|   | 
Details
   web
Records
Author Rezvani, S.J.; Perali, A.; Fretto, M.; De Leo, N.; Flammia, L.; Milošević, M.; Nannarone, S.; Pinto, N.
Title Substrate-induced proximity effect in superconducting niobium nanofilms Type A1 Journal article
Year 2018 Publication Condensed Matter Abbreviated Journal
Volume 4 Issue 1 Pages 4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Structural and superconducting properties of high-quality niobium nanofilms with different thicknesses are investigated on silicon oxide (SiO2) and sapphire substrates. The role played by the different substrates and the superconducting properties of the Nb films are discussed based on the defectivity of the films and on the presence of an interfacial oxide layer between the Nb film and the substrate. The X-ray absorption spectroscopy is employed to uncover the structure of the interfacial layer. We show that this interfacial layer leads to a strong proximity effect, especially in films deposited on a SiO2 substrate, altering the superconducting properties of the Nb films. Our results establish that the critical temperature is determined by an interplay between quantum-size effects, due to the reduction of the Nb film thicknesses, and proximity effects. The detailed investigation here provides reference characterizations and has direct and important implications for the fabrication of superconducting devices based on Nb nanofilms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000464289300001 Publication Date 2018-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes ; This project was financially supported by University of Camerino, FAR project CESEMN. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:159463 Serial 5233
Permanent link to this record
 

 
Author Conti, S.; Neilson, D.; Peeters, F.M.; Perali, A.
Title Transition metal dichalcogenides as strategy for high temperature electron-hole superfluidity Type A1 Journal article
Year 2020 Publication Condensed Matter Abbreviated Journal
Volume 5 Issue 1 Pages 22-12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Condensation of spatially indirect excitons, with the electrons and holes confined in two separate layers, has recently been observed in two different double layer heterostructures. High transition temperatures were reported in a double Transition Metal Dichalcogenide (TMD) monolayer system. We briefly review electron-hole double layer systems that have been proposed as candidates for this interesting phenomenon. We investigate the double TMD system WSe2/hBN/MoSe2, using a mean-field approach that includes multiband effects due to the spin-orbit coupling and self-consistent screening of the electron-hole Coulomb interaction. We demonstrate that the transition temperature observed in the double TMD monolayers, which is remarkably high relative to the other systems, is the result of (i) the large electron and hole effective masses in TMDs, (ii) the large TMD band gaps, and (iii) the presence of multiple superfluid condensates in the TMD system. The net effect is that the superfluidity is strong across a wide range of densities, which leads to high transition temperatures that extend as high as TBKT=150 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000523711200017 Publication Date 2020-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 13 Open Access
Notes ; This work was partially supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl), the Methusalem Foundation and the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:168658 Serial 6636
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D.
Title Effect of mismatched electron-hole effective masses on superfluidity in double layer solid-state systems Type A1 Journal article
Year 2021 Publication Condensed Matter Abbreviated Journal
Volume 6 Issue 2 Pages 14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superfluidity has been predicted and now observed in a number of different electron-hole double-layer semiconductor heterostructures. In some of the heterostructures, such as GaAs and Ge-Si electron-hole double quantum wells, there is a strong mismatch between the electron and hole effective masses. We systematically investigate the sensitivity to unequal masses of the superfluid properties and the self-consistent screening of the electron-hole pairing interaction. We find that the superfluid properties are insensitive to mass imbalance in the low density BEC regime of strongly-coupled boson-like electron-hole pairs. At higher densities, in the BEC-BCS crossover regime of fermionic pairs, we find that mass imbalance between electrons and holes weakens the superfluidity and expands the density range for the BEC-BCS crossover regime. This permits screening to kill the superfluid at a lower density than for equal masses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000665155800001 Publication Date 2021-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:179635 Serial 6982
Permanent link to this record
 

 
Author Schulenborg, J.; Di Marco, A.; Vanherck, J.; Wegewijs, M.R.; Splettstoesser, J.
Title Thermoelectrics of interacting nanosystems-exploiting superselection instead of time-reversal symmetry Type A1 Journal article
Year 2017 Publication Entropy: an international and interdisciplinary journal of entropy and information studies Abbreviated Journal Entropy-Switz
Volume 19 Issue 12 Pages 668
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Thermoelectric transport is traditionally analyzed using relations imposed by time-reversal symmetry, ranging from Onsager\u0027s results to fluctuation relations in counting statistics. In this paper, we show that a recently discovered duality relation for fermionic systems-deriving from the fundamental fermion-parity superselection principle of quantum many-particle systems-provides new insights into thermoelectric transport. Using a master equation, we analyze the stationary charge and heat currents through a weakly coupled, but strongly interacting single-level quantum dot subject to electrical and thermal bias. In linear transport, the fermion-parity duality shows that features of thermoelectric response coefficients are actually dominated by the average and fluctuations of the charge in a dual quantum dot system, governed by attractive instead of repulsive electron-electron interaction. In the nonlinear regime, the duality furthermore relates most transport coefficients to much better understood equilibrium quantities. Finally, we naturally identify the fermion-parity as the part of the Coulomb interaction relevant for both the linear and nonlinear Fourier heat. Altogether, our findings hence reveal that next to time-reversal, the duality imposes equally important symmetry restrictions on thermoelectric transport. As such, it is also expected to simplify computations and clarify the physical understanding for more complex systems than the simplest relevant interacting nanostructure model studied here.'));
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000419007900037 Publication Date 2017-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1099-4300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.821 Times cited 3 Open Access
Notes ; We thank Rafael Sanchez for useful comments on the manuscript. We acknowledge funding from the Knut and Alice Wallenberg foundation through their Academy Fellows program (J.Sp. and A.D.M.), from the Swedish VR (J.Sp. and J.Sc.), from the Erasmus Mundus program (J.V.), and from the DFG project SCHO 641/7-1 (M.R.W.). ; Approved Most recent IF: 1.821
Call Number UA @ lucian @ c:irua:148548 Serial 4900
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D.
Title Design of electroporation process in irregularly shaped multicellular systems Type A1 Journal article
Year 2019 Publication Electronics (Basel) Abbreviated Journal
Volume 8 Issue 1 Pages 37
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Electroporation technique is widely used in biotechnology and medicine for the transport of various molecules through the membranes of biological cells. Different mathematical models of electroporation have been proposed in the literature to study pore formation in plasma and nuclear membranes. These studies are mainly based on models using a single isolated cell with a canonical shape. In this work, a spacetime (x,y,t) multiphysics model based on quasi-static Maxwells equations and nonlinear Smoluchowskis equation has been developed to investigate the electroporation phenomenon induced by pulsed electric field in multicellular systems having irregularly shape. The dielectric dispersion of the cell compartments such as nuclear and plasmatic membranes, cytoplasm, nucleoplasm and external medium have been incorporated into the numerical algorithm, too. Moreover, the irregular cell shapes have been modeled by using the Gielis transformations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000457142800037 Publication Date 2019-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-9292 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:157203 Serial 7765
Permanent link to this record
 

 
Author Jorli, M.; Van Passel, S.; Sadeghi, H.; Nasseri, A.; Agheli, L.
Title Estimating human health impacts and costs due to Iranian fossil fuel power plant emissions through the impact pathway approach Type A1 Journal article
Year 2017 Publication Energies Abbreviated Journal Energies
Volume 10 Issue 12 Pages 2136-29
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Air pollutants from fossil fuel fired power plants harm the environment and human health. More than 91% of Irans electricity production is from thermal power plants that use natural gas, diesel, and fuel oil. We apply the impact pathway approach to estimate the health impacts arising from Iranian fossil-based electricity generation emission, and in a next step, we calculate monetary costs of the estimated damages, for a one-year period starting from 20 March 2016 through 2017. We use the new version of SIMPACTS (International Atomic Energy Agency, Vienna, Austria) to investigate the health effects from 61 major Iran fossil-based power plants separately. The selected plants represent 95.6% of total Iran fossil-based power generation. Using the individual and different power plant estimates, we avoid extrapolation and our results can be considered more reliable, taking into account spatial differences. The total damage cost is 723.42 million USD (2000). The damage cost per generated electricity varies from 0.06 to 22.41 USD/MWh and average plant damage cost is 2.85 USD/MWh. Accounting for these external costs indicates the actual costs of fossil energy. The results are useful for policy makers to compare the health costs from these plants and to decide on cleaner energy sources and to take measures to increase benefits for society.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000423156900207 Publication Date 2017-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1073 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.262 Times cited 4 Open Access
Notes ; ; Approved Most recent IF: 2.262
Call Number UA @ admin @ c:irua:149041 Serial 6200
Permanent link to this record
 

 
Author Shi, P.; Liu, M.; Yu, X.; Gielis, J.; Ratkowsky, D.A.
Title Proportional relationship between leaf area and the product of leaf length and width of four types of special leaf shapes Type A1 Journal article
Year 2019 Publication Forests (19994907) Abbreviated Journal
Volume 10 Issue 2 Pages 178
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The leaf area, as an important leaf functional trait, is thought to be related to leaf length and width. Our recent study showed that the Montgomery equation, which assumes that leaf area is proportional to the product of leaf length and width, applied to different leaf shapes, and the coefficient of proportionality (namely the Montgomery parameter) range from 1/2 to π/4. However, no relevant geometrical evidence has previously been provided to support the above findings. Here, four types of representative leaf shapes (the elliptical, sectorial, linear, and triangular shapes) were studied. We derived the range of the estimate of the Montgomery parameter for every type. For the elliptical and triangular leaf shapes, the estimates are π/4 and 1/2, respectively; for the linear leaf shape, especially for the plants of Poaceae that can be described by the simplified Gielis equation, the estimate ranges from 0.6795 to π/4; for the sectorial leaf shape, the estimate ranges from 1/2 to π/4. The estimates based on the observations of actual leaves support the above theoretical results. The results obtained here show that the coefficient of proportionality of leaf area versus the product of leaf length and width only varies in a small range, maintaining the allometric relationship for leaf area and thereby suggesting that the proportional relationship between leaf area and the product of leaf length and width broadly remains stable during leaf evolution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460744000102 Publication Date 2019-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1999-4907 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:157200 Serial 8427
Permanent link to this record
 

 
Author Chekol Zewdie, M.; Moretti, M.; Tenessa, D.B.; Ayele, Z.A.; Nyssen, J.; Tsegaye, E.A.; Minale, A.S.; Van Passel, S.
Title Agricultural technical efficiency of smallholder farmers in Ethiopia : a stochastic frontier approach Type A1 Journal article
Year 2021 Publication Land Abbreviated Journal
Volume 10 Issue 3 Pages 246
Keywords A1 Journal article; Engineering Management (ENM)
Abstract In the past decade, to improve crop production and productivity, Ethiopia has embarked on an ambitious irrigation farming expansion program and has introduced new large- and small-scale irrigation initiatives. However, in Ethiopia, poverty remains a challenge, and crop productivity per unit area of land is very low. Literature on the technical efficiency (TE) of large-scale and small-scale irrigation user farmers as compared to the non-user farmers in Ethiopia is also limited. Investigating smallholder farmers' TE level and its principal determinants is very important to increase crop production and productivity and to improve smallholder farmers' livelihood and food security. Using 1026 household-level cross-section data, this study adopts a technology flexible stochastic frontier approach to examine agricultural TE of large-scale irrigation users, small-scale irrigation users and non-user farmers in Ethiopia. The results indicate that, due to poor extension services and old-style agronomic practices, the mean TE of farmers is very low (44.33%), implying that there is a wider room for increasing crop production in the study areas through increasing the TE of smallholder farmers without additional investment in novel agricultural technologies. Results also show that large-scale irrigation user farmers (21.05%) are less technically efficient than small-scale irrigation user farmers (60.29%). However, improving irrigation infrastructure shifts the frontier up and has a positive impact on smallholder farmers' output.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000633846200001 Publication Date 2021-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-445x ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177647 Serial 6913
Permanent link to this record
 

 
Author Fitawok, M.B.; Derudder, B.; Minale, A.S.; Van Passel, S.; Adgo, E.; Nyssen, J.
Title Modeling the Impact of Urbanization on Land-Use Change in Bahir Dar City, Ethiopia: An Integrated Cellular Automata–Markov Chain Approach Type A1 Journal Article
Year 2020 Publication Land Abbreviated Journal Land
Volume 9 Issue 4 Pages 115
Keywords A1 Journal Article; analytical hierarchy process; cellular automata; land-use change; Markov chain; urbanization; Engineering Management (ENM) ;
Abstract The fast-paced urbanization of recent decades entails that many regions are facing seemingly uncontrolled land-use changes (LUCs) that go hand in hand with a range of environmental and socio-economic challenges. In this paper, we use an integrated cellular automata–Markov chain (CA–MC) model to analyze and predict the urban expansion of and its impact on LUC in the city of Bahir Dar, Ethiopia. To this end, the research marshals high-resolution Landsat images of 1991, 2002, 2011, and 2018. An analytical hierarchy process (AHP) method is then used to identify the biophysical and socioeconomic factors underlying the expansion in the research area. It is shown that, during the period of study, built-up areas are rapidly expanding in the face of an overall decline of the farmland and vegetation cover. Drawing on a model calibration for 2018, the research predicts the possible geographies of LUC in the Bahir Dar area for 2025, 2034, and 2045. It is predicted that the conversions of other land-use types into built-up areas will persist in the southern, southwestern, and northeastern areas of the sprawling city, which can mainly be traced back to the uneven geographies of road accessibility, proximity to the city center, and slope variables. We reflect on how our findings can be used to facilitate sustainable urban development and land-use policies in the Bahir Dar area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000533901100026 Publication Date 2020-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-445X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes The authors would like to thank the VLIR-UOS project for funding this research through Bahir Dar University—Institutional University Cooperation (BDU-IUC) program. Approved Most recent IF: NA
Call Number ENM @ enm @c:irua:169600 Serial 6381
Permanent link to this record
 

 
Author Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S.
Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
Year 2018 Publication Materials Abbreviated Journal Materials
Volume 11 Issue 11 Pages 1304
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444112800041 Publication Date 2018-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.654 Times cited 15 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654
Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
Title Ab-initio study of magnetically intercalated platinum diselenide : the impact of platinum vacancies Type A1 Journal article
Year 2021 Publication Materials Abbreviated Journal Materials
Volume 14 Issue 15 Pages 4167
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We study the magnetic properties of platinum diselenide (PtSe2) intercalated with Ti, V, Cr, and Mn, using first-principle density functional theory (DFT) calculations and Monte Carlo (MC) simulations. First, we present the equilibrium position of intercalants in PtSe2 obtained from the DFT calculations. Next, we present the magnetic groundstates for each of the intercalants in PtSe2 along with their critical temperature. We show that Ti intercalants result in an in-plane AFM and out-of-plane FM groundstate, whereas Mn intercalant results in in-plane FM and out-of-plane AFM. V intercalants result in an FM groundstate both in the in-plane and the out-of-plane direction, whereas Cr results in an AFM groundstate both in the in-plane and the out-of-plane direction. We find a critical temperature of <0.01 K, 111 K, 133 K, and 68 K for Ti, V, Cr, and Mn intercalants at a 7.5% intercalation, respectively. In the presence of Pt vacancies, we obtain critical temperatures of 63 K, 32 K, 221 K, and 45 K for Ti, V, Cr, and Mn-intercalated PtSe2, respectively. We show that Pt vacancies can change the magnetic groundstate as well as the critical temperature of intercalated PtSe2, suggesting that the magnetic groundstate in intercalated PtSe2 can be controlled via defect engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000682047700001 Publication Date 2021-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.654 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.654
Call Number UA @ admin @ c:irua:180540 Serial 6966
Permanent link to this record
 

 
Author Cotte, M.; Gonzalez, V.; Vanmeert, F.; Monico, L.; Dejoie, C.; Burghammer, M.; Huder, L.; de Nolf, W.; Fisher, S.; Fazlic, I.; Chauffeton, C.; Wallez, G.; Jimenez, N.; Albert-Tortosa, F.; Salvado, N.; Possenti, E.; Colombo, C.; Ghirardello, M.; Comelli, D.; Avranovich Clerici, E.; Vivani, R.; Romani, A.; Costantino, C.; Janssens, K.; Taniguchi, Y.; McCarthy, J.; Reichert, H.; Susini, J.
Title The “Historical Materials BAG” : a new facilitated access to synchrotron X-ray diffraction analyses for cultural heritage materials at the European Synchrotron Radiation Facility Type A1 Journal article
Year 2022 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal Molecules
Volume 27 Issue 6 Pages 1997-21
Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract The European Synchrotron Radiation Facility (ESRF) has recently commissioned the new Extremely Brilliant Source (EBS). The gain in brightness as well as the continuous development of beamline instruments boosts the beamline performances, in particular in terms of accelerated data acquisition. This has motivated the development of new access modes as an alternative to standard proposals for access to beamtime, in particular via the “block allocation group” (BAG) mode. Here, we present the recently implemented “historical materials BAG”: a community proposal giving to 10 European institutes the opportunity for guaranteed beamtime at two X-ray powder diffraction (XRPD) beamlines-ID13, for 2D high lateral resolution XRPD mapping, and ID22 for high angular resolution XRPD bulk analyses-with a particular focus on applications to cultural heritage. The capabilities offered by these instruments, the specific hardware and software developments to facilitate and speed-up data acquisition and data processing are detailed, and the first results from this new access are illustrated with recent applications to pigments, paintings, ceramics and wood.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000776369800001 Publication Date 2022-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1420-3049 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.6
Call Number UA @ admin @ c:irua:188053 Serial 7218
Permanent link to this record
 

 
Author Pinto, N.; McNaughton, B.; Minicucci, M.; Milošević, M.V.; Perali, A.
Title Electronic transport mechanisms correlated to structural properties of a reduced graphene oxide sponge Type A1 Journal article
Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 11 Issue 10 Pages 2503
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We report morpho-structural properties and charge conduction mechanisms of a foamy “graphene sponge ”, having a density as low as & AP;0.07 kg/m3 and a carbon to oxygen ratio C:O & SIME; 13:1. The spongy texture analysed by scanning electron microscopy is made of irregularly-shaped millimetres-sized small flakes, containing small crystallites with a typical size of & SIME;16.3 nm. A defect density as high as & SIME;2.6 x 1011 cm-2 has been estimated by the Raman intensity of D and G peaks, dominating the spectrum from room temperature down to & SIME;153 K. Despite the high C:O ratio, the graphene sponge exhibits an insulating electrical behavior, with a raise of the resistance value at & SIME;6 K up to 5 orders of magnitude with respect to the room temperature value. A variable range hopping (VRH) conduction, with a strong 2D character, dominates the charge carriers transport, from 300 K down to 20 K. At T < 20 K, graphene sponge resistance tends to saturate, suggesting a temperature-independent quantum tunnelling. The 2D-VRH conduction originates from structural disorder and is consistent with hopping of charge carriers between sp2 defects in the plane, where sp3 clusters related to oxygen functional groups act as potential barriers.</p>
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000713174500001 Publication Date 2021-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.553 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.553
Call Number UA @ admin @ c:irua:184050 Serial 6988
Permanent link to this record
 

 
Author Dingenen, F.; Blommaerts, N.; Van Hal, M.; Borah, R.; Arenas-Esteban, D.; Lenaerts, S.; Bals, S.; Verbruggen, S.W.
Title Layer-by-Layer-Stabilized Plasmonic Gold-Silver Nanoparticles on TiO2: Towards Stable Solar Active Photocatalysts Type A1 Journal article
Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 11 Issue 10 Pages 2624
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract To broaden the activity window of TiO2, a broadband plasmonic photocatalyst has been designed and optimized. This plasmonic ‘rainbow’ photocatalyst consists of TiO2 modified with gold–silver composite nanoparticles of various sizes and compositions, thus inducing a broadband interaction with polychromatic solar light. However, these nanoparticles are inherently unstable, especially due to the use of silver. Hence, in this study the application of the layer-by-layer technique is introduced to create a protective polymer shell around the metal cores with a very high degree of control. Various TiO2 species (pure anatase, PC500, and P25) were loaded with different plasmonic metal loadings (0–2 wt %) in order to identify the most solar active composite materials. The prepared plasmonic photocatalysts were tested towards stearic acid degradation under simulated sunlight. From all materials tested, P25 + 2 wt % of plasmonic ‘rainbow’ nanoparticles proved to be the most promising (56% more efficient compared to pristine P25) and was also identified as the most cost-effective. Further, 2 wt % of layer-by-layer-stabilized ‘rainbow’ nanoparticles were loaded on P25. These layer-by-layer-stabilized metals showed superior stability under a heated oxidative atmosphere, as well as in a salt solution. Finally, the activity of the composite was almost completely retained after 1 month of aging, while the nonstabilized equivalent lost 34% of its initial activity. This work shows for the first time the synergetic application of a plasmonic ‘rainbow’ concept and the layer-by-layer stabilization technique, resulting in a promising solar active, and long-term stable photocatalyst.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000712759800001 Publication Date 2021-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 7 Open Access OpenAccess
Notes Research was funded by Research Foundation—Flanders (FWO), FN 700300001— Aspirant F. Dingenen. Approved Most recent IF: 3.553
Call Number EMAT @ emat @c:irua:183281 Serial 6812
Permanent link to this record
 

 
Author McNaughton, B.; Pinto, N.; Perali, A.; Milošević, M.V.
Title Causes and consequences of ordering and dynamic phases of confined vortex rows in superconducting nanostripes Type A1 Journal article
Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 12 Issue 22 Pages 4043-18
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Understanding the behaviour of vortices under nanoscale confinement in superconducting circuits is important for the development of superconducting electronics and quantum technologies. Using numerical simulations based on the Ginzburg-Landau theory for non-homogeneous superconductivity in the presence of magnetic fields, we detail how lateral confinement organises vortices in a long superconducting nanostripe, presenting a phase diagram of vortex configurations as a function of the stripe width and magnetic field. We discuss why the average vortex density is reduced and reveal that confinement influences vortex dynamics in the dissipative regime under sourced electrical current, mapping out transitions between asynchronous and synchronous vortex rows crossing the nanostripe as the current is varied. Synchronous crossings are of particular interest, since they cause single-mode modulations in the voltage drop along the stripe in a high (typically GHz to THz) frequency range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000887683200001 Publication Date 2022-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 5.3
Call Number UA @ admin @ c:irua:192731 Serial 7286
Permanent link to this record
 

 
Author Volders, J.; Elen, K.; Raes, A.; Ninakanti, R.; Kelchtermans, A.-S.; Sastre, F.; Hardy, A.; Cool, P.; Verbruggen, S.W.; Buskens, P.; Van Bael, M.K.
Title Sunlight-powered reverse water gas shift reaction catalysed by plasmonic Au/TiO₂ nanocatalysts : effects of Au particle size on the activity and selectivity Type A1 Journal article
Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 12 Issue 23 Pages 4153-13
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)
Abstract This study reports the low temperature and low pressure conversion (up to 160 °C, p = 3.5 bar) of CO2 and H2 to CO using plasmonic Au/TiO2 nanocatalysts and mildly concentrated artificial sunlight as the sole energy source (up to 13.9 kW·m-2 = 13.9 suns). To distinguish between photothermal and non-thermal contributors, we investigated the impact of the Au nanoparticle size and light intensity on the activity and selectivity of the catalyst. A comparative study between P25 TiO2-supported Au nanocatalysts of a size of 6 nm and 16 nm displayed a 15 times higher activity for the smaller particles, which can only partially be attributed to the higher Au surface area. Other factors that may play a role are e.g., the electronic contact between Au and TiO2 and the ratio between plasmonic absorption and scattering. Both catalysts displayed ≥84% selectivity for CO (side product is CH4). Furthermore, we demonstrated that the catalytic activity of Au/TiO2 increases exponentially with increasing light intensity, which indicated the presence of a photothermal contributor. In dark, however, both Au/TiO2 catalysts solely produced CH4 at the same catalyst bed temperature (160 °C). We propose that the difference in selectivity is caused by the promotion of CO desorption through charge transfer of plasmon generated charges (as a non-thermal contributor).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000896093900001 Publication Date 2022-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.3
Call Number UA @ admin @ c:irua:191843 Serial 7341
Permanent link to this record
 

 
Author Benedoue, S.; Benedet, M.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Seraglia, R.; Pagot, G.; Rizzi, G.A.; Balzano, V.; Gavioli, L.; Noto, V.D.; Barreca, D.; Maccato, C.
Title Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams Type A1 Journal article
Year 2023 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 13 Issue 6 Pages 1035
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000960297000001 Publication Date 2023-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited 3 Open Access OpenAccess
Notes The present work was financially supported by CNR (Progetti di Ricerca @CNR—avviso 2020—ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO—NANOMAT, INSTM21PDBARMAC—ATENA) and the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717—ESTEEM3. The FWO-Hercules fund G0H4316N ‘Direct electron detector for soft matter TEM’ is also acknowledged. Many thanks are also due to Dr. Riccardo Lorenzin for his support to experimental activities.; esteem3reported; esteem3TA Approved Most recent IF: 5.3; 2023 IF: 3.553
Call Number EMAT @ emat @c:irua:196115 Serial 7378
Permanent link to this record
 

 
Author Drăgan, A.-M.; Feier, B.G.; Tertis, M.; Bodoki, E.; Truta, F.; Stefan, M.-G.; Kiss, B.; Van Durme, F.; De Wael, K.; Oprean, R.; Cristea, C.
Title Forensic analysis of synthetic cathinones on nanomaterials-based platforms : chemometric-assisted voltametric and UPLC-MS/MS investigation Type A1 Journal article
Year 2023 Publication Nanomaterials Abbreviated Journal
Volume 13 Issue 17 Pages 2393-19
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Synthetic cathinones (SCs) are a group of new psychoactive substances often referred to as “legal highs” or “bath salts”, being characterized by a dynamic change, new compounds continuously emerging on the market. This creates a lack of fast screening tests, making SCs a constant concern for law enforcement agencies. Herein, we present a fast and simple method for the detection of four SCs (alpha-pyrrolidinovalerophenone, N-ethylhexedrone, 4-chloroethcathinone, and 3-chloromethcathinone) based on their electrochemical profiles in a decentralized manner. In this regard, the voltametric characterization of the SCs was performed by cyclic and square wave voltammetry. The elucidation of the SCs redox pathways was successfully achieved using liquid chromatography coupled to (tandem) mass spectrometry. For the rational identification of the ideal experimental conditions, chemometric data processing was employed, considering two critical qualitative and quantitative variables: the type of the electrochemical platform and the pH of the electrolyte. The analytical figures of merit were determined on standard working solutions using the optimized method, which exhibited wide linear ranges and LODs suitable for confiscated sample screening. Finally, the performance of the method was evaluated on real confiscated samples, the resulting validation parameters being similar to those obtained with another portable device (i.e., Raman spectrometer).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001061205100001 Publication Date 2023-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.3; 2023 IF: 3.553
Call Number UA @ admin @ c:irua:199221 Serial 8869
Permanent link to this record
 

 
Author Leus, K.; Dendooven, J.; Tahir, N.; Ramachandran, R.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Goeman, J.; Van der Eycken, J.; Detavernier, C.; Van Der Voort, P.
Title Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst Type A1 Journal article
Year 2016 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 6 Issue 6 Pages 45
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier) by means of atomic layer deposition (ALD). The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD) measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF) and transmission electron microscopy (TEM) analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373533300009 Publication Date 2016-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 19 Open Access
Notes Karen Leus acknowledges the financial support from the Ghent University “Bijzonder Onderzoeksfonds” BOF post-doctoral Grant 01P06813T and UGent “Geconcentreeerde Onderzoekacties” GOA Grant 01G00710. Jolien Dendooven and Stuart Turner gratefully acknowledges the “Fonds Wetenschappelijk Onderzoek” FWO Vlaanderen for a post-doctoral scholarship. Christophe Detavernier thanks the FWO Vlaanderen, BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014) for financial support. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the “Belgian Interuniversitaire Attractie Pool-Pôle d'Attraction Interuniversitaire” IAP-PAI network. Approved Most recent IF: 3.553
Call Number c:irua:131902 Serial 4015
Permanent link to this record
 

 
Author Cavaliere, E.; Benetti, G.; Van Bael, M.; Winckelmans, N.; Bals, S.; Gavioli, L.
Title Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition Type A1 Journal article
Year 2017 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 7 Issue 7 Pages 442
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanocomposite systems and nanoparticle (NP) films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs) films and of Ag NPs/TiO₂ porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO₂ (Ag/Ti 50-50) nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE). We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO₂ NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000419186800037 Publication Date 2017-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 19 Open Access OpenAccess
Notes The authors thank Gabriele Ferrini for fruitful discussions on the spectroscopic ellipsometry model and Francesco Rossella from NEST for the optical profilometry data. The authors acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). Luca Gavioli, Emanuele Cavaliere and Giulio Benetti acknowledge support from Università Cattolica del Sacro Cuore through D.1.1 and D.3.1 grants. Approved Most recent IF: 3.553
Call Number EMAT @ emat @c:irua:147862UA @ admin @ c:irua:147862 Serial 4802
Permanent link to this record
 

 
Author Naberezhnyi, D.; Rumyantseva, M.; Filatova, D.; Batuk, M.; Hadermann, J.; Baranchikov, A.; Khmelevsky, N.; Aksenenko, A.; Konstantinova, E.; Gaskov, A.
Title Effects of Ag additive in low temperature CO detection with In2O3 based gas sensors Type A1 Journal article
Year 2018 Publication Nanomaterials Abbreviated Journal
Volume 8 Issue 10 Pages 801
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanocomposites In2O3/Ag obtained by ultraviolet (UV) photoreduction and impregnation methods were studied as materials for CO sensors operating in the temperature range 25-250 degrees C. Nanocrystalline In2O3 and In2O3/Ag nanocomposites were characterized by X-ray diffraction (XRD), single-point Brunauer-Emmet-Teller (BET) method, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The active surface sites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy and thermo-programmed reduction with hydrogen (TPR-H-2) method. Sensor measurements in the presence of 15 ppm CO demonstrated that UV treatment leads to a complete loss of In2O3 sensor sensitivity, while In2O3/Ag-UV nanocomposite synthesized by UV photoreduction demonstrates an increased sensor signal to CO at T < 200 degrees C. The observed high sensor response of the In2O3/Ag-UV nanocomposite at room temperature may be due to the realization of an additional mechanism of CO oxidation with participation of surface hydroxyl groups associated via hydrogen bonds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451174100057 Publication Date 2018-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156335 Serial 7842
Permanent link to this record
 

 
Author Kutukov, P.; Rumyantseva, M.; Krivetskiy, V.; Filatova, D.; Batuk, M.; Hadermann, J.; Khmelevsky, N.; Aksenenko, A.; Gaskov, A.
Title Influence of Mono- and Bimetallic PtOx, PdOx, PtPdOx Clusters on CO Sensing by SnO2 Based Gas Sensors Type A1 Journal Article
Year 2018 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 8 Issue 11 Pages 917
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract To obtain a nanocrystalline SnO2 matrix and mono- and bimetallic nanocomposites SnO2/Pd, SnO2/Pt, and SnO2/PtPd, a flame spray pyrolysis with subsequent impregnation was used. The materials were characterized using X-ray diffraction (XRD), a single-point BET method, transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The electronic state of the metals in mono- and bimetallic clusters was determined using X-ray photoelectron spectroscopy (XPS). The active surface sites were investigated using the Fourier Transform infrared spectroscopy (FTIR) and thermo-programmed reduction with hydrogen (TPR-H-2) methods. The sensor response of blank SnO2 and nanocomposites had a carbon monoxide (CO) level of 6.7 ppm and was determined in the temperature range 60-300 degrees C in dry (Relative Humidity (RH) = 0%) and humid (RH = 20%) air. The sensor properties of the mono- and bimetallic nanocomposites were analyzed on the basis of information on the electronic state, the distribution of modifiers in SnO2 matrix, and active surface centers. For SnO2/PtPd, the combined effect of the modifiers on the electrophysical properties of SnO2 explained the inversion of sensor response from n- to p-types observed in dry conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451316100052 Publication Date 2018-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 7 Open Access Not_Open_Access
Notes This research was funded by the Russian Ministry of Education and Sciences (Agreement No. 14.613.21.0075, RFMEFI61317X0075). Approved Most recent IF: 3.553
Call Number EMAT @ emat @c:irua:155767 Serial 5139
Permanent link to this record
 

 
Author Huang, L.; Ratkowsky, D.A.; Hui, C.; Gielis, J.; Lian, M.; Shi, P.
Title Inequality measure of leaf area distribution for a drought-tolerant landscape plant Type A1 Journal article
Year 2023 Publication Plants Abbreviated Journal
Volume 12 Issue 17 Pages 3143-11
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Measuring the inequality of leaf area distribution per plant (ILAD) can provide a useful tool for quantifying the influences of intra- and interspecific competition, foraging behavior of herbivores, and environmental stress on plants’ above-ground architectural structures and survival strategies. Despite its importance, there has been limited research on this issue. This paper aims to fill this gap by comparing four inequality indices to measure ILAD, using indices for quantifying household income that are commonly used in economics, including the Gini index (which is based on the Lorenz curve), the coefficient of variation, the Theil index, and the mean log deviation index. We measured the area of all leaves for 240 individual plants of the species Shibataea chinensis Nakai, a drought-tolerant landscape plant found in southern China. A three-parameter performance equation was fitted to observations of the cumulative proportion of leaf area vs. the cumulative proportion of leaves per plant to calculate the Gini index for each individual specimen of S. chinensis. The performance equation was demonstrated to be valid in describing the rotated and right shifted Lorenz curve, given that >96% of root-mean-square error values were smaller than 0.004 for 240 individual plants. By examining the correlation between any of the six possible pairs of indices among the Gini index, the coefficient of variation, the Theil index, and the mean log deviation index, the data show that these indices are closely related and can be used interchangeably to quantify ILAD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001065193100001 Publication Date 2023-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2223-7747 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:199564 Serial 8886
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Bogaerts, A.
Title Possible Mechanism of Glucose Uptake Enhanced by Cold Atmospheric Plasma: Atomic Scale Simulations Type A1 Journal article
Year 2018 Publication Plasma Abbreviated Journal
Volume 1 Issue 1 Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) has shown its potential in biomedical applications, such as wound healing, cancer treatment and bacterial disinfection. Recent experiments have provided evidence that CAP can also enhance the intracellular uptake of glucose molecules which is important in diabetes therapy. In this respect, it is essential to understand the underlying mechanisms of intracellular glucose uptake induced by CAP, which is still unclear. Hence, in this study we try to elucidate the possible mechanism of glucose uptake by cells by performing computer simulations. Specifically, we study the transport of glucose molecules through native and oxidized membranes. Our simulation results show that the free energy barrier for the permeation of glucose molecules across the membrane decreases upon increasing the degree of oxidized lipids in the membrane. This indicates that the glucose permeation rate into cells increases when the CAP oxidation level in the cell membrane is increased.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2018-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2571-6182 ISBN Additional Links UA library record
Impact Factor Times cited Open Access OpenAccess
Notes The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the Universiteit Antwerpen. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @ plasma1010011c:irua:152176 Serial 4990
Permanent link to this record
 

 
Author Moro, G.; Cristofori, D.; Bottari, F.; Cattaruzza, E.; De Wael, K.; Moretto, L.M.
Title Redesigning an electrochemical MIP sensor for PFOS : practicalities and pitfalls Type A1 Journal article
Year 2019 Publication Sensors Abbreviated Journal Sensors-Basel
Volume 19 Issue 20 Pages 4433
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract There is a growing interest in the technological transfer of highly performing electrochemical sensors within portable analytical devices for the in situ monitoring of environmental contaminants, such as perfluorooctanesulfonic acid (PFOS). In the redesign of biomimetic sensors, many parameters should be taken into account from the working conditions to the electrode surface roughness. A complete characterization of the surface modifiers can help to avoid time-consuming optimizations and better interpret the sensor responses. In the present study, a molecularly imprinted polymer electrochemical sensor (MIP) for PFOS optimized on gold disk electrodes was redesigned on commercial gold screen-printed electrodes. However, its performance investigated by differential pulse voltammetry was found to be poor. Before proceeding with further optimization, a morphological study of the bare and modified electrode surfaces was carried out by scanning electron microscopy-energy-dispersive X-ray spectrometry (SEM-EDS), atomic force microscopy (AFM) and profilometry revealing an heterogeneous distribution of the polymer strongly influenced by the electrode roughness. The high content of fluorine of the target-template molecule allowed to map the distribution of the molecularly imprinted polymer before the template removal and to define a characterization protocol. This case study shows the importance of a multi-analytical characterization approach and identify significant parameters to be considered in similar redesigning studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000497864700081 Publication Date 2019-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.677 Times cited Open Access
Notes ; ; Approved Most recent IF: 2.677
Call Number UA @ admin @ c:irua:164686 Serial 5808
Permanent link to this record
 

 
Author Anaf, W.; Cabal, A.; Robbe, M.; Schalm, O.
Title Real-time wood behaviour : the use of strain gauges for preventive conservation applications Type A1 Journal article
Year 2020 Publication Sensors Abbreviated Journal
Volume 20 Issue 1 Pages 305
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract Within the heritage field, the application of strain gauges on wood surfaces is a little-explored but inexpensive and effective method to analyse the environmental appropriateness of rooms for the wooden heritage collections they contain. This contribution proposes a wood sensor connected to a data logger to identify short moments with an elevated risk of harm. Two experiments were performed to obtain insights pertaining to the applicability of wood sensors to evaluate preservation conditions. (1) The representativeness of strain gauges on dummies was tested for their use in evaluating the preservation conditions of a range of wooden objects exposed to the same environment. For this, three situations were mimicked: a bare wood surface, a wood surface covered with a preparation layer, and a wood surface covered with a preparation and varnish layer. (2) The usability of strain gauges to monitor the wood behaviour in real-time measurements was tested with a monitoring campaign of almost two years in a church where a new heating system was installed. The results of both experiments are promising, and the authors encourage a broader application of strain gauges in the heritage field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000510493100305 Publication Date 2020-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes ; This research was funded by the Belgian Federal Public Planning Service Science Policy (BELSPO) under project number BR/132/A6/AIRCHECQ. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:166595 Serial 6592
Permanent link to this record
 

 
Author Truta, F.; Drăgan, A.-M.; Tertis, M.; Parrilla, M.; Slosse, A.; Van Durme, F.; De Wael, K.; Cristea, C.
Title Electrochemical rapid detection of methamphetamine from confiscated samples using a graphene-based printed platform Type A1 Journal article
Year 2023 Publication Sensors Abbreviated Journal
Volume 23 Issue 13 Pages 6193-18
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Methamphetamine (MAP) is a highly addictive and illegal stimulant drug that has a significant impact on the central nervous system. Its detection in biological and street samples is crucial for various organizations involved in forensic medicine, anti-drug efforts, and clinical diagnosis. In recent years, nanotechnology and nanomaterials have played a significant role in the development of analytical sensors for MAP detection. In this study, a fast, simple, and cost-effective electrochemical sensor is presented that is used for the sensitive detection of MAP in confiscated street samples with a complex matrix. The optimized screen-printed sensor based on a carbon working electrode modified with graphene demonstrated an excellent limit of detection, good sensitivity, and a wide dynamic range (1–500 μM) for the target illicit drug both for standard solutions and real samples (seized samples, tap water, and wastewater samples). It can detect MAP at concentrations as low as 300 nM in real samples. This limit of detection is suitable for the rapid preliminary screening of suspicious samples in customs, ports, airports, and on the street. Furthermore, the sensor exhibits a good recovery rate, indicating its reliability and repeatability. This quality is crucial for ensuring consistent and accurate results during screening processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033277900001 Publication Date 2023-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198181 Serial 8857
Permanent link to this record
 

 
Author Buyle, M.; Audenaert, A.; Billen, P.; Boonen, K.; Van Passel, S.
Title The future of Ex-Ante LCA? Lessons learned and practical recommendations Type A1 Journal article
Year 2019 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume 11 Issue 19 Pages 5456
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Biochemical Wastewater Valorization & Engineering (BioWaVE); Energy and Materials in Infrastructure and Buildings (EMIB)
Abstract Every decision-oriented life cycle assessment (LCAs) entails, at least to some extent, a future-oriented feature. However, apart from the ex-ante LCAs, the majority of LCA studies are retrospective in nature and do not explicitly account for possible future effects. In this review a generic theoretical framework is proposed as a guideline for ex-ante LCA. This framework includes the entire technology life cycle, from the early design phase up to continuous improvements of mature technologies, including their market penetration. The compatibility with commonly applied system models yields an additional aspect of the framework. Practical methods and procedures are categorised, based on how they incorporate future-oriented features in LCA. The results indicate that most of the ex-ante LCAs focus on emerging technologies that have already gone through some research cycles within narrowly defined system boundaries. There is a lack of attention given to technologies that are at a very early development stage, when all options are still open and can be explored at a low cost. It is also acknowledged that technological learning impacts the financial and environmental performance of mature production systems. Once technologies are entering the market, shifts in market composition can lead to substantial changes in environmental performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000493525500315 Publication Date 2019-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 1.789 Times cited 4 Open Access
Notes ; Thanks to Koen Breemersch for providing insightful and useful comments on draft versions of this manuscript. This work was supported by the University of Antwerp and the Flemish Institute for Technological Research (VITO). The authors also acknowledge anonymous reviewers for the constructive suggestions and the stimulating discussion. ; Approved Most recent IF: 1.789
Call Number UA @ admin @ c:irua:162571 Serial 6205
Permanent link to this record
 

 
Author Finizola e Silva, M.; Van Passel, S.
Title Climate-Smart Agriculture in the Northeast of Brazil: An Integrated Assessment of the Aquaponics Technology Type A1 Journal Article
Year 2020 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume 12 Issue 9 Pages 3734
Keywords A1 Journal Article; aquaponics; Aquaponova; Brazil; semi-arid region; food insecurity; cost–benefit analysis; socio-economic approach; climate-smart agriculture; Engineering Management (ENM) ;
Abstract The purpose of this study is to determine if aquaponic systems can reduce food insecurity in the semi-arid regions of Brazil and generate income for the beneficiaries. Aquaponics is a potentially sustainable way to produce food based on gardening, hydroponics and aquaculture. A case study, based on a project called Aquaponova, was developed. The aquaponic systems currently used in the project are non-commercial and designed for households with limited resources. The data based on six existing systems within this project were used to compare the costs and the benefits. The cost–benefit analysis covers four scenarios and three financing options. The results show that aquaponic systems have a large potential and can reduce food insecurity in semi-arid regions while generating income for the beneficiaries. Even if the system only produces 40% of the total estimated production, the system will still be feasible. However, the low opportunity cost of labour is an essential factor for obtaining these positive results. Moreover, the social benefits, such as a community spirit and the health benefits of the system, should not be underestimated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000537476200232 Publication Date 2020-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access
Notes We would like to express our gratitude to Francisco Fechine Borges who introduced Maíra Finizola e Silva the basics of aquaponics and gave her the opportunity to base her research on the data from the Aquaponova project. We would also like to thank the participants of the 2nd LA SDEWES conference in Buenos Aires (9–12 February 2020) for the useful comments and suggestions. Approved Most recent IF: 3.9; 2020 IF: 1.789
Call Number ENM @ enm @c:irua:170074 Serial 6382
Permanent link to this record
 

 
Author Winterstetter, A.; Grodent, M.; Kini, V.; Ragaert, K.; Vrancken, K.C.M.
Title A review of technological solutions to prevent or reduce marine plastic litter in developing countries Type A1 Journal article
Year 2021 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume 13 Issue 9 Pages 4894
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Growing global plastic production combined with poor waste collection has led to increasing amounts of plastic debris being found in oceans, rivers and on shores. The goal of this study is to provide an overview on currently available technological solutions to tackle marine plastic litter and to assess their potential use in developing countries. To compile an inventory of technological solutions, a dedicated online platform was developed. A total of 51 out of initially 75 submitted solutions along the plastics value chain were assessed by independent experts. Collection systems represent more than half of the shortlisted solutions. A quarter include processing and treatment technologies, either as a stand-alone solution (30%) or, more commonly, in combination with a first litter capturing step. Ten percent offer digital solutions. The rest focuses on integrated waste management solutions. For each stage in the source-to-sea spectrum-land, rivers, sea-two illustrative examples are described in detail. This study concludes that the most cost-effective type of solution tackles land-based sources of marine litter and combines technology with people-oriented practices, runs on own energy sources, connects throughout the plastics value chain with a convincing valorization plan for captured debris, and involves all relevant stakeholders.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000650920900001 Publication Date 2021-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.789 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.789
Call Number UA @ admin @ c:irua:178368 Serial 7396
Permanent link to this record