible-light-driven photocatalytic performances. BiVO4 nanoparticles and 3DOM TiO2 inverse opal were fabricated respectively. These materials were characterized by XRD, XPS, SEM, TEM, N2 adsorption–desorption and UV-vis diffuse (UV-vis) and photoluminescence spectroscopies. As references for comparison, a physical mixture of BiVO4 nanoparticles and 3DOM TiO2 inverse opal powder (0.08 : 1), and a BiVO4/P25 TiO2 (0.08 : 1) nanocomposite made also by the hydrothermal method were prepared. The photocatalytic performance of all the prepared materials was evaluated by the degradation of rhodamine B (RhB) as a model pollutant molecule under visible light irradiation. The highly ordered 3D macroporous inverse opal structure can provide more active surface areas and increased mass transfer because of its highly accessible 3D porosity. The results show that 3DOM BiVO4/TiO2 nanocomposites possess a highly prolonged lifetime and increased separation of visible light generated charges and extraordinarily high photocatalytic activity. Owing to the intimate contact between BiVO4 and large surface area 3DOM TiO2, the photogenerated high energy charges can be easily transferred from BiVO4 to the 3DOM TiO2 support. BiVO4 nanoparticles in the 3DOM TiO2 inverse opal structure act thus as a sensitizer to absorb visible light and to transfer efficiently high energy electrons to TiO2 to ensure long lifetime of the photogenerated charges and keep them well separated, owing to the direct band gap of BiVO4 of 2.4 eV, favourably positioned band edges, very low recombination rate of electron–hole pairs and stability when coupled with photocatalysts, explaining the extraordinarily high photocatalytic performance of 3DOM BiVO4/TiO2 nanocomposites. It is found that larger the amount of BiVO4 in the nanocomposite, longer the duration of photogenerated charge separation and higher the photocatalytic activity. This work can shed light on the development of novel visible light responsive nanomaterials for efficient solar energy utilisation by the intimate combination of an inorganic light sensitizing nanoparticle with an inverse opal structure with high diffusion efficiency and high accessible surface area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363163200049 Publication Date 2015-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 88 Open Access
Notes This work was realized with the financial support of the Belgian FNRS (Fonds National de la Recherche Scientifique). This research used resources of the Electron Microscopy Service located at the University of Namur. This Service is a member of the “Plateforme Technologique Morphologie – Imagerie”. The XPS analyses were made in the LISE, Department of Physics of the University of Namur thanks to Dr P. Louette. This work was also supported by Changjiang Scholars and the Innovative Research Team (IRT1169) of the Ministry of Education of the People's Republic of China. B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Membership at the Clare Hall and the financial support of the Department of Chemistry, University of Cambridge. G. Van Tendeloo and Z. Y. Hu acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483).; esteem2_jra4 Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:129476 c:irua:129476 Serial 3951
Permanent link to this record
 

 
Author De Jong, M.; Sleegers, N.; Kim, J.; Van Durme, F.; Samyn, N.; Wang, J.; De Wael, K.
Title Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders Type A1 Journal article
Year 2016 Publication Chemical science Abbreviated Journal Chem Sci
Volume Issue Pages 1-7
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract We report on a wearable fingertip sensor for on-the-spot identification of cocaine and its cutting agents in street samples. Traditionally, on-site screening is performed by means of colour tests which are difficult to interpret and lack selectivity. By presenting the distinct voltammetric response of cocaine, cutting agents, binary mixtures of cocaine and street samples in solution and powder street samples, we were able to elucidate the electrochemical fingerprint of all these compounds. The new electrochemical concept holds considerable promise as an on-site screening method.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371021900094 Publication Date 2016-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 37 Open Access
Notes ; The authors acknowledge BELSPO for funding the APTADRU project (BR/314/PI/ APTADRU). ; Approved Most recent IF: 8.668
Call Number UA @ admin @ c:irua:130404 Serial 5591
Permanent link to this record
 

 
Author Van der Paal, J.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A.
Title Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress Type A1 Journal article
Year 2016 Publication Chemical science Abbreviated Journal Chem Sci
Volume 7 Issue 7 Pages 489-498
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We performed molecular dynamics simulations to investigate the effect of lipid peroxidation products on the structural and dynamic properties of the cell membrane. Our simulations predict that the lipid order in a phospholipid bilayer, as a model system for the cell membrane, decreases upon addition of lipid peroxidation products. Eventually, when all phospholipids are oxidized, pore formation can occur. This will allow reactive species, such as reactive oxygen and nitrogen species (RONS), to enter the cell and cause oxidative damage to intracellular macromolecules, such as DNA or proteins. On the other hand, upon increasing the cholesterol fraction of lipid bilayers, the cell membrane order increases, eventually reaching a certain threshold, from which cholesterol is able to protect the membrane against pore formation. This finding is crucial for cancer treatment by plasma technology, producing a large number of RONS, as well as for other cancer treatment methods that cause an increase in the concentration of extracellular RONS. Indeed, cancer cells contain less cholesterol than their healthy counterparts. Thus, they will be more vulnerable to the consequences of lipid peroxidation, eventually enabling the penetration of RONS into the interior of the cell, giving rise to oxidative stress, inducing pro-apoptotic factors. This provides, for the first time, molecular level insight why plasma can selectively treat cancer cells, while leaving their healthy counterparts undamaged, as is indeed experimentally demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366826900058 Publication Date 2015-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 106 Open Access
Notes The authors acknowledge nancial support from the Fund for Scientic Research (FWO) Flanders, grant number G012413N. The calculations were performed in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 8.668
Call Number c:irua:131058 Serial 3986
Permanent link to this record
 

 
Author Snoeckx, R.; Zeng, Y.X.; Tu, X.; Bogaerts, A.
Title Plasma-based dry reforming : improving the conversion and energy efficiency in a dielectric barrier discharge Type A1 Journal article
Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 5 Issue 5 Pages 29799-29808
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Dry reforming of methane has gained significant interest over the years. A novel reforming technique with great potential is plasma technology. One of its drawbacks, however, is energy consumption. Therefore, we performed an extensive computational study, supported by experiments, aiming to identify the influence of the operating parameters (gas mixture, power, residence time and frequency) of a dielectric barrier discharge plasma on the conversion and energy efficiency, and to investigate which of these parameters lead to the most promising results and whether these are eventually sufficient for industrial implementation. The best results, in terms of both energy efficiency and conversion, are obtained at a specific energy input (SEI) of 100 J cm−3, a 1090 CH4CO2 ratio, 10 Hz, a residence time of 1 ms, resulting in a total conversion of 84% and an energy efficiency of 8.5%. In general, increasing the CO2 content in the gas mixture leads to a higher conversion and energy efficiency. The SEI couples the effect of the power and residence time, and increasing the SEI always results in a higher conversion, but somewhat lower energy efficiencies. The effect of the frequency is more complicated: we observed that the product of frequency (f) and residence time (τ), being a measure for the total number of micro-discharge filaments which the gas molecules experience when passing through the reactor, was critical. For most cases, a higher number of filaments yields higher values for conversion and energy efficiency. To benchmark our model predictions, we also give an overview of measured conversions and energy efficiencies reported in the literature, to indicate the potential for improvement compared to the state-of-the art. Finally, we identify the limitations as well as the benefits and future possibilities of plasma technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352789500026 Publication Date 2015-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 67 Open Access
Notes Approved Most recent IF: 3.108; 2015 IF: 3.840
Call Number c:irua:132577 Serial 2629
Permanent link to this record
 

 
Author Turner, S.; Idrissi, H.; Sartori, A.F.; Korneychuck, S.; Lu, Y.-G.; Verbeeck, J.; Schreck, M.; Van Tendeloo, G.
Title Direct imaging of boron segregation at dislocations in B:diamond heteroepitaxial films Type A1 Journal article
Year 2016 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 8 Issue 8 Pages 2212-2218
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A thin film of heavily B-doped diamond has been grown epitaxially by microwave plasma chemical vapor deposition on an undoped diamond layer, on top of a Ir/YSZ/Si(001) substrate stack, to study the boron segregation and boron environment at the dislocations present in the film. The density and nature of the dislocations were investigated by conventional and weak-beam dark-field transmission electron microscopy techniques, revealing the presence of two types of dislocations: edge and mixed-type 45 degrees dislocations. The presence and distribution of B in the sample was studied using annular dark-field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy. Using these techniques, a segregation of B at the dislocations in the film is evidenced, which is shown to be intermittent along the dislocation. A single edge-type dislocation was selected to study the distribution of the boron surrounding the dislocation core. By imaging this defect at atomic resolution, the boron is revealed to segregate towards the tensile strain field surrounding the edge-type dislocations. An investigation of the fine structure of the B-K edge at the dislocation core shows that the boron is partially substitutionally incorporated into the diamond lattice and partially present in a lower coordination (sp(2)-like hybridization).
Address EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. stuart.turner@uantwerpen.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000368860900053 Publication Date 2015-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 15 Open Access
Notes S. T. acknowledges the fund for scien tific research Flanders (FWO) for a post-doctoral scholarship and under contract number G.0044.13N Approved Most recent IF: 7.367
Call Number c:irua:131597UA @ admin @ c:irua:131597 Serial 4121
Permanent link to this record
 

 
Author Zanaga, D.; Bleichrodt, F.; Altantzis, T.; Winckelmans, N.; Palenstijn, W.J.; Sijbers, J.; de Nijs, B.; van Huis, M.A.; Sanchez-Iglesias, A.; Liz-Marzan, L.M.; van Blaaderen, A.; Joost Batenburg, K.; Bals, S.; Van Tendeloo, G.
Title Quantitative 3D analysis of huge nanoparticle assemblies Type A1 Journal article
Year 2016 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 8 Issue 8 Pages 292-299
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
Abstract Nanoparticle assemblies can be investigated in 3 dimensions using electron tomography. However, it is not straightforward to obtain quantitative information such as the number of particles or their relative position. This becomes particularly difficult when the number of particles increases. We propose a novel approach in which prior information on the shape of the individual particles is exploited. It improves the quality of the reconstruction of these complex assemblies significantly. Moreover, this quantitative Sparse Sphere Reconstruction approach yields directly the number of particles and their position as an output of the reconstruction technique, enabling a detailed 3D analysis of assemblies with as many as 10 000 particles. The approach can also be used to reconstruct objects based on a very limited number of projections, which opens up possibilities to investigate beam sensitive assemblies where previous reconstructions with the available electron tomography techniques failed.
Address EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. sara.bals@uantwerpen.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000366911700028 Publication Date 2015-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 34 Open Access OpenAccess
Notes The authors acknowledge financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS, ERC Advanced Grant # 291667 HierarSACol and ERC Advanced Grant 267867 – PLASMAQUO), the European Union under the FP7 (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI and N. 312483 ESTEEM2), and from the Netherlands Organisation for Scientific Research (NWO), project number 639.072.005 and NWO CW 700.57.026. Networking support was provided by COST Action MP1207.; esteem2jra4; ECASSara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367
Call Number c:irua:131062 c:irua:131062 Serial 3979
Permanent link to this record
 

 
Author Egoavil, R.; Huehn, S.; Jungbauer, M.; Gauquelin, N.; Béché, A.; Van Tendeloo, G.; Verbeeck; Moshnyaga, V.
Title Phase problem in the B-site ordering of La2CoMnO6 : impact on structure and magnetism Type A1 Journal article
Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 7 Issue 7 Pages 9835-9843
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Epitaxial double perovskite La2CoMnO6 (LCMO) films were grown by metalorganic aerosol deposition on SrTiO3(111) substrates. A high Curie temperature, T-C = 226 K, and large magnetization close to saturation, M-S(5 K) = 5.8 mu(B)/f.u., indicate a 97% degree of B-site (Co,Mn) ordering within the film. The Co/Mn ordering was directly imaged at the atomic scale by scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDX). Local electron-energy-loss spectroscopy (EELS) measurements reveal that the B-sites are predominantly occupied by Co2+ and Mn4+ ions in quantitative agreement with magnetic data. Relatively small values of the (1/2 1/2 1/2) superstructure peak intensity, obtained by X-ray diffraction (XRD), point out the existence of ordered domains with an arbitrary phase relationship across the domain boundary. The size of these domains is estimated to be in the range 35-170 nm according to TEM observations and modelling the magnetization data. These observations provide important information towards the complexity of the cation ordering phenomenon and its implications on magnetism in double perovskites, and similar materials.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000354983100060 Publication Date 2015-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 37 Open Access
Notes 312483 ESTEEM2; FWO G004413N; 246102 IFOX; Hercules; esteem2_jra3 Approved Most recent IF: 7.367; 2015 IF: 7.394
Call Number c:irua:126423 c:irua:126423 Serial 2586
Permanent link to this record
 

 
Author La Porta, A.; Sanchez-Iglesias, A.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzan, L.M.
Title Multifunctional self-assembled composite colloids and their application to SERS detection Type A1 Journal article
Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 7 Issue 7 Pages 10377-10381
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We present a simple method for the co-encapsulation of gold nanostars and iron-oxide nanoparticles into hybrid colloidal composites that are highly responsive to both light and external magnetic fields. Self-assembly was driven by hydrophobic interactions between polystyrene capped gold nanostars and iron oxide nanocrystals stabilized with oleic acid, upon addition of water. A block copolymer was then used to encapsulate the resulting spherical colloidal particle clusters, which thereby became hydrophilic. Electron microscopy analysis unequivocally shows that each composite particle comprises a single Au nanostar surrounded by a few hundreds of iron oxide nanocrystals. We demonstrate that this hybrid colloidal system can be used as an efficient substrate for surface enhanced Raman scattering, using common dyes as model molecular probes. The co-encapsulation of iron oxide nanoparticles renders the system magnetically responsive, so that application of an external magnetic field leads to particle accumulation and limits of detection are in the nM range.
Address A1 Article; Electron microscopy for materials research (EMAT);
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000355987300010 Publication Date 2015-04-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 51 Open Access OpenAccess
Notes 267867 Plasmaquo; 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2015 IF: 7.394
Call Number c:irua:127003 Serial 3940
Permanent link to this record
 

 
Author Yuan, R.; Claes, N.; Verheyen, E.; Tuel, A.; Bals, S.; Breynaert, E.; Martens, J.; Kirschhock, C.E.A.
Title Synthesis of IWW-type germanosilicate zeolite using 5-azonia-spiro[4, 4]nonane as structure directing agent Type A1 Journal article
Year 2016 Publication New journal of chemistry Abbreviated Journal New J Chem
Volume 40 Issue 40 Pages 4319-4324
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract IWW-type zeolite with Si/Ge of 4.9 is obtained using 5-azonia-spiro[4,4]nonane as template in fluoride-free medium under hydrothermal conditions at 175 °C. In an otherwise identical synthesis, using the related 5-azonia-spiro[4,5]decane as structure directing agent, a mixture of IWW and NON zeolite types was formed. In absence of GeO2 from the reactant mixture, pure NON formed. The IWW zeolite was characterized by XRD, SEM, and HRTEM. IWW zeolite displayed a unique morphology and could be calcined at 600 °C without loss of crystallinity. The Si/Ge ratio of the IWW zeolite was increased by postsynthesis modification. Part of the germanium could be eliminated from the as-synthesized IWW zeolite by acid leaching using 6 M HCl solution. Also the calcined material could be degermanated. Here the presence of a silicon source in the acidic leaching solution minimized structural damage. This way the Si/Ge ratio of the IWW zeolite was increased from 4.9 up to 10.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375586400038 Publication Date 2016-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.269 Times cited 8 Open Access OpenAccess
Notes The authors acknowledge FWO/NWO and ESRF for providing beam time at the DUBBLE and SNBL beamlines (ESRF, Grenoble) and P. Abdala for her assistance during the use of the beamline. The authors are grateful to L. Van Tendeloo for taking SEM images. I. Cuppens and K. Houthoofd are thanked for the ICP and AAS measurements. R.Y. acknowledges Chinese Scholarship Council for a CSC doctoral fellowship. JAM and CEAK acknowledge the Flemish government for long-term structural funding (Methusalem). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 3.269
Call Number c:irua:133671 Serial 4027
Permanent link to this record
 

 
Author Aghaei, M.; Bogaerts, A.
Title Particle transport through an inductively coupled plasma torch: elemental droplet evaporation Type A1 Journal article
Year 2016 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 31 Issue 31 Pages 631-641
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We studied the transport of copper droplets through an inductively coupled plasma, connected to the sampling cone of a mass spectrometer, by means of a computational model. The sample droplets are followed until they become evaporated. They are inserted as liquid particles from the central inlet and the effects of injection position (i.e. “on” and “off” axis), droplet diameter, as well as mass loading flow rate are investigated. It is shown that more “on-axis” injection of the droplets leads to a more straight path line, so that the droplets move less in the radial direction and are evaporated more on the central axis, enabling a better sample transfer efficiency to the sampler cone. Furthermore, there are optimum ranges of diameters and flow rates, which guarantee the proper position of evaporation along the torch, i.e. not too early, so that the sample can get lost in the torch, and not too late, which reduces the chance of becoming ionized before reaching the sampler.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372857300003 Publication Date 2015-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 21 Open Access
Notes The authors are very grateful to H. Lindner for the many fundamental and fruitful discussions. They are also gratefully acknowledge nancial support from the Fonds voor Wetenschappelijk Onderzoek (FWO). Approved Most recent IF: 3.379
Call Number c:irua:133240 Serial 4024
Permanent link to this record
 

 
Author Bogaerts, A.; Kozak, T.; van Laer, K.; Snoeckx, R.
Title Plasma-based conversion of CO2: current status and future challenges Type A1 Journal article
Year 2015 Publication Faraday discussions Abbreviated Journal Faraday Discuss
Volume 183 Issue 183 Pages 217-232
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper discusses our recent results on plasma-based CO2 conversion, obtained by a combination of experiments and modeling, for a dielectric barrier discharge (DBD), a microwave plasma and a packed bed DBD reactor. The results illustrate that plasma technology is quite promising for CO2 conversion, but more research is needed to better understand the underlying mechanisms and to further improve the capabilities.
Address Research Group PLASMANT, University of Antwerp, Department of Chemistry, Universiteitsplein 1, Antwerp, Belgium. annemie.bogaerts@uantwerpen.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000365914900013 Publication Date 2015-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.588 Times cited 89 Open Access
Notes We thank R. Aerts and W. van Gaens for setting up the experimental systems and for the interesting results obtained during their PhD study in our group. We also acknowledge nancial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO), the Fund for Scientic Research Flanders (FWO) and the EU-FP7-ITN network “RAPID”. Approved Most recent IF: 3.588; 2015 IF: 4.606
Call Number c:irua:130318 Serial 3983
Permanent link to this record
 

 
Author Snoeckx, R.; Heijkers, S.; Van Wesenbeeck, K.; Lenaerts, S.; Bogaerts, A.
Title CO2conversion in a dielectric barrier discharge plasma: N2in the mix as a helping hand or problematic impurity? Type A1 Journal article
Year 2016 Publication Energy & environmental science Abbreviated Journal Energ Environ Sci
Volume 9 Issue 9 Pages 999-1011
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Carbon dioxide conversion and utilization has gained significant interest over the years. A novel gas conversion technique with great potential in this area is plasma technology. A lot of research has already been performed, but mostly on pure gases. In reality, N2 will always be an important impurity in effluent

gases. Therefore, we performed an extensive combined experimental and computational study on the effect of N2 in the range of 1–98% on CO2 splitting in dielectric barrier discharge (DBD) plasma. The presence of up to 50% N2 in the mixture barely influences the effective (or overall) CO2 conversion and energy efficiency, because the N2 metastable molecules enhance the absolute CO2 conversion, and this compensates for the lower CO2 fraction in the mixture. Higher N2 fractions, however, cause a drop in the CO2 conversion and energy efficiency. Moreover, in the entire CO2/N2 mixing ratio, several harmful compounds, i.e., N2O and NOx compounds, are produced in the range of several 100 ppm. The reaction pathways for the formation of these compounds are explained based on a kinetic analysis, which allows proposing solutions on how to prevent the formation of these harmful compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372243600030 Publication Date 2015-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.518 Times cited 68 Open Access
Notes The authors acknowledge financial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO), as well as the Fund for Scientific Research Flanders (FWO). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 29.518
Call Number c:irua:133169 Serial 4020
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Galvita, V.V.; Poelman, H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Bell, A.T.; Marin, G.B.
Title The role of hydrogen during Pt-Ga nanocatalyst formation Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 3234-3243
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hydrogen plays an essential role during the in situ assembly of tailored catalytic materials, and serves as key ingredient in multifarious chemical reactions promoted by these catalysts. Despite intensive debate for several decades, the existence and nature of hydrogen-involved mechanisms – such as hydrogen-spillover, surface migration – have not been unambiguously proven and elucidated up to date. Here, Pt-Ga alloy formation is used as a probe reaction to study the behavior and atomic transport of H and Ga, starting from Pt nanoparticles on hydrotalcite-derived Mg(Ga)(Al)Ox supports. In situ XANES spectroscopy, time-resolved TAP kinetic experiments, HAADF-STEM imaging and EDX mapping are combined to probe Pt, Ga and H in a series of H2 reduction experiments up to 650 degrees C. Mg(Ga)(Al)Ox by itself dissociates hydrogen, but these dissociated hydrogen species do not induce significant reduction of Ga3+ cations in the support. Only in the presence of Pt, partial reduction of Ga3+ into Gadelta+ is observed, suggesting that different reaction mechanisms dominate for Pt- and Mg(Ga)(Al)Ox-dissociated hydrogen species. This partial reduction of Ga3+ is made possible by Pt-dissociated H species which spillover onto non-reducible Mg(Al)Ox or partially reducible Mg(Ga)(Al)Ox and undergo long-range transport over the support surface. Moderately mobile Gadelta+Ox migrates towards Pt clusters, where Gadelta+ is only fully reduced to Ga0 on condition of immediate stabilization inside Pt-Ga alloyed nanoparticles.
Address Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium. hilde.poelman@ugent.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369506000106 Publication Date 2016-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 10 Open Access
Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) in supplying financing of beam time at the DUBBLE beam line of the ESRF and travel costs and a postdoctoral fellowship for S.T. The authors acknowledge the assistance from D. Banerjee (XAS campaign 26-01-979) at DUBBLE. E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to V. Bliznuk for acquisition of the TEM images. Approved Most recent IF: 4.123
Call Number c:irua:132315 Serial 4000
Permanent link to this record
 

 
Author Ali, S.; Myasnichenko, V.S.; Neyts, E.C.
Title Size-dependent strain and surface energies of gold nanoclusters Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 792-800
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Gold nanocluster properties exhibit unique size-dependence. In this contribution, we employ reactive molecular dynamics simulations to calculate the size- and temperature-dependent surface energies, strain energies and atomic displacements for icosahedral, cuboctahedral, truncated octahedral and decahedral Au-nanoclusters. The calculations demonstrate that the surface energy decreases with increasing cluster size at 0 K but increases with size at higher temperatures. The calculated melting curves as a function of cluster size demonstrate the Gibbs-Thomson effect. Atomic displacements and strain are found to strongly depend on the cluster size and both are found to increase with increasing cluster size. These results are of importance for understanding the size-and temperature-dependent surface processes on gold nanoclusters.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000369480600017 Publication Date 2015-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 37 Open Access
Notes Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:131626 Serial 4243
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Horzum, S.; Torun, E.; Peeters, F.M.; Senger, R.T.
Title Nitrogenated, phosphorated and arsenicated monolayer holey graphenes Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 3144-3150
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by a recent experiment that reported the synthesis of a new 2D material nitrogenated holey graphene (C2N) [Mahmood et al., Nat. Commun., 2015, 6, 6486], the electronic, magnetic, and mechanical properties of nitrogenated (C2N), phosphorated (C2P) and arsenicated (C2As) monolayer holey graphene structures are investigated using first-principles calculations. Our total energy calculations indicate that, similar to the C2N monolayer, the formation of the other two holey structures are also energetically feasible. Calculated cohesive energies for each monolayer show a decreasing trend going from the C2N to C2As structure. Remarkably, all the holey monolayers considered are direct band gap semiconductors. Regarding the mechanical properties (in-plane stiffness and Poisson ratio), we find that C2N has the highest in-plane stiffness and the largest Poisson ratio among the three monolayers. In addition, our calculations reveal that for the C2N, C2P and C2As monolayers, creation of N and P defects changes the semiconducting behavior to a metallic ground state while the inclusion of double H impurities in all holey structures results in magnetic ground states. As an alternative to the experimentally synthesized C2N, C2P and C2As are mechanically stable and flexible semiconductors which are important for potential applications in optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000369506000095 Publication Date 2015-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 36 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:132313 Serial 4214
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Peeters, F.M.
Title Mechanical properties of monolayer sulphides : a comparative study between MoS2, HfS2 and TiS3 Type A1 Journal article
Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 17 Issue 17 Pages 27742-27749
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The in-plane stiffness (C), Poisson's ratio (nu), Young's modulus and ultimate strength (sigma) along two different crystallographic orientations are calculated for the single layer crystals: MoS2, HfS2 and TiS3 in 1H, 1T and monoclinic phases. We find that MoS2 and HfS2 have isotropic in-plane stiffnesses of 124.24 N m(-1) and 79.86 N m(-1), respectively. While for TiS3 the in-plane stiffness is highly anisotropic due to its monoclinic structure, with C-x = 83.33 N m(-1) and C-y = 133.56 N m(-1) (x and y are parallel to its longer and shorter in-plane lattice vectors.). HfS2 which is in the 1T phase has the smallest anisotropy in its ultimate strength, whereas TiS3 in the monoclinic phase has the largest. Along the armchair direction MoS2 has the largest sigma of 23.48 GPa, whereas along y TiS3 has the largest sigma of 18.32 GPa. We have further analyzed the band gap response of these materials under uniaxial tensile strain, and find that they exhibit different behavior. Along both armchair and zigzag directions, the band gap of MoS2 (HfS2) decreases (increases) as strain increases, and the response is almost isotropic. For TiS3, the band gap decreases when strain is along x, while if strain is along y, the band gap increases first and then decreases beyond a threshold strain value. The different characteristics observed in these sulphides with different structures shed light on the relationship between the structure and properties, which is useful for applications in nanotechnology.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000363193800055 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 83 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Super-computer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2015 IF: 4.493
Call Number UA @ lucian @ c:irua:129478 Serial 4204
Permanent link to this record
 

 
Author Çakir, D.; Peeters, F.M.
Title Fluorographane : a promising material for bipolar doping of MoS2 Type A1 Journal article
Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 17 Issue 17 Pages 27636-27641
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first principles calculations we investigate the structural and electronic properties of interfaces between fluorographane and MoS2. Unsymmetrical functionalization of graphene with H and F results in an intrinsic dipole moment perpendicular to the plane of the buckled graphene skeleton. Depending on the orientation of this dipole moment, the electronic properties of a physically absorbed MoS2 monolayer can be switched from n-to p-type or vice versa. We show that one can realize vanishing n-type/p-type Schottky barrier heights when contacting MoS2 to fluorographane. By applying a perpendicular electric field, the size of the Schottky barrier and the degree of doping can be tuned. Our calculations indicate that a fluorographane monolayer is a promising candidate for bipolar doping of MoS2, which is vital in the design of novel technological applications based on two-dimensional materials.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000363193800043 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 7 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 4.123; 2015 IF: 4.493
Call Number UA @ lucian @ c:irua:129477 Serial 4182
Permanent link to this record
 

 
Author Percebom, A.M.M.; Giner-casares, J.J.; Claes, N.; Bals, S.; Loh, W.; Liz-Marzan, L.M.
Title Janus Gold Nanoparticles Obtained via Spontaneous Binary Polymer Shell Segregation Type A1 Journal article
Year 2016 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 52 Issue 52 Pages 4278-4281
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Janus gold nanoparticles are of high interest because they allow directed self-assembly and display plasmonic properties. We succeeded in coating gold nanoparticles with two different polymers that form a Janus shell. The spontaneous segregation of two immiscible polymers at the surface of the nanoparticles was verified by NOESY NMR and most importantly by electron microscopy analysis in two and three dimensions. The Janus structure is additionally shown to affect the aggregation behavior of the nanoparticles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372176500003 Publication Date 2016-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 44 Open Access OpenAccess
Notes Funding is acknowledged from the European Research Council (ERC Advanced Grant #267867 Plasmaquo, and ERC Starting Grant #335078 Colouratom). A.M.P. thanks the Brazilian FAPESP for financial support (FAPESP 2012/21930-3 and 2014/01807-8) and J.J. G.-C. acknowledges the Spanish MINECO for a Juan de la Cierva fellowship (#JCI-2012-12517). We thank Ada Herrero Ruiz and Daniel Padró for help with NMR measurements, Malou Henriksen for cell experiments and the Brazilian Synchrotron Laboratory (LNLS) for allocation of SAXS beamtime.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 6.319
Call Number c:irua:133168 Serial 4009
Permanent link to this record
 

 
Author Deng, S.; Kurttepeli, M.; Cott, D.J.; Bals, S.; Detavernier, C.
Title Porous nanostructured metal oxides synthesized through atomic layer deposition on a carbonaceous template followed by calcination Type A1 Journal article
Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 3 Issue 3 Pages 2642-2649
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Porous metal oxides with nano-sized features attracted intensive interest in recent decades due to their high surface area which is essential for many applications, e.g. Li ion batteries, photocatalysts, fuel cells and dye-sensitized solar cells. Various approaches have so far been investigated to synthesize porous nanostructured metal oxides, including self-assembly and template-assisted synthesis. For the latter approach, forests of carbon nanotubes are considered as particularly promising templates, with respect to their one-dimensional nature and the resulting high surface area. In this work, we systematically investigate the formation of porous metal oxides (Al2O3, TiO2, V2O5 and ZnO) with different morphologies using atomic layer deposition on multi-walled carbon nanotubes followed by post-deposition calcination. X-ray diffraction, scanning electron microscopy accompanied by X-ray energy dispersive spectroscopy and transmission electron microscopy were used for the investigation of morphological and structural transitions at the micro- and nano-scale during the calcination process. The crystallization temperature and the surface coverage of the metal oxides and the oxidation temperature of the carbon nanotubes were found to produce significant influence on the final morphology.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000348990500019 Publication Date 2014-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 23 Open Access OpenAccess
Notes Fwo; 239865 Cocoon; 335078 Colouratoms; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.867; 2015 IF: 7.443
Call Number c:irua:125298 Serial 2673
Permanent link to this record
 

 
Author Lieberman, C.M.; Filatov, A.S.; Wei, Z.; Rogachev, A.Y.; Abakumov, A.M.; Dikarev, E.V.
Title Mixed-valent, heteroleptic homometallic diketonates as templates for the design of volatile heterometallic precursors Type A1 Journal article
Year 2015 Publication Chemical science Abbreviated Journal Chem Sci
Volume 6 Issue 6 Pages 2835-2842
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A novel series of mixed-valent, heteroleptic transition metal diketonates that can be utilized as prospective single-source precursors for the low-temperature preparation of oxide materials are reported. The first mixed-valent iron beta-diketonates with different Fe-III/Fe-II ratios have been synthesized by applying the mixed-ligand approach. Based on nearly quantitative reaction yields and analysis of iron-oxygen bonds, these compounds were formulated as [Fe-III(acac)(3)][Fe-II(hfac)(2)] (1) and [Fe-II(hfac)(2)][Fe-III(acac)(3)][Fe-II(hfac)(2)] (2). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated Fe-II centers chelated by two hfac (hexafluoroacetylacetonate) ligands with electron-withdrawing substituents maintain bridging interactions with oxygen atoms of electron-donating acac (acetylacetonate) groups that chelate the neighboring Fe-III atoms. Switching the ligands on Fe-III and Fe-II atoms in starting reagents resulted in the instant ligand exchange between iron centers and in yet another polynuclear homometallic diketonate [Fe-II(hfac)(2)][Fe-III(acac)(2)(hfac)][Fe-II(hfac)(2)] (3) that adheres to the same bonding pattern as in complexes 1 and 2. The proposed synthetic methodology has been extended to design heterometallic diketonates with different M : M' ratios. Homometallic parent molecules have been used as templates to obtain heterometallic mixed-valent [Fe-III(acac)(3)][Mn-II(hfac)(2)] (4) and [Ni-II(hfac)(2)] – [Fe-III(acac)(3)][Ni-II(hfac)(2)] (5) complexes. The combination of two different diketonate ligands with electron-donating and electron-withdrawing substituents was found to be crucial for maintaining the above mixed-valent heterometallic assemblies. Theoretical investigation of two possible “isomers”, [Fe-III(acac)(3)][Mn-II(hfac)(2)] (4) and [Mn-III(acac)(3)][Fe-II(hfac)(2)] (40) provided an additional support for the metal site assignment giving a preference of 9.78 kcal mol(-1) for the molecule 4. Heterometallic complexes obtained in the course of this study have been found to act as effective single-source precursors for the synthesis of mixed-transition metal oxide materials MxM2-xO3 and MxMi-xO. The title highly volatile precursors can be used for the low-temperature preparation of both amorphous and crystalline heterometallic oxides in the form of thin films or nanosized particles that are known to operate as efficient catalysts in oxygen evolution reaction.
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000353223100021 Publication Date 2015-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 13 Open Access
Notes Approved Most recent IF: 8.668; 2015 IF: 9.211
Call Number c:irua:126031 Serial 2092
Permanent link to this record
 

 
Author Lin, F.; Meng; Kukueva, E.; Mertens, M.; Van Doorslaer, S.; Bals, S.; Cool, P.
Title New insights into the mesophase transformation of ethane-bridged PMOs by the influence of different counterions under basic conditions Type A1 Journal article
Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 5 Issue 5 Pages 5553-5562
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract The counterions are of crucial importance in determining the mesostructure and morphology of ethanebridged PMO materials synthesized under basic conditions. By using CTABr as the surfactant, the final PMO materials show a 2-D hexagonal (p6mm) mesophase, while PMO materials with cubic (Pm (3) over barn ) mesostructure are obtained when CTACl or CTA(SO4)(1)/(2) are used. With gradually replacing CTABr by CTACl or CTA(SO4) (1)/(2) while keeping the total surfactant concentration constant, a clear p6mm to Pm (3) over barn 3n mesophase evolution process is observed. For a given gel composition, the mesophase of ethanebridged PMO materials can also be adjusted by the addition of different sodium salts. In short, the effect of the counterions on the mesophase can be attributed to the binding strength of the ions on the surfactant micelles, which follows the Hofmeister series (SO42- < Cl- < Br-< NO3- < SCN-). Furthermore, it is found that the hydrolysis and condensation rate of the organosilica precursor also plays an important role in the formation of the final mesostructure
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347304900010 Publication Date 2014-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 6 Open Access Not_Open_Access
Notes ; The Erasmus Mundus CONNEC program is acknowledged for PhD funding of F. L. Furthermore, the authors acknowledge support by the GOA-BOF project 'Optimization of the structureactivity relation in nanoporous materials', funded by the University of Antwerp. ; Approved Most recent IF: 3.108; 2015 IF: 3.840
Call Number c:irua:123768 Serial 2317
Permanent link to this record
 

 
Author Pospisilova, A.; Filippov, S.K.; Bogomolova, A.; Turner, S.; Sedlacek, O.; Matushkin, N.; Cernochova, Z.; Stepanek, P.; Hruby, M.
Title Glycogen-graft-poly(2-alkyl-2-oxazolines) – the new versatile biopolymer-based thermoresponsive macromolecular toolbox Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 106 Pages 61580-61588
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study is focused on thermoresponsive glycogen-graft-poly(2-alkyl-2-oxazolines), a new group of nanostructured hybrid dendrimeric stimuli-responsive polymers connecting the body's own biodegradable polysaccharidic dendrimer glycogen with the widely tuneable thermoresponsive behavior of polypeptide-analogic poly(2-alkyl-2-oxazolines), which are known to be biocompatible. Glycogen-graft-poly(2-alkyl-2-oxazolines) were prepared by a simple one-pot two-step procedure involving cationic ring-opening polymerization of 2-alkyl-2-oxazolines followed by termination of the living cationic ends with sodium glycogenate. As confirmed by light and X-ray scattering, as well as cryo-transmission electron microscopy, the grafted dendrimer structure allows easy adjustment of the cloud point temperature, the concentration dependence and nanostructure of the self-assembled phase separated polymer by crosstalk during graft composition, the graft length and the grafting density, in a very wide range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345656600045 Publication Date 2014-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 15 Open Access
Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:122222 Serial 1355
Permanent link to this record
 

 
Author Van Eynde, E.; Lenaerts, B.; Tytgat, T.; Verbruggen, S.W.; Hauchecorne, B.; Blust, R.; Lenaerts, S.
Title Effect of pretreatment and temperature on the properties of Pinnularia biosilica frustules Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue Pages 56200-56206
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Diatoms are unicellular microalgae that self-assemble an intricate porous silica cell wall, called frustule. Diatom frustules possess a unique combination of physical and chemical properties (chemical inertness, high mechanical strength, large surface area, low density, good porosity and highly ordered features on the nano-to-micro scale) making diatom frustules suited for many nanotechnological applications. For most proposed applications the organic material covering the frustules needs to be removed. In this paper we investigate the effect of different frustule cleaning methods (drying, autoclavation, SDS/EDTA treatment, H2O2 treatment and HNO3 treatment) and subsequent heat treatment at different temperatures (105 °C, 350 °C, 550 °C and 750 °C) on the material characteristics of the diatom Pinnularia sp. Material characteristics under study are morphology, surface area, pore size, elemental composition and organic content. The cleaned Pinnularia frustules are subsequently investigated as adsorbents to remove methylene blue (MB) from aqueous solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344997800060 Publication Date 2014-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 10 Open Access
Notes ; ; Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ admin @ c:irua:121377 Serial 5945
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D.
Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 94 Pages 52140-52146
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200-400 degrees C) is reported. The use of the fluorinated Fe(hfa)(2)TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine) molecular precursor in Ar/O-2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in gamma-Fe2O3 at 200 degrees C and alpha-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 degrees C the formation of highly oriented alpha-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344389000041 Publication Date 2014-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 4 Open Access
Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:121239 Serial 2813
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D.
Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
Year 2014 Publication Rsc Advances Abbreviated Journal Rsc Adv
Volume Issue 94 Pages 52140-52146
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200400 °C) is reported. The use of the fluorinated Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) molecular precursor in Ar/O2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in γ-Fe2O3 at 200 °C and α-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 °C the formation of highly oriented α-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344389000041 Publication Date 2014-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 4 Open Access
Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:119529 Serial 2814
Permanent link to this record
 

 
Author Kerkhofs, S.; Leroux, F.; Allouche, L.; Mellaerts, R.; Jammaer, J.; Aerts, A.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Martens, J.A.;
Title Single-step alcohol-free synthesis of coreshell nanoparticles of \gamma-casein micelles and silica Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 49 Pages 25650-25657
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new, single-step protocol for wrapping individual nanosized β-casein micelles with silica is presented. This biomolecule-friendly synthesis proceeds at low protein concentration at almost neutral pH, and makes use of sodium silicate instead of the common silicon alkoxides. This way, formation of potentially protein-denaturizing alcohols can be avoided. The pH of the citrate-buffered synthesis medium is close to the isoelectric point of β-casein, which favours micelle formation. A limited amount of sodium silicate is added to the protein micelle suspension, to form a thin silica coating around the β-casein micelles. The size distribution of the resulting proteinsilica structures was characterized using DLS and SAXS, as well as 1H NMR DOSY with a dedicated pulsed-field gradient cryo-probehead to cope with the low protein concentration. The degree of silica-condensation was investigated by 29Si MAS NMR, and the nanostructure was revealed by advanced electron microscopy techniques such as ESEM and HAADF-STEM. As indicated by the combined characterization results, a silica shell of 2 nm is formed around individual β-casein micelles giving rise to separate protein coresilica shell nanoparticles of 17 nm diameter. This alcohol-free method at mild temperature and pH is potentially suited for packing protein molecules into bio-compatible silica nanocapsules for a variety of applications in biosensing, therapeutic protein delivery and biocatalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000338434500025 Publication Date 2014-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 3 Open Access OpenAccess
Notes Fwo; 262348 Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:125382 Serial 3027
Permanent link to this record