toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Kelchtermans, A.; Adriaensens, P.; Slocombe, D.; Kuznetsov, V.L.; Hadermann, J.; Riskin, A.; Elen, K.; Edwards, P.P.; Hardy, A.; Van Bael, M.K. pdf  url
doi  openurl
  Title Increasing the solubility limit for tetrahedral aluminium in ZnO:Al nanorods by variation in synthesis parameters Type A1 Journal article
  Year 2015 Publication Journal of nanomaterials Abbreviated Journal J Nanomater  
  Volume 2015 Issue 2015 Pages 1-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline ZnO:Al nanoparticles are suitable building blocks for transparent conductive layers. As the concentration of substitutional tetrahedral Al is an important factor for improving conductivity, here we aim to increase the fraction of substitutional Al. To this end, synthesis parameters of a solvothermal reaction yielding ZnO:Al nanorods were varied. A unique set of complementary techniques was combined to reveal the exact position of the aluminium ions in the ZnO lattice and demonstrated its importance in order to evaluate the potential of ZnO:Al nanocrystals as optimal building blocks for solution deposited transparent conductive oxide layers. Both an extension of the solvothermal reaction time and stirring during solvothermal treatment result in a higher total tetrahedral aluminium content in the ZnO lattice. However, only the longer solvothermal treatment effectively results in an increase of the substitutional positions aimed for.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000358516300001 Publication Date 2015-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-4110;1687-4129; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.871 Times cited 2 Open Access  
  Notes FWO; Methusalem Approved Most recent IF: 1.871; 2015 IF: 1.644  
  Call Number c:irua:124426 Serial 1600  
Permanent link to this record
 

 
Author Vishwakarma, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Mehta, B.R. pdf  url
doi  openurl
  Title Nanoscale Characterization of Growth of Secondary Phases in Off-Stoichiometric CZTS Thin Films Type A1 Journal article
  Year 2018 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno  
  Volume 18 Issue 3 Pages 1688-1695  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The presence of secondary phases is one of the main issues that hinder the growth of pure kesterite Cu2ZnSnS4 (CZTS) based thin films with suitable electronic and junction properties for efficient solar cell devices. In this work, CZTS thin films with varied Zn and Sn content have been prepared by RF-power controlled co-sputtering deposition using Cu, ZnS and SnS targets and a subsequent sulphurization step. Detailed TEM investigations show that the film shows a layered structure with the majority of the top layer being the kesterite phase. Depending on the initial thin film composition, either about ~1 μm Cu-rich and Zn-poor kesterite or stoichiometric CZTS is formed as top layer. X-ray diffraction, Raman spectroscopy and transmission electron microscopy reveal the presence of Cu2−x S, ZnS and SnO2 minor secondary phases in the form of nanoinclusions or nanoparticles or intermediate layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426033400022 Publication Date 2018-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1533-4880 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.483 Times cited Open Access Not_Open_Access  
  Notes Manoj Vishwakarma acknowl- edges IIT Delhi for MHRD fellowship. Professor B. R. Mehta acknowledges the support of the Schlumberger chair professorship. Manoj Vishwakarma, Joke Hadermann and Olesia M. karakulina acknowledge support provided by InsoL-DST. Manoj Vishwakarma acknowledges sup- port provided by CSIR funded projects and the support of DST-FIST Raman facility. References Approved Most recent IF: 1.483  
  Call Number EMAT @ emat @c:irua:147505 Serial 4775  
Permanent link to this record
 

 
Author Meert, K.W.; Morozov, V.A.; Abakumov, A.M.; Hadermann, J.; Poelman, D.; Smet, P.F. url  doi
openurl 
  Title Energy transfer in Eu3+ doped scheelites : use as thermographic phosphor Type A1 Journal article
  Year 2014 Publication Optics express Abbreviated Journal Opt Express  
  Volume 22 Issue 9 Pages A961-A972  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper the luminescence of the scheelite-based CaGd2(1-x)Eu2x(WO4)4 solid solutions is investigated as a function of the Eu content and temperature. All phosphors show intense red luminescence due to the 5D0 7F2 transition in Eu3+, along with other transitions from the 5D1 and 5D0 excited states. For high Eu3+ concentrations the intensity ratio of the emission originating from the 5D1 and 5D0 levels has a non-conventional temperature dependence, which could be explained by a phonon-assisted cross-relaxation process. It is demonstrated that this intensity ratio can be used as a measure of temperature with high spatial resolution, allowing the use of these scheelites as thermographic phosphor. The main disadvantage of many thermographic phosphors, a decreasing signal for increasing temperature, is absent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335905300037 Publication Date 2014-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 47 Open Access  
  Notes Approved Most recent IF: 3.307; 2014 IF: 3.488  
  Call Number UA @ lucian @ c:irua:117067 Serial 1044  
Permanent link to this record
 

 
Author Van Rompaey, S.; Dachraoui, W.; Turner, S.; Podyacheva, O.Y.; Tan, H.; Verbeeck, J.; Abakumov, A.; Hadermann, J. pdf  url
doi  openurl
  Title Layered oxygen vacancy ordering in Nb-doped SrCo1-xFexO3-\delta perovskite Type A1 Journal article
  Year 2013 Publication Zeitschrift für Kristallographie Abbreviated Journal Z Krist-Cryst Mater  
  Volume 228 Issue 1 Pages 28-34  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure of SrCo0.7Fe0.2Nb0.1O2.72 was determined using a combination of precession electron diffraction (PED), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and spatially resolved electron energy loss spectroscopy (STEM-EELS). The structure has a tetragonal P4/mmm symmetry with cell parameters a = b = a(p), c = 2a(p) (a(p) being the cell parameter of the perovskite parent structure). Octahedral BO2 layers alternate with the anion-deficient BO1.4 layers, the different B cations are randomly distributed over both layers. The specific feature of the SrCo0.7Fe0.2NB0.1O2.72 microstructure is a presence of extensive nanoscale twinning resulting in domains with alignment of the tetragonal c-axis along all three cubic direction of the perovskite subcell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication München Editor  
  Language Wos 000315475900004 Publication Date 2013-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-4946; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.179 Times cited 9 Open Access  
  Notes Fwo; Countatoms Approved Most recent IF: 3.179; 2013 IF: NA  
  Call Number UA @ lucian @ c:irua:107698UA @ admin @ c:irua:107698 Serial 1808  
Permanent link to this record
 

 
Author Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Batuk, M.; Hadermann, J.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Effect of zinc oxide modification by indium oxide on microstructure, adsorbed surface species, and sensitivity to CO Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal  
  Volume 6 Issue 6 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Additives in semiconductor metal oxides are commonly used to improve sensing behavior of gas sensors. Due to complicated effects of additives on the materials microstructure, adsorption sites and reactivity to target gases the sensing mechanism with modified metal oxides is a matter of thorough research. Herein, we establish the promoting effect of nanocrystalline zinc oxide modification by 1-7 at.% of indium on the sensitivity to CO gas due to improved nanostructure dispersion and concentration of active sites. The sensing materials were synthesized via an aqueous coprecipitation route. Materials composition, particle size and BET area were evaluated using X-ray diffraction, nitrogen adsorption isotherms, high-resolution electron microscopy techniques and EDX-mapping. Surface species of chemisorbed oxygen, OH-groups, and acid sites were characterized by probe molecule techniques and infrared spectroscopy. It was found that particle size of zinc oxide decreased and the BET area increased with the amount of indium oxide. The additive was observed as amorphous indium oxide segregated on agglomerated ZnO nanocrystals. The measured concentration of surface species was higher on In2O3-modified zinc oxide. With the increase of indium oxide content, the sensor response of ZnO/In2O3 to CO was improved. Using in situ infrared spectroscopy, it was shown that oxidation of CO molecules was enhanced on the modified zinc oxide surface. The effect of modifier was attributed to promotion of surface OH-groups and enhancement of CO oxidation on the segregated indium ions, as suggested by DFT in previous work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461540600001 Publication Date 2019-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access OpenAccess  
  Notes ; Research was supported by the grant from Russian Science Foundation (project No. 18-73-00071). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158540 Serial 5205  
Permanent link to this record
 

 
Author Chizhov, A.; Vasiliev, R.; Rumyantseva, M.; Krylov, I.; Drozdov, K.; Batuk, M.; Hadermann, J.; Abakumov, A.; Gaskov, A. url  doi
openurl 
  Title Light-activated sub-ppm NO2 detection by hybrid ZnO/QD nanomaterials vs. charge localization in core-shell QD Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal  
  Volume 6 Issue 6 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New hybrid materials-photosensitized nanocomposites containing nanocrystal heterostructures with spatial charge separation, show high response for practically important sub-ppm level NO2 detection at room temperature. Nanocomposites ZnO/CdSe, ZnO/(CdS@CdSe), and ZnO/(ZnSe@CdS) were obtained by the immobilization of nanocrystals-colloidal quantum dots (QDs), on the matrix of nanocrystalline ZnO. The formation of crystalline core-shell structure of QDs was confirmed by HAADF-STEM coupled with EELS mapping. Optical properties of photosensitizers have been investigated by optical absorption and luminescence spectroscopy combined with spectral dependences of photoconductivity, which proved different charge localization regimes. Photoelectrical and gas sensor properties of nanocomposites have been studied at room temperature under green light (max = 535 nm) illumination in the presence of 0.12-2 ppm NO2 in air. It has been demonstrated that sensitization with type II heterostructure ZnSe@CdS with staggered gap provides the rapid growth of effective photoresponse with the increase in the NO2 concentration in air and the highest sensor sensitivity toward NO2. We believe that the use of core-shell QDs with spatial charge separation opens new possibilities in the development of light-activated gas sensors working without thermal heating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487641600002 Publication Date 2019-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes ; This work was financially supported by RFBR grant No. 1653-76001 (RFBR – ERA.Net FONSENS 096) and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 26520408). AC acknowledges support from the RFBR grant No. 18-33-01004. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163776 Serial 5390  
Permanent link to this record
 

 
Author Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S. url  doi
openurl 
  Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
  Year 2018 Publication Materials Abbreviated Journal Materials  
  Volume 11 Issue 11 Pages 1304  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000444112800041 Publication Date 2018-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.654 Times cited 15 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654  
  Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064  
Permanent link to this record
 

 
Author Naberezhnyi, D.; Rumyantseva, M.; Filatova, D.; Batuk, M.; Hadermann, J.; Baranchikov, A.; Khmelevsky, N.; Aksenenko, A.; Konstantinova, E.; Gaskov, A. url  doi
openurl 
  Title Effects of Ag additive in low temperature CO detection with In2O3 based gas sensors Type A1 Journal article
  Year 2018 Publication Nanomaterials Abbreviated Journal  
  Volume 8 Issue 10 Pages 801  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanocomposites In2O3/Ag obtained by ultraviolet (UV) photoreduction and impregnation methods were studied as materials for CO sensors operating in the temperature range 25-250 degrees C. Nanocrystalline In2O3 and In2O3/Ag nanocomposites were characterized by X-ray diffraction (XRD), single-point Brunauer-Emmet-Teller (BET) method, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The active surface sites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy and thermo-programmed reduction with hydrogen (TPR-H-2) method. Sensor measurements in the presence of 15 ppm CO demonstrated that UV treatment leads to a complete loss of In2O3 sensor sensitivity, while In2O3/Ag-UV nanocomposite synthesized by UV photoreduction demonstrates an increased sensor signal to CO at T < 200 degrees C. The observed high sensor response of the In2O3/Ag-UV nanocomposite at room temperature may be due to the realization of an additional mechanism of CO oxidation with participation of surface hydroxyl groups associated via hydrogen bonds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451174100057 Publication Date 2018-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156335 Serial 7842  
Permanent link to this record
 

 
Author Kutukov, P.; Rumyantseva, M.; Krivetskiy, V.; Filatova, D.; Batuk, M.; Hadermann, J.; Khmelevsky, N.; Aksenenko, A.; Gaskov, A. url  doi
openurl 
  Title Influence of Mono- and Bimetallic PtOx, PdOx, PtPdOx Clusters on CO Sensing by SnO2 Based Gas Sensors Type A1 Journal Article
  Year 2018 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 8 Issue 11 Pages 917  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract To obtain a nanocrystalline SnO2 matrix and mono- and bimetallic nanocomposites SnO2/Pd, SnO2/Pt, and SnO2/PtPd, a flame spray pyrolysis with subsequent impregnation was used. The materials were characterized using X-ray diffraction (XRD), a single-point BET method, transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The electronic state of the metals in mono- and bimetallic clusters was determined using X-ray photoelectron spectroscopy (XPS). The active surface sites were investigated using the Fourier Transform infrared spectroscopy (FTIR) and thermo-programmed reduction with hydrogen (TPR-H-2) methods. The sensor response of blank SnO2 and nanocomposites had a carbon monoxide (CO) level of 6.7 ppm and was determined in the temperature range 60-300 degrees C in dry (Relative Humidity (RH) = 0%) and humid (RH = 20%) air. The sensor properties of the mono- and bimetallic nanocomposites were analyzed on the basis of information on the electronic state, the distribution of modifiers in SnO2 matrix, and active surface centers. For SnO2/PtPd, the combined effect of the modifiers on the electrophysical properties of SnO2 explained the inversion of sensor response from n- to p-types observed in dry conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451316100052 Publication Date 2018-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 7 Open Access Not_Open_Access  
  Notes This research was funded by the Russian Ministry of Education and Sciences (Agreement No. 14.613.21.0075, RFMEFI61317X0075). Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:155767 Serial 5139  
Permanent link to this record
 

 
Author Quintelier, M.; Perkisas, T.; Poppe, R.; Batuk, M.; Hendrickx, M.; Hadermann, J. url  doi
openurl 
  Title Determination of spinel content in cycled Li1.2Ni0.13Mn0.54Co0.13O2 using three-dimensional electron diffraction and precession electron diffraction Type A1 Journal article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 11 Pages 1989-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract Among lithium battery cathode materials, Li1.2Ni0.13Mn0.54Co0.13O2 (LR-NMC) has a high theoretical capacity, but suffers from voltage and capacity fade during cycling. This is partially ascribed to transition metal cation migration, which involves the local transformation of the honeycomb layered structure to spinel-like nano-domains. Determination of the honeycomb layered/spinel phase ratio from powder X-ray diffraction data is hindered by the nanoscale of the functional material and the domains, diverse types of twinning, stacking faults, and the possible presence of the rock salt phase. Determining the phase ratio from transmission electron microscopy imaging can only be done for thin regions near the surfaces of the crystals, and the intense beam that is needed for imaging induces the same transformation to spinel as cycling does. In this article, it is demonstrated that the low electron dose sufficient for electron diffraction allows the collection of data without inducing a phase transformation. Using calculated electron diffraction patterns, we demonstrate that it is possible to determine the volume ratio of the different phases in the particles using a pair-wise comparison of the intensities of the reflections. Using this method, the volume ratio of spinel structure to honeycomb layered structure is determined for a submicron sized crystal from experimental three-dimensional electron diffraction (3D ED) and precession electron diffraction (PED) data. Both twinning and the possible presence of the rock salt phase are taken into account. After 150 charge-discharge cycles, 4% of the volume in LR-NMC particles was transformed irreversibly from the honeycomb layered structure to the spinel structure. The proposed method would be applicable to other multi-phase materials as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000815310500001 Publication Date 2021-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.457 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.457  
  Call Number UA @ admin @ c:irua:189468 Serial 7080  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: