toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Veith, G.M.; Lobanov, M.V.; Emge, T.J.; Greenblatt, M.; Croft, M.; Stowasser, F.; Hadermann, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Synthesis and charactreization of the new Ln(2)FeMoO(7) (Ln = Y, Dy, Ho) compounds Type A1 Journal article
  Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 14 Issue Pages 1623-1630  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000221507200021 Publication Date 2004-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 17 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:47319 Serial 3421  
Permanent link to this record
 

 
Author O'Sullivan, M.; Hadermann, J.; Dyer, M.S.; Turner, S.; Alaria, J.; Manning, T.D.; Abakumov, A.M.; Claridge, J.B.; Rosseinsky, M.J. pdf  doi
openurl 
  Title Interface control by chemical and dimensional matching in an oxide heterostructure Type A1 Journal article
  Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem  
  Volume 8 Issue 8 Pages 347-353  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Interfaces between different materials underpin both new scientific phenomena, such as the emergent behaviour at oxide interfaces, and key technologies, such as that of the transistor. Control of the interfaces between materials with the same crystal structures but different chemical compositions is possible in many materials classes, but less progress has been made for oxide materials with different crystal structures. We show that dynamical self-organization during growth can create a coherent interface between the perovskite and fluorite oxide structures, which are based on different structural motifs, if an appropriate choice of cations is made to enable this restructuring. The integration of calculation with experimental observation reveals that the interface differs from both the bulk components and identifies the chemical bonding requirements to connect distinct oxide structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372505500013 Publication Date 2016-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 28 Open Access  
  Notes Approved Most recent IF: 25.87  
  Call Number UA @ lucian @ c:irua:133189 Serial 4199  
Permanent link to this record
 

 
Author Ban, V.; Soloninin, A.V.; Skripov, A.V.; Hadermann, J.; Abakumov, A.; Filinchuk, Y. doi  openurl
  Title Pressure-Collapsed Amorphous Mg(BH4)(2): An Ultradense Complex Hydride Showing a Reversible Transition to the Porous Framework Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 40 Pages 23402-23408  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Hydrogen-storage properties of complex hydrides depend of their form, such as a polymorphic form or an eutectic mixture. This Paper reports on an easy and reproducible way to synthesize a new stable form of magnesium borohydride by pressure-induced collapse of the porous gamma-Mg(BH4)(2). This amorphous complex hydride was investigated by temperature-programmed synchrotron X-ray diffraction (SXRD), transmission electron microscopy (TEM), thermogravimetric analysis, differential scanning calorimetry analysis, and Raman spectroscopy, and the dynamics of the BH4 reorientation was studied by spinlattice relaxation NMR spectroscopy. No long-range order is observed in the lattice region by Raman spectroscopy, while the internal vibration modes of the BH4 groups are the same as in the crystalline state. A hump at 4.9 angstrom in the SXRD pattern suggests the presence of nearly linear MgBH4 Mg fragments constituting all the known crystalline polymorphs of Mg(BH4)(2), which are essentially frameworks built of tetrahedral Mg nodes and linear BH4 linkers. TEM shows that the pressure-collapsed phase is amorphous down to the nanoscale, but surprisingly, SXRD reveals a transition at similar to 90 degrees C from the dense amorphous state (density of 0.98 g/cm(3)) back to the porous ? phase having only 0.55 g/cm(3) crystal density. The crystallization is slightly exothermic, with the enthalpy of -4.3 kJ/mol. The volumetric hydrogen density of the amorphous form is 145 g/L, one of the highest among hydrides. Remarkably, this form of Mg(BH4)2 has different reactivity compared to the crystalline forms. The parameters of the reorientational motion of BH4 groups in the amorphous Mg(BH4)(2) found from NMR measurements differ significantly from those in the known crystalline forms. The behavior of the nuclear spinlattice relaxation rates can be described in terms of a Gaussian distribution of the activation energies centered on 234 +/- 9 meV with the dispersion of 100 +/- 10 meV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000343016800067 Publication Date 2014-09-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 23 Open Access  
  Notes Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:121113 Serial 2711  
Permanent link to this record
 

 
Author Bhaskar, G.; Gvozdetskyi, V.; Batuk, M.; Wiaderek, K.M.; Sun, Y.; Wang, R.; Zhang, C.; Carnahan, S.L.; Wu, X.; Ribeiro, R.A.; Bud'ko, S.L.; Canfield, P.C.; Huang, W.; Rossini, A.J.; Wang, C.-Z.; Ho, K.-M.; Hadermann, J.; Zaikina, J., V pdf  doi
openurl 
  Title Topochemical deintercalation of Li from layered LiNiB : toward 2D MBene Type A1 Journal article
  Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 143 Issue 11 Pages 4213-4223  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li similar to 0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state Li-7 and B-1(1) NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of (Li similar to 0.5NiB) and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a “zip-lock” mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB](2) and Li[NiB](3) compositions. The crystal structure of Li similar to 0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB](2), or triple [NiB](3) layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li similar to 0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761500021 Publication Date 2021-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 13.858  
  Call Number UA @ admin @ c:irua:177697 Serial 6790  
Permanent link to this record
 

 
Author Han, Y.; Zeng, Y.; Hendrickx, M.; Hadermann, J.; Stephens, P.W.; Zhu, C.; Grams, C.P.; Hemberger, J.; Frank, C.; Li, S.; Wu, M.X.; Retuerto, M.; Croft, M.; Walker, D.; Yao, D.-X.; Greenblatt, M.; Li, M.-R. doi  openurl
  Title Universal a-cation splitting in LiNbO₃-type structure driven by intrapositional multivalent coupling Type A1 Journal article
  Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 142 Issue 15 Pages 7168-7178  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Understanding the electric dipole switching in multiferroic materials requires deep insight of the atomic-scale local structure evolution to reveal the ferroelectric mechanism, which remains unclear and lacks a solid experimental indicator in high-pressure prepared LiNbO3-type polar magnets. Here, we report the discovery of Zn-ion splitting in LiNbO3-type Zn2FeNbO6 established by multiple diffraction techniques. The coexistence of a high-temperature paraelectric-like phase in the polar Zn2FeNbO6 lattice motivated us to revisit other high-pressure prepared LiNbO3-type A(2)BB'O-6 compounds. The A-site atomic splitting (similar to 1.0-1.2 angstrom between the split-atom pair) in B/B'-mixed Zn2FeTaO6 and O/N-mixed ZnTaO2N is verified by both powder X-ray diffraction structural refinements and high angle annular dark field scanning transmission electron microscopy images, but is absent in single-B-site ZnSnO3. Theoretical calculations are in good agreement with experimental results and suggest that this kind of A-site splitting also exists in the B-site mixed Mn-analogues, Mn2FeMO6 (M = Nb, Ta) and anion-mixed MnTaO2N, where the smaller A-site splitting (similar to 0.2 angstrom atomic displacement) is attributed to magnetic interactions and bonding between A and B cations. These findings reveal universal A-site splitting in LiNbO3-type structures with mixed multivalent B/B', or anionic sites, and the splitting-atomic displacement can be strongly suppressed by magnetic interactions and/or hybridization of valence bands between d electrons of the A- and B-site cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526300600046 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by the National Science Foundation of China (NSFC-21875287), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07C069), and an NSF-DMR-1507252 grant (U.S.). Use of the NSLS, Brookhaven National Laboratory, was supported by the DOE BES (DE-AC02-98CH10886). M.R. is thankful for the Spanish Juan de la Cierva grant FPDI-2013-17582. Y.Z. and D.-X.Y. are supported by NKRDPC-2018YFA0306001, NKRDPC-2017YFA0206203, NSFC-11974432, NSFG-2019A1515011337, the National Supercomputer Center in Guangzhou, and the Leading Talent Program of Guangdong Special Projects. Work on IOP, CAS, was supported by NSFC and MOST grants. A portion of this research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. J.H. and M.H. thank the FWO for support for the electron microscopy studies through grant G035619N. We thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing beam time and help during the experiments. ; Approved Most recent IF: 15; 2020 IF: 13.858  
  Call Number UA @ admin @ c:irua:170294 Serial 6646  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Adkin, J.J.; Hayward, M.A. doi  openurl
  Title Topotactic reduction as a route to new close-packed anion deficient perovskites: structure and magnetism of 4H-BaMnO2+x Type A1 Journal article
  Year 2009 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 131 Issue 30 Pages 10598-10604  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The anion-deficient perovskite 4H-BaMnO2+x has been obtained by a topotactic reduction, with LiH, of the hexagonal perovskite 4H-BaMnO3−x. The crystal structure of 4H-BaMnO2+x was solved using electron diffraction and X-ray powder diffraction and further refined using neutron powder diffraction (S.G. Pnma, a = 10.375(2) Å, b = 9.466(2) Å, c = 11.276(3) Å, at 373 K). The orthorhombic superstructure arises from the ordering of oxygen vacancies within a 4H (chch) stacking of close packed c-type BaO2.5 and h-type BaO1.5 layers. The ordering of the oxygen vacancies transforms the Mn2O9 units of face-sharing MnO6 octahedra into Mn2O7 (two corner-sharing tetrahedra) and Mn2O6 (two edge-sharing tetrahedra) groups. The Mn2O7 and Mn2O6 groups are linked by corner-sharing into a three-dimensional framework. The structures of the BaO2.5 and BaO1.5 layers are different from those observed previously in anion-deficient perovskites providing a new type of order pattern of oxygen atoms and vacancies in close packed structures. Magnetization measurements and neutron diffraction data reveal 4H-BaMnO2+x adopts an antiferromagnetically ordered state below TN ≈ 350 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000268644400056 Publication Date 2009-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 25 Open Access  
  Notes Approved Most recent IF: 13.858; 2009 IF: 8.580  
  Call Number UA @ lucian @ c:irua:77928 Serial 3681  
Permanent link to this record
 

 
Author Herkelrath, S.J.C.; Saratovsky, I.; Hadermann, J.; Clarke, S.J. doi  openurl
  Title Fragmentation of an infinite ZnO2 square plane into discrete [ZnO2]2- linear units in the oxyselenide Ba2ZnO2Ag2Se2 Type A1 Journal article
  Year 2008 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 130 Issue 44 Pages 14426-14427  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Analysis of single crystal X-ray diffraction, neutron powder diffraction, electron diffraction and Zn−K-edge EXAFS data show that Ba2ZnO2Ag2Se2 contains unusual isolated [ZnO2]2− moieties resulting from fragmentation of a ZnO2 infinite plane placed under tension.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000260533400037 Publication Date 2008-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 13 Open Access  
  Notes Approved Most recent IF: 13.858; 2008 IF: 8.091  
  Call Number UA @ lucian @ c:irua:72947 Serial 1273  
Permanent link to this record
 

 
Author Palgrave, R.G.; Borisov, P.; Dyer, M.S.; McMitchell, S.R.C.; Darling, G.R.; Claridge, J.B.; Batuk, M.; Tan, H.; Tian, H.; Verbeeck, J.; Hadermann, J.; Rosseinsky, M.J.; pdf  doi
openurl 
  Title Artificial construction of the layered Ruddlesden-Popper manganite La2Sr2Mn3O10 by reflection high energy electron diffraction monitored pulsed laser deposition Type A1 Journal article
  Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 18 Pages 7700-7714  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pulsed laser deposition has been used to artificially construct the n = 3 Ruddlesden Popper structure La2Sr2Mn3O10 in epitaxial thin film form by sequentially layering La1-xSrxMnO3 and SrO unit cells aided by in situ reflection high energy electron diffraction monitoring. The interval deposition technique was used to promote two-dimensional SrO growth. X-ray diffraction and cross-sectional transmission electron microscopy indicated that the trilayer structure had been formed. A site ordering was found to differ from that expected thermodynamically, with the smaller Sr2+ predominantly on the R site due to kinetic trapping of the deposited cation sequence. A dependence of the out-of-plane lattice parameter on growth pressure was interpreted as changing the oxygen content of the films. Magnetic and transport measurements on fully oxygenated films indicated a frustrated magnetic ground state characterized as a spin glass-like magnetic phase with the glass temperature T-g approximate to 34 K. The magnetic frustration has a clear in-plane (ab) magnetic anisotropy, which is maintained up to temperatures of 150 K. Density functional theory calculations suggest competing antiferromagnetic and ferromagnetic long-range orders, which are proposed as the origin of the low-temperature glassy state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000303696200029 Publication Date 2012-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 27 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:98947UA @ admin @ c:irua:98947 Serial 153  
Permanent link to this record
 

 
Author Dixon, E.; Hadermann, J.; Ramos, S.; Goodwin, A.L.; Hayward, M.A. doi  openurl
  Title Mn(I) in an extended oxide : the synthesis and characterization of La1-xCaxMnO2+\delta (0.6\leq x\leq1) Type A1 Journal article
  Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 133 Issue 45 Pages 18397-18405  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reduction of La1xCaxMnO3 (0.6 ≤ x ≤ 1) perovskite phases with sodium hydride yields materials of composition La1xCaxMnO2+δ. The calcium-rich phases (x = 0.9, 1) adopt (La0.9Ca0.1)0.5Mn0.5O disordered rocksalt structures. However local structure analysis using reverse Monte Carlo refinement of models against pair distribution functions obtained from neutron total scattering data reveals lanthanum-rich La1xCaxMnO2+δ (x = 0.6, 0.67, 0.7) phases adopt disordered structures consisting of an intergrowth of sheets of MnO6 octahedra and sheets of MnO4 tetrahedra. X-ray absorption data confirm the presence of Mn(I) centers in La1xCaxMnO2+δ phases with x < 1. Low-temperature neutron diffraction data reveal La1xCaxMnO2+δ (x = 0.6, 0.67, 0.7) phases become antiferromagnetically ordered at low temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000297381200065 Publication Date 2011-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 33 Open Access  
  Notes Approved Most recent IF: 13.858; 2011 IF: 9.907  
  Call Number UA @ lucian @ c:irua:94030 Serial 2094  
Permanent link to this record
 

 
Author Hyett, G.; Barrier, N.; Clarke, S.J.; Hadermann, J. doi  openurl
  Title Topotactic oxidative and reductive control of the structures and properties of layered manganese oxychalcogenides Type A1 Journal article
  Year 2007 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 129 Issue 36 Pages 11192-11201  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000249372400055 Publication Date 2007-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 12 Open Access  
  Notes Approved Most recent IF: 13.858; 2007 IF: 7.885  
  Call Number UA @ lucian @ c:irua:65592 Serial 3680  
Permanent link to this record
 

 
Author Gál, Z.A.; Rutt, O.J.; Smura, C.F.; Overton, T.P.; Barrier, N.; Clarke, S.J.; Hadermann, J. pdf  doi
openurl 
  Title Structural chemistry and metamagnetism of an homologous series of layered manganese oxysulfides Type A1 Journal article
  Year 2006 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 128 Issue 26 Pages 8530-8540  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000238590000040 Publication Date 2006-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 39 Open Access  
  Notes Iap V-1 Approved Most recent IF: 13.858; 2006 IF: 7.696  
  Call Number UA @ lucian @ c:irua:60030 Serial 3225  
Permanent link to this record
 

 
Author Zhang, H.; Yang, J.-H.; Shpanchenko, R.V.; Abakumov, A.M.; Hadermann, J.; Clérac, R.; Dikarev, E.V. doi  openurl
  Title New class of single-source precursors for the synthesis of main group-transition metal oxides: heterobimetallic Pb-Mn \beta-diketonates Type A1 Journal article
  Year 2009 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 48 Issue 17 Pages 8480-8488  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Heterometallic lead−manganese â-diketonates have been isolated in pure form by several synthetic methods that include solid-state and solution techniques. Two compounds with different Pb/Mn ratios, PbMn2(hfac)6 (1) and PbMn(hfac)4 (2) (hfac = hexafluoroacetylacetonate), can be obtained in quantitative yield by using different starting materials. Single crystal X-ray investigation revealed that the solid-state structure of 1 contains trinuclear molecules in which lead metal center is sandwiched between two [Mn(hfac)3] units, while 2 consists of infinite chains of alternating [Pb(hfac)2] and [Mn(hfac)2] fragments. The heterometallic structures are held together by strong Lewis acid−base interactions between metal atoms and diketonate ligands acting in chelating-bridging fashion. Spectroscopic investigation confirmed the retention of heterometallic structures in solutions of non-coordinating solvents as well as upon sublimation-deposition procedure. Thermal decomposition of heterometallic diketonates has been systematically investigated in a wide range of temperatures and annealing times. For the first time, it has been shown that thermal decomposition of heterometallic diketonates results in mixed-metal oxides, while both the structure of precursors and the thermolysis conditions have a significant influence on the nature of the resulting oxides. Five different Pb−Mn oxides have been detected by X-ray powder diffraction when studying the decomposition of 1 and 2 in the temperature range 500−800 °C. The phase that has been previously reported as Pb0.43MnO2.18 was synthesized in the pure form by decomposition of 1, and crystallographically characterized. The orthorhombic unit cell parameters of this oxide, obtained by electron diffraction technique, have been subsequently refined using X-ray powder diffraction data. Besides that, a previously unknown lead−manganese oxide has been obtained at low temperature decomposition and short annealing times. The parameters of its monoclinically distorted unit cell have been determined. The EDX analysis revealed that this compound has a Pb/Mn ratio close to 1:4 and contains no appreciable amount of fluorine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000269313500056 Publication Date 2009-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 28 Open Access  
  Notes Approved Most recent IF: 4.857; 2009 IF: 4.657  
  Call Number UA @ lucian @ c:irua:78486 Serial 2308  
Permanent link to this record
 

 
Author Lepoittevin, C.; Hadermann, J.; Malo, S.; Pérez, O.; Van Tendeloo, G.; Hervieu, M. pdf  doi
openurl 
  Title Two variants of the 1/2[110]p(203)p crystallographic shear structures: the phasoid Sr0.61Pb0.18(Fe0.75Mn0.25)O2.29 Type A1 Journal article
  Year 2009 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 48 Issue 17 Pages 8257-8262  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract For the composition (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29, a new modulated crystallographic shear structure, related to perovskite, has been synthesized and structurally characterized by transmission electron microscopy. The structure can be described using a monoclinic supercell with cell parameters am = 27.595(2) Å, bm = 3.8786(2) Å, cm = 13.3453(9) Å, and βm = 100.126(5)°, refined from powder X-ray diffraction data. The incommensurate crystallographic shear phases require an alternative approach using the superspace formalism. This allows a unified description of the incommensurate phases from a monoclinically distorted perovskite unit cell and a modulation wave vector. The structure deduced from the high-resolution transmission electron microscopy and high-angle annular dark-field−scanning transmission electron microscopy images is that of a 1/2[110]p(203)p crystallographic shear structure. The structure follows the concept of a phasoid, with two coexisting variants with the same unit cell. The difference is situated at the translational interface, with the local formation of double (phase 2) or single (phase 1) tunnels, where the Pb cations are likely located.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000269313500032 Publication Date 2009-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 11 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 4.857; 2009 IF: 4.657  
  Call Number UA @ lucian @ c:irua:78482 Serial 3786  
Permanent link to this record
 

 
Author Alekseeva, A.M.; Abakumov, A.M.; Chizhov, P.S.; Leithe-Jasper, A.; Schnelle, W.; Prots, Y.; Hadermann, J.; Antipov, E.V.; Grin, Y. pdf  doi
openurl 
  Title Ternary magnesium rhodium boride Mg2Rh1-xB6+2x with a modified Y2ReB6-type crystal structure Type A1 Journal article
  Year 2007 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 46 Issue 18 Pages 7378-7386  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000248984500026 Publication Date 2007-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 12 Open Access  
  Notes Approved Most recent IF: 4.857; 2007 IF: 4.123  
  Call Number UA @ lucian @ c:irua:65595 Serial 3510  
Permanent link to this record
 

 
Author Abakumov, A.M.; Morozov, V.A.; Tsirlin, A.A.; Verbeeck, J.; Hadermann, J. pdf  doi
openurl 
  Title Cation ordering and flexibility of the BO42- tetrahedra in incommensurately modulated CaEu2(BO4)4 (B = Mo, W) scheelites Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 53 Issue 17 Pages 9407-9415  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The factors mediating cation ordering in the scheelite-based molybdates and tungstates are discussed on the basis of the incommensurately modulated crystal structures of the CaEu2(BO4)(4) (B = Mo, W) red phosphors solved from high-resolution synchrotron powder X-ray diffraction data. Monoclinic CaEu2(WO4)(4) adopts a (3 + 1)-dimensionally modulated structure [superspace group I2/b(alpha beta 0)00, a = 5.238 73(1)A, b = 5.266 35(1) A, c = 11.463 19(9) A, gamma = 91.1511(2)degrees, q = 0.56153(6)a* + 0.7708(9)b*, R-F = 0.050, R-p = 0.069], whereas tetragonal CaEu2(MoO4)(4) is (3 + 2)-dimensionally modulated [superspace group I4(1)/ a(alpha beta 0)00(-beta alpha 0)00, a = 5.238 672(7) A, c = 11.548 43(2) A, q(1) = 035331(8)a* + 0.82068(9)b*, q(2) = -0.82068(9)a* + 0.55331(8)b*, R-F = 0.061, R-p = 0.082]. In both cases the modulation arises from the ordering of the Ca/Eu cations and the cation vacancies at the A-sublattice of the parent scheelite ABO(4) structure. The cation ordering is incomplete and better described with harmonic rather than with steplike occupational modulation functions. The structures respond to the variation of the effective charge and cation size at the A-position through the flexible geometry of the MoO42- and WO42- tetrahedra demonstrating an alternation of stretching the B-O bond lengths and bending the O-B-O bond angles. The tendency towards A-site cation ordering in scheelites is rationalized using the difference in ionic radii and concentration of the A-site vacancies as parameters and presented in the form of a structure map.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000341229600068 Publication Date 2014-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 48 Open Access  
  Notes Fwo G039211n Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:119292UA @ admin @ c:irua:119292 Serial 297  
Permanent link to this record
 

 
Author Batuk, M.; Turner, S.; Abakumov, A.M.; Batuk, D.; Hadermann, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 53 Issue 4 Pages 2171-2180  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Crystallographic shear (CS) planes provide a new structure-generation mechanism in the anion-deficient perovskites containing lone-pair cations. Pb2Sr2Bi2Fe6O16, a new n = 6 representative of the AnBnO3n2 homologous series of the perovskite-based ferrites with the CS structure, has been synthesized using the solid-state technique. The structure is built of perovskite blocks with a thickness of four FeO6 octahedra spaced by double columns of FeO5 edge-sharing distorted tetragonal pyramids, forming 1/2[110](101)p CS planes (space group Pnma, a = 5.6690(2) Å, b = 3.9108(1) Å, c = 32.643(1) Å). Pb2Sr2Bi2Fe6O16 features a wealth of microstructural phenomena caused by the flexibility of the CS planes due to the variable ratio and length of the constituting fragments with {101}p and {001}p orientation. This leads to the formation of waves, hairpins, Γ-shaped defects, and inclusions of the hitherto unknown layered anion-deficient perovskites Bi2(Sr,Pb)Fe3O8.5 and Bi3(Sr,Pb)Fe4O11.5. Using a combination of diffraction, imaging, and spectroscopic transmission electron microscopy techniques this complex microstructure was fully characterized, including direct determination of positions, chemical composition, and coordination number of individual atomic species. The complex defect structure makes these perovskites particularly similar to the CS structures in ReO3-type oxides. The flexibility of the CS planes appears to be a specific feature of the Sr-based system, related to the geometric match between the SrO perovskite layers and the {100}p segments of the CS planes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000332144100039 Publication Date 2014-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes Countatoms; FWO Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:113507 Serial 198  
Permanent link to this record
 

 
Author Retuerto, M.; Li, M.R.; Ignatov, A.; Croft, M.; Ramanujachary, K.V.; Chi, S.; Hodges, J.P.; Dachraoui, W.; Hadermann, J.; Tran, T.T.; Halasyamani, P.S.; Grams, C.P.; Hemberger, J.; Greenblatt, M.; doi  openurl
  Title Polar and magnetic layered A-site and rock salt B-site-ordered NaLnFeWO6 (Ln = La, Nd) perovskites Type A1 Journal article
  Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 52 Issue 21 Pages 12482-12491  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have expanded the double perovskite family of materials with the unusual combination of layered order in the A sublattice and rock salt order over the B sublattice to compounds NaLaFeWO6 and NaNdFeWO6. The materials have been synthesized and studied by powder X-ray diffraction, neutron diffraction, electron diffraction, magnetic measurements, X-ray absorption spectroscopy, dielectric measurements, and second harmonic generation. At room temperature, the crystal structures of both compounds can be defined in the noncentrosymmetric monoclinic P2(1) space group resulting from the combination of ordering both in the A and B sublattices, the distortion of the cell due to tilting of the octahedra, and the displacement of certain cations. The magnetic studies show that both compounds are ordered antiferromagnetically below T-N approximate to 25 K for NaLaFeWO6 and at similar to 21 K for NaNdFeWO6. The magnetic structure of NaNdFeWO6 has been solved with a propagation vector k = (1/2 0 1/2) as an antiferromagnetic arrangement of Fe and Nd moments. Although the samples are potential multiferroics, the dielectric measurements do not show a ferroelectric response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000326669200035 Publication Date 2013-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 17 Open Access  
  Notes Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:112714 Serial 2656  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Tsirlin, A.A.; McCammon, C.M.; Dubrovinsky, L.; Hadermann, J. pdf  doi
openurl 
  Title Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites Type A1 Journal article
  Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 52 Issue 17 Pages 10009-10020  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Factors affecting the structure and orientation of the crystallographic shear (CS) planes in anion-deficient perovskites are investigated using the (Pb1−zSrz)1−xFe1+xO3−y perovskites as a model system. The orientation of the CS planes in the system varies unevenly with z. A comparison of the structures with different CS planes revels that the orientation of the CS planes is governed mainly by the stereochemical activity of the lone-electron-pair cations inside the perovskite blocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000326129000037 Publication Date 2013-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 11 Open Access  
  Notes Fwo Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:111394 Serial 822  
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Tsirlin, A.A.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Homologous series of layered perovskites An+1BnO3n-1Cl : crystal and magnetic structure of a new oxychloride Pb4BiFe4O11Cl Type A1 Journal article
  Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 52 Issue 4 Pages 2208-2218  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The nuclear and magnetic structure of a novel oxychloride Pb4BiFe4O11Cl has been studied over the temperature range 1.5700 K using a combination of transmission electron microscopy and synchrotron and neutron powder diffraction [space group P4/mbm, a = 5.5311(1) Å, c = 19.586(1) Å, T = 300 K]. Pb4BiFe4O11Cl is built of truncated (Pb,Bi)3Fe4O11 quadruple perovskite blocks separated by CsCl-type (Pb,Bi)2Cl slabs. The perovskite blocks consist of two layers of FeO6 octahedra located between two layers of FeO5 tetragonal pyramids. The FeO6 octahedra rotate about the c axis, resulting in a √2ap × √2ap × c superstructure. Below TN = 595(17) K, Pb4BiFe4O11Cl adopts a G-type antiferromagnetic structure with the iron magnetic moments confined to the ab plane. The ordered magnetic moments at 1.5 K are 3.93(3) and 3.62(4) μB on the octahedral and square-pyramidal iron sites, respectively. Pb4BiFe4O11Cl can be considered a member of the perovskite-based An+1BnO3n1Cl homologous series (A = Pb/Bi; B = Fe) with n = 4. The formation of a subsequent member of the series with n = 5 is also demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000315255200067 Publication Date 2013-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:106185 Serial 1486  
Permanent link to this record
 

 
Author Abakumov, A.M.; Batuk, M.; Tsirlin, A.A.; Tyablikov, O.A.; Sheptyakov, D.V.; Filimonov, D.S.; Pokholok, K.V.; Zhidal, V.S.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.; pdf  doi
openurl 
  Title Structural and magnetic phase transitions in the AnBnO3n-2 anion-deficient perovskites Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 Type A1 Journal article
  Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 52 Issue 14 Pages 7834-7843  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Novel anion-deficient perovskite-based ferrites Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 were synthesized by solid-state reaction in air. Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 belong to the perovskite-based AnBnO3n2 homologous series with n = 5 and 6, respectively, with a unit cell related to the perovskite subcell ap as ap√2 × ap × nap√2. Their structures are derived from the perovskite one by slicing it with 1/2[110]p(1̅01)p crystallographic shear (CS) planes. The CS operation results in (1̅01)p-shaped perovskite blocks with a thickness of (n 2) FeO6 octahedra connected to each other through double chains of edge-sharing FeO5 distorted tetragonal pyramids which can adopt two distinct mirror-related configurations. Ordering of chains with a different configuration provides an extra level of structure complexity. Above T ≈ 750 K for Pb2Ba2BiFe5O13 and T ≈ 400 K for Pb1.5Ba2.5Bi2Fe6O16 the chains have a disordered arrangement. On cooling, a second-order structural phase transition to the ordered state occurs in both compounds. Symmetry changes upon phase transition are analyzed using a combination of superspace crystallography and group theory approach. Correlations between the chain ordering pattern and octahedral tilting in the perovskite blocks are discussed. Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 undergo a transition into an antiferromagnetically (AFM) ordered state, which is characterized by a G-type AFM ordering of the Fe magnetic moments within the perovskite blocks. The AFM perovskite blocks are stacked along the CS planes producing alternating FM and AFM-aligned FeFe pairs. In spite of the apparent frustration of the magnetic coupling between the perovskite blocks, all n = 4, 5, 6 AnFenO3n2 (A = Pb, Bi, Ba) feature robust antiferromagnetism with similar Néel temperatures of 623632 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000322087100006 Publication Date 2013-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 10 Open Access  
  Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:109213 Serial 3196  
Permanent link to this record
 

 
Author Retuerto, M.; Li, M.R.; Go, Y.B.; Ignatov, A.; Croft, M.; Ramanujachary, K.V.; Hadermann, J.; Hodges, J.P.; Herber, R.H.; Nowik, I.; Greenblatt, M.; pdf  doi
openurl 
  Title Magnetic and structural studies of the multifunctional material SrFe0.75Mo0.25O3-\text{\textgreek{d}} Type A1 Journal article
  Year 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 51 Issue 22 Pages 12273-12280  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract SrFe0.75Mo0.25O3-delta has been recently discovered as an extremely efficient electrode for intermediate temperature solid oxide fuel cells (IT-SOFCs). We have performed structural and magnetic studies to fully characterize this multifunctional material. We have observed by powder neutron diffraction (PND) and transmission electron microscopy (TEM) that its crystal symmetry is better explained with a tetragonal symmetry (I4/mcm space group) than with the previously reported orthorhombic symmetry (Pnma space group). The temperature dependent magnetic properties indicate an exceptionally high magnetic ordering temperature (T-N similar to 750 K), well above room temperature. The ordered magnetic structure at low temperature was determined by PND to be an antiferromagnetic coupling of the Fe cations. Mossbauer spectroscopy corroborated the PND results. A detailed study, with X-ray absorption spectroscopy (XAS), in agreement with the Mossbauer results, confirmed the formal oxidation states of the cations to be mixed valence Fe3+/4+ and Mo6+.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000311173700024 Publication Date 2012-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 12 Open Access  
  Notes Approved Most recent IF: 4.857; 2012 IF: 4.593  
  Call Number UA @ lucian @ c:irua:105142 Serial 1862  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Rozova, M.G.; Sarakinou, E.; Antipov, E.V. doi  openurl
  Title Expanding the Ruddlesden-Popper manganite family : the n=3 La3.2Ba0.8Mn3O10 Member Type A1 Journal article
  Year 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 51 Issue 21 Pages 11487-11492  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract La3.2Ba0.8Mn3O10, a representative of the rare n = 3 members of the Ruddlesden-Popper manganites A(n+1)Mn(n)O(3n+1), was synthesized in an evacuated sealed silica tube. Its crystal structure was refined from a combination of powder X-ray diffraction (PXD) and precession electron diffraction (PED) data, with the rotations of the MnO6 octahedra described within the symmetry-adapted mode approach (space group Cccm, a = 29.068(1) angstrom, b = 5.5504(5) angstrom, c = 5.5412(5) angstrom; PXD RF = 0.053, RP = 0.026; PED RF = 0.248). The perovskite block in La3.2Ba0.8Mn3O10 features an octahedral tilting distortion with out-of-phase rotations of the Mn06 octahedra according to the (Phi,Phi,0)(Phi,Phi,0) mode, observed for the first time in the n = 3 Ruddlesden-Popper structures. The Mn06 octahedra demonstrate a noticeable deformation with the elongation of two apical Mn-O bonds due to the Jahn-Teller effect in the Mn3+ cations. The relationships between the octahedral tilting distortion, the ionic radii of the cations at the A- and B-positions, and the mismatch between the perovslcite and rock-salt blocks of the Ruddlesden-Popper structure are discussed. At low temperatures, La3.2Ba0.8Mn3O10 reveals a sizable remnant magnetization of about 1.3 mu(B)/Mn at 2K, and shows signatures of spin freezing below 150 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000313220200036 Publication Date 2012-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 2 Open Access  
  Notes Approved Most recent IF: 4.857; 2012 IF: 4.593  
  Call Number UA @ lucian @ c:irua:110121 Serial 1133  
Permanent link to this record
 

 
Author Batuk, D.; Hadermann, J.; Abakumov, A.; Vranken, T.; Hardy, A.; van Bael, M.; Van Tendeloo, G. doi  openurl
  Title Layered perovskite-like Pb2Fe2O5 structure as a parent matrix for the nucleation and growth of crystallographic shear planes Type A1 Journal article
  Year 2011 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 50 Issue 11 Pages 4978-4986  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Pb2Fe2O5 compound with a layered intergrowth structure has been prepared by a solid-state reaction at 700 °C. The incommensurate compound crystallizes in a tetragonal system with a = 3.9037(2) Å, c = 3.9996(4) Å, and q = 0.1186(4)c*, or when treated as a commensurate approximant, a = 3.9047(2) Å, c = 36.000(3) Å, space group I4/mmm. The crystal structure of Pb2Fe2O5 was resolved from transmission electron microscopy data. Atomic coordinates and occupancies of the cation positions were estimated from high-angle annular dark-field scanning transmission electron microscopy data. Direct visualization of the positions of the oxygen atoms was possible using annular bright-field scanning transmission electron microscopy. The structure can be represented as an intergrowth of perovskite blocks and partially disordered blocks with a structure similar to that of the Bi2O2 blocks in Aurivillius-type phases. The A-cation positions at the border of the perovskite block and the cation positions in the Aurivillius-type blocks are jointly occupied by Pb2+ and Fe3+ cations, resulting in a layer sequence along the c axis: PbOFeO2PbOFeO2Pb7/8Fe1/8O1xFe5/8Pb3/8O2Fe5/8Pb3/8. Upon heating, the layered Pb2Fe2O5 structure transforms into an anion-deficient perovskite modulated by periodically spaced crystallographic shear (CS) planes. Considering the layered Pb2Fe2O5 structure as a parent matrix for the nucleation and growth of CS planes allows an explanation of the specific microstructure observed for the CS structures in the PbFeO system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000290978400038 Publication Date 2011-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 16 Open Access  
  Notes Approved Most recent IF: 4.857; 2011 IF: 4.601  
  Call Number UA @ lucian @ c:irua:90141 Serial 1809  
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Batuk, M.; d' Hondt, H.; Tyablikov, O.A.; Rozova, M.G.; Pokholok, K.V.; Filimonov, D.S.; Sheptyakov, D.V.; Tsirlin, A.A.; Niermann, D.; Hemberger, J.; Van Tendeloo, G.; Antipov, E.V. pdf  doi
openurl 
  Title Slicing the Perovskite structure with crystallographic shear planes : the AnBnO3n-2 homologous series Type A1 Journal article
  Year 2010 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 49 Issue 20 Pages 9508-9516  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new AnBnO3n−2 homologous series of anion-deficient perovskites has been evidenced by preparation of the members with n = 5 (Pb2.9Ba2.1Fe4TiO13) and n = 6 (Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16) in a single phase form. The crystal structures of these compounds were determined using a combination of transmission electron microscopy and X-ray and neutron powder diffraction (S.G. Ammm, a = 5.74313(7), b = 3.98402(4), c = 26.8378(4) Å, RI = 0.035, RP = 0.042 for Pb2.9Ba2.1Fe4TiO13 and S.G. Imma, a = 5.7199(1), b = 3.97066(7), c = 32.5245(8) Å, RI = 0.032, RP = 0.037 for Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16). The crystal structures of the AnBnO3n−2 homologues are formed by slicing the perovskite structure with (01)p crystallographic shear (CS) planes. The shear planes remove a layer of oxygen atoms and displace the perovskite blocks with respect to each other by the 1/2[110]p vector. The CS planes introduce edge-sharing connections of the transition metal−oxygen polyhedra at the interface between the perovskite blocks. This results in intrinsically frustrated magnetic couplings between the perovskite blocks due to a competition of the exchange interactions between the edge- and the corner-sharing metal−oxygen polyhedra. Despite the magnetic frustration, neutron powder diffraction and Mssbauer spectroscopy reveal that Pb2.9Ba2.1Fe4TiO13 and Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16 are antiferromagnetically ordered below TN = 407 and 343 K, respectively. The Pb2.9Ba2.1Fe4TiO13 and Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16 compounds are in a paraelectric state in the 5−300 K temperature range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000282783400051 Publication Date 2010-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 23 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 4.857; 2010 IF: 4.326  
  Call Number UA @ lucian @ c:irua:84963 Serial 3041  
Permanent link to this record
 

 
Author King, G.; Abakumov, A.M.; Hadermann, J.; Alekseeva, A.M.; Rozova, M.G.; Perkisas, T.; Woodward, P.M.; Van Tendeloo, G.; Antipov, E.V. doi  openurl
  Title Crystal structure and phase transitions in Sr3WO6 Type A1 Journal article
  Year 2010 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 49 Issue 13 Pages 6058-6065  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structures of the beta and gamma polymorphs of Sr3WO6 and the gamma <->beta phase transition have been investigated using electron diffraction, synchrotron X-ray powder diffraction, and neutron powder diffraction. The gamma-Sr3WO6 polymorph is stable above T-c approximate to 470 K and adopts a monoclinically distorted double perovskite A(2)BB'O-6= Sr2SrWO6 structure (space group Cc, a = 10.2363(1)angstrom, b= 17.9007(1)angstrom, c= 11.9717(1)angstrom, beta=125.585(1)degrees at T= 1373 K, Z=12, corresponding to a = a(p)+1/2b(p) – 1/2c(p), b =3/2b(p) + 3/2c(p), c =-b(p) + c(p), a(p),b(p), c(p), lattice vectors of the parent Fm (3) over barm double perovskite structure). Upon cooling it undergoes a continuous phase transition into the triclinically distorted beta-Sr3WO6 phase (space group Cl, a = 10.09497(3)angstrom, b = 17.64748(5)angstrom, c = 11.81400(3)angstrom, alpha = 89.5470(2)degrees, beta= 125.4529(2)degrees, gamma =90.2889(2)degrees at T= 300 K). Both crystal structures of Sr3WO6 belong to a family of double perovskites with broken corner sharing connectivity of the octahedral framework. A remarkable feature of the gamma-Sr3WO6 structure is a non-cooperative rotation of the WO6 octahedra. One third of the WO6 octahedra are rotated by 45 about either the bp or the cp axis of the parent double perovskite structure. As a result, the WO6 octahedra do not share corners but instead share edges with the coordination polyhedra of the Sr cations at the B positions increasing their coordination number from 6 to 7 or 8. The crystal structure of the beta-phase is very close to the structure of the gamma-phase; decreasing symmetry upon the gamma ->beta transformation occurs because of unequal octahedral rotation angles about the bp and cp axes and increasing distortions of the WO6 octahedra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000279211500036 Publication Date 2010-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 18 Open Access  
  Notes Approved Most recent IF: 4.857; 2010 IF: 4.326  
  Call Number UA @ lucian @ c:irua:83877 Serial 562  
Permanent link to this record
 

 
Author Parsons, T.G.; d' Hondt, H.; Hadermann, J.; Hayward, M.A. pdf  doi
openurl 
  Title Synthesis and structural characterization of La1-xAxMnO2.5 (A = Ba, Sr, Ca) phases: mapping the variants of the brownmillerite structure Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 22 Pages 5527-5538  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Analysis of the structural parameters of phases that adopt brownmillerite-type structures suggests the distribution of the different complex ordering schemes adopted within this structure type can be rationalized by considering both the size of the separation between the tetrahedral layers and the tetrahedral chain distortion angle. A systematic study using structural data obtained from La1−xAxMnO2,5 (A = Ba, Sr, Ca,) phases, prepared by the topotactic reduction of the analogous La1−xAxMnO3 perovskite phases, was performed to investigate this relationship. By manipulating the A-cation composition, both the tetrahedral layer separation and tetrahedral chain distortion angle in the La1−xAxMnO2,5 phases were controlled and from the data obtained a ¡°structure map¡± of the different brownmillerite variants was plotted as a function of these structural parameters. This map has been extended to include a wide range of reported brownmillerite phases showing the structural ideas presented are widely applicable. The complete structural characterization of La1−xAxMnO2,5 0.1 ¡Ü x ¡Ü 0.33, A = Ba; 0.15 ¡Ü x ¡Ü 0.5 A = Sr, and 0.22 ¡Ü x ¡Ü 0.5 A = Ca is described and includes compositions which exhibit complex intralayer ordered structures and Mn2+/Mn3+ charge ordering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000271756400021 Publication Date 2009-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 60 Open Access  
  Notes Iap Vi Approved Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:79935 Serial 3435  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Van Rompaey, S.; Mankevich, A.S.; Korsakov, I.E. doi  openurl
  Title Comment on ALaMn2O6-y (A = K, Rb): novel ferromagnetic manganites exhibiting negative giant magnetoresistance Type Editorial
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 9 Pages 2000-2001  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000265781000036 Publication Date 2009-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 4 Open Access  
  Notes Approved Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:77055 Serial 411  
Permanent link to this record
 

 
Author d' Hondt, H.; Abakumov, A.M.; Hadermann, J.; Kalyuzhnaya, A.S.; Rozova, M.G.; Antipov, E.V.; Van Tendeloo, G. pdf  doi
openurl 
  Title Tetrahedral chain order in the Sr2Fe2O5 brownmillerite Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue 22 Pages 7188-7194  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure of the Sr2Fe2O5 brownmillerite has been investigated using electron diffraction and high resolution electron microscopy. The Sr2Fe2O5 structure demonstrates two-dimensional order: the tetrahedral chains with two mirror-related configurations (L and R) are arranged within the tetrahedral layers according to the −L−R−L−R− sequence, and the layers themselves are displaced with respect to each other over 1/2[111] or 1/2[11] vectors of the brownmillerite unit cell, resulting in different ordered stacking variants. A unified superspace model is constructed for ordered stacking sequences in brownmillerites based on the average brownmillerite structure with a = 5.5298(4)Å, b = 15.5875(12)Å, c = 5.6687(4)Å, and (3 + 1)-dimensional superspace group I2/m(0βγ)0s, q = βb* + γc*, 0 ≤ β ≤ 1/2, 0 ≤ γ ≤ 1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000261002200039 Publication Date 2008-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 64 Open Access  
  Notes Iap Vi Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:72945 Serial 3511  
Permanent link to this record
 

 
Author Gillie, L.J.; Hadermann, J.; Hervieu, M.; Maignan, A.; Martin, C. doi  openurl
  Title Oxygen vacancy ordering in the double-layered Ruddlesden-Popper cobaltite Sm2BaCo2O7-\delta Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue 19 Pages 6231-6237  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new oxygen-deficient Ruddlesden−Popper (RP) cobaltite Sm2BaCo2O7−δ (δ ≈ 1.0) has been synthesized and the crystal structure elucidated by Rietveld analysis of X-ray powder diffraction (XRD) data and transmission electron microscopy (TEM). The phase crystallizes in a primitive orthorhombic unit cell, with lattice parameters a = 5.4371(4) Å; b = 5.4405(4) Å and c = 19.8629(6) Å, and space group Pnnm. Contrary to other oxygen-deficient cobalt RP phases, the oxygen vacancies are located in the equatorial positions of the [CoO] layers to give an intralayer structure similar to Sr2Mn2O5, which is not usually observed for cobalt-containing materials. The Sm3+ and Ba2+ cations show a strong preference for distinct sites, with the majority of the larger Ba2+ cations situated in the perovskite block layers and Sm3+ cations predominantly in the rock salt layers. Magnetic susceptibility data demonstrate the strong antiferromagnetic (AFM) character of Sm2BaCo2O7−δ.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000259871500038 Publication Date 2008-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 7 Open Access  
  Notes Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:72946 Serial 2548  
Permanent link to this record
 

 
Author Morozov, V.A.; Raskina, M.V.; Lazoryak, B.I.; Meert, K.W.; Korthout, K.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J.; pdf  doi
openurl 
  Title Crystal Structure and Luminescent Properties of R2-xEux(MoO4)(3) (R = Gd, Sm) Red Phosphors Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 24 Pages 7124-7136  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The R-2(MoO4)(3) (R = rare earth elements) molybdates doped with Eu3+ cations are interesting red-emitting materials for display and solid-state lighting applications. The structure and luminescent properties of the R2-xEux(MoO4)(3) (R = Gd, Sm) solid solutions have been investigated as a function of chemical composition and preparation conditions. Monoclinic (alpha) and orthorhombic (beta') R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) modifications were prepared by solid-state reaction, and their structures were investigated using synchrotron powder X-ray diffraction and transmission electron microscopy. The pure orthorhombic beta'-phases could be synthesized only by quenching from high temperature to room temperature for Gd2-xEux(MoO4)(3) in the Eu3+-rich part (x > 1) and for all Sm2-xEux(MoO4)(3) solid solutions. The transformation from the alpha-phase to the beta'-phase results in a notable increase (similar to 24%) of the unit cell volume for all R2-xEux(MoO4)(3) (R = Sm, Gd) solid solutions. The luminescent properties of all R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) solid solutions were measured, and their optical properties were related to their structural properties. All R2-xEux(MoO4)(3) (R = Gd, Sm; 0 <= x <= 2) phosphors emit intense red light dominated by the D-5(0)-> F-7(2) transition at similar to 616 nm. However, a change in the multiplet splitting is observed when switching from the monoclinic to the orthorhombic structure, as a consequence of the change in coordination polyhedron of the luminescent ion from RO8 to RO7 for the alpha- and beta'-modification, respectively. The Gd2-xEux(MoO4)(3) solid solutions are the most efficient emitters in the range of 0 < x < 1.5, but their emission intensity is comparable to or even significantly lower than that of Sm2-xEux(MoO4)(3) for higher Eu3+ concentrations (1.5 <= x <= 1.75). Electron energy loss spectroscopy (EELS) measurements revealed the influence of the structure and element content on the number and positions of bands in the ultraviolet-visible-infrared regions of the EELS spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347139700027 Publication Date 2014-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 24 Open Access  
  Notes Fwo G039211n; G004413n; 278510 Vortex ECASJO_; Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:122829UA @ admin @ c:irua:122829 Serial 558  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: