toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Legrand, S.; Vanmeert, F.; van der Snickt, G.; Alfeld, M.; de Nolf, W.; Dik, J.; Janssens, K. url  doi
openurl 
  Title Examination of historical paintings by state-of-the-art hyperspectral imaging methods : from scanning infra-red spectroscopy to computed X-ray laminography Type A1 Journal article
  Year 2014 Publication Heritage science Abbreviated Journal  
  Volume 2 Issue Pages 13-11  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The development of advanced methods for non-destructive selective imaging of painted works of art at the macroscopic level based on radiation in the X-ray and infrared range of the electromagnetic spectrum are concisely reviewed. Such methods allow to either record depth-selective, element-selective or species-selective images of entire paintings. Camera-based full field methods (that record the image data in parallel) can be discerned next to scanning methods (that build up distributions in a sequential manner by scanning a beam of radiation over the surface of an artefact). Six methods are discussed: on the one hand, macroscopic X-ray fluorescence and X-ray diffraction imaging and X-ray laminography and on the other hand macroscopic Mid and Near Infrared hyper- and full spectral imaging and Optical Coherence Tomography. These methods can be considered to be improved versions of the well-established imaging methods employed worldwide for examination of paintings, i.e., X-ray radiography and Infrared reflectography. Possibilities and limitations of these new imaging techniques are outlined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2014-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:124629 Serial 5619  
Permanent link to this record
 

 
Author van Loon, A.; Noble, P.; Krekeler, A.; van der Snickt, G.; Janssens, K.; Abe, Y.; Nakai, I.; Dik, J. url  doi
openurl 
  Title Artificial orpiment, a new pigment in Rembrandt's palette Type A1 Journal article
  Year 2017 Publication Heritage science Abbreviated Journal  
  Volume 5 Issue Pages 26  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This paper reports on how the application of macro X-ray fluorescence (MA-XRF) imaging, in combination with the re-examination of existing paint cross-sections, has led to the discovery of a new pigment in Rembrandt's palette: artificial orpiment. In the NWO Science4Arts 'ReVisRembrandt' project, novel chemical imaging techniques are being developed and applied to the study of Rembrandt's late paintings in order to help resolve outstanding questions and to gain a better understanding of his late enigmatic painting technique. One of the selected case studies is the Portrait of a Couple as Isaac and Rebecca, known as 'The Jewish Bride', dated c. 1665 and on view in the Rijksmuseum. During the re-installation of the Rijksmuseum in 2013, the picture was scanned using the Bruker M6 Jetstream MAXRF scanner. The resulting elemental distribution maps made it possible to distinguish many features in the painting, such as bone black remains of the original hat (P, Ca maps), and the now discolored smalt-rich background (Co, Ni, As, K maps). The arsenic (As) map also revealed areas of high-intensity in Isaac's sleeve and Rebecca's dress where it could be established that it was not related with the pigment smalt that also contains arsenic. This pointed to the presence of a yellow or orange arsenic-containing pigment, such as realgar or orpiment that is not associated with the artist's palette. Subsequent examination of existing paint cross-sections from these locations taken by Karin Groen in the 1990s identified isolated, almost perfectly round particles of arsenic sulfide. The round shape corresponds with published findings on a purified form of artificial orpiment glass obtained by dry processing, a sublimation reaction. In bright field, the particles characteristically exhibit a dark cross in the middle caused by internal light reflections. The results of additional non-invasive techniques (portable XRD and portable Raman) are discussed, as well as the implications of this finding and how it fits with Rembrandt's late experimental painting technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404916400001 Publication Date 2017-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 6 Open Access  
  Notes ; This research is part of the Science4Arts Program, funded by the Netherlands Organization for Scientific Research (NWO) (Grant No. SFA-11-12). GVdS is supported by the Baillet Latour Fund. The authors would like to thank Lisette Vos, Rijksmuseum Amsterdam, for assisting with the MA-XRF scanning; Arisa Izumi and Airi Hirayama, students of the Tokyo University of Science, and Frederik Vanmeert, University of Antwerp, for assisting with the pXRD and pRaman measurements. We are also grateful to Rob Erdmann, Rijksmuseum Amsterdam, who made the curtain viewer to facilitate comparison of the visible image with the elemental distribution maps of the painting. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:144864 Serial 5479  
Permanent link to this record
 

 
Author Dooley, K.A.; Gifford, E.M.; van Loon, A.; Noble, P.; Zeibel, J.G.; Conover, D.M.; Alfeld, M.; van der Snickt, G.; Legrand, S.; Janssens, K.; Dik, J.; Delaney, J.K. url  doi
openurl 
  Title Separating two painting campaigns in Saul and David, attributed to Rembrandt, using macroscale reflectance and XRF imaging spectroscopies and microscale paint analysis Type A1 Journal article
  Year 2018 Publication Heritage science Abbreviated Journal  
  Volume 6 Issue 6 Pages 46  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Late paintings of Rembrandt van Rijn (1606-1669) offer intriguing problems for both art historians and conservation scientists. In the research presented here, the key question addressed is whether observed stylistic differences in paint handling can be correlated with material differences. In Saul and David, in the collection of the Royal Picture Gallery Mauritshuis in The Hague, NL, the stylistic differences between the loose brushwork of Saul's cloak and the more detailed depiction of his turban and the figure of David have been associated with at least two painting stages since the late 1960s, but the attribution of each stage has been debated in the art historical literature. Stylistic evaluation of the paint handling in the two stages, based on magnified surface examination, is further described here. One of the research goals was to determine whether the stylistic differences could be further differentiated with macroscale and microscale methods of material analysis. To address this, selected areas of the painting having pronounced stylistic differences were investigated with two macroscopic chemical imaging methods, X-ray fluorescence and reflectance imaging spectroscopies. The pigments used were identified and their spatial distribution was mapped. The mapping results show that the passages rendered in more detail and associated stylistically with the first painting stage, such as the orange-red color of David's garment or the Greek key design in Saul's turban, were painted with predominately red ochre mixed with vermilion. The regions of loose, bold brushwork, such as the orange-red slashing strokes in the interior of Saul's cloak, associated with the second painting stage, were painted with predominately red ochre without vermilion. These macroscale imaging results were confirmed and extended with scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) analysis of three cross-sections taken from regions of stylistic differences associated with the two painting stages, including one sample each from the right and left sleeve of David, and one from the interior of Saul's cloak. SEM-EDX also identified a trace component, barium sulfate, associated with the red ochre of the second stage revisions. Combining mapping information from two spectroscopic imaging methods with localized information from microscopic samples has clearly shown that the stylistic differences observed in the paint handling are affiliated with differences in the chemical composition of the paints.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441205600001 Publication Date 2018-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes ; The authors gratefully acknowledge the financial support through the NWO Science4Arts program (ReVisRembrandt Project 2012-2018) and the NSF SCI-ART program (Award 1041827). JKD acknowledges support from the Andrew W. Mellon and the Samuel H. Kress Foundations. SL is grateful for a doctoral scholarship from the Research Council of the University of Antwerp. GvdS and KJ acknowledge support from the Fund Baillet Latour. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:153119 Serial 5829  
Permanent link to this record
 

 
Author van Loon, A.; Noble, P.; de Man, D.; Alfeld, M.; Callewaert, T.; van der Snickt, G.; Janssens, K.; Dik, J. url  doi
openurl 
  Title The role of smalt in complex pigment mixtures in Rembrandt'sHomer1663: combining MA-XRF imaging, microanalysis, paint reconstructions and OCT Type A1 Journal article
  Year 2020 Publication Heritage science Abbreviated Journal  
  Volume 8 Issue 1 Pages 90-19  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract As part of the NWO Science4ArtsREVISRembrandtproject (2012-2018), novel chemical imaging techniques were developed and applied to the study of Rembrandt's late experimental painting technique (1651-1669). One of the unique features in his late paintings is his abundant use of smalt: a blue cobalt glass pigment that he often combined with organic lake pigments, earth pigments and blacks. Since most of these smalt-containing paints have discolored over time, we wanted to find out more about how these paintings may have originally looked, and what the role of smalt was in his paint. This paper reports on the use of smalt in complex pigment mixtures in Rembrandt'sHomer(1663), Mauritshuis, The Hague. Macroscopic X-ray fluorescence imaging (MA-XRF) assisted by computational analysis, in combination with SEM-EDX analysis of paint cross-sections, provides new information about the distribution and composition of the smalt paints in the painting. Paint reconstructions were carried out to investigate the effect of different percentages of smalt on the overall color, the drying properties, translucency and texture of the paint. Results show that the influence of (the originally blue) smalt on the intended color of the paint of theHomeris minimal. However, in mixtures with high percentages of smalt, or when combined with more transparent pigments, it was concluded that the smalt did produce a cooler and darker paint. It was also found that the admixture of opaque pigments reduced the translucent character of the smalt. The drying tests show that the paints with (cobalt-containing) smalt dried five times faster compared to those with glass (without cobalt). Most significantly, the texture of the paint was strongly influenced by adding smalt, creating a more irregular surface topography with clearly pronounced brushstrokes. Optical coherence tomography (OCT) was used as an additional tool to reveal differences in translucency and texture between the different paint reconstructions. In conclusion, this study confirmed earlier assumptions that Rembrandt used substantial amounts of smalt in his late paintings, not for its blue color, but to give volume and texture to his paints, to deepen their colors and to make them dry faster.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565893700001 Publication Date 2020-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access  
  Notes Approved Most recent IF: 2.5; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:171995 Serial 8659  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: