|   | 
Details
   web
Records
Author Ghosh, S.; Gaspari, R.; Bertoni, G.; Spadaro, M.C.; Prato, M.; Turner, S.; Cavalli, A.; Manna, L.; Brescia, R.
Title Pyramid-Shaped Wurtzite CdSe Nanocrystals with Inverted Polarity Type (down) A1 Journal article
Year 2015 Publication ACS nano Abbreviated Journal Acs Nano
Volume 9 Issue 9 Pages 8537-8546
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We report on pyramid-shaped wurtzite cadmium selenide (CdSe) nanocrystals (NCs), synthesized by hot injection in the presence of chloride ions as shape-directing agents, exhibiting reversed crystal polarity compared to former reports. Advanced transmission electron microscopy (TEM) techniques (image-corrected high-resolution TEM with exit wave reconstruction and probe-corrected high-angle annular dark field-scanning TEM) unequivocally indicate that the triangular base of the pyramids is the polar (0001) facet and their apex points toward the [0001] direction. Density functional theory calculations, based on a simple model of binding of Cl(-) ions to surface Cd atoms, support the experimentally evident higher thermodynamic stability of the (0001) facet over the (0001) one conferred by Cl(-) ions. The relative stability of the two polar facets of wurtzite CdSe is reversed compared to previous experimental and computational studies on Cd chalcogenide NCs, in which no Cl-based chemicals were deliberately used in the synthesis or no Cl(-) ions were considered in the binding models. Self-assembly of these pyramids in a peculiar clover-like geometry, triggered by the addition of oleic acid, suggests that the basal (polar) facet has a density and perhaps type of ligands significantly different from the other three facets, since the pyramids interact with each other exclusively via their lateral facets. A superstructure, however with no long-range order, is observed for clovers with their (0001) facets roughly facing each other. The CdSe pyramids were also exploited as seeds for CdS pods growth, and the peculiar shape of the derived branched nanostructures clearly arises from the inverted polarity of the seeds.
Address Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT) , via Morego 30, I-16163 Genova, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000360323300085 Publication Date 2015-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 16 Open Access
Notes PMID:26203791 Approved Most recent IF: 13.942; 2015 IF: 12.881
Call Number c:irua:127807 Serial 3956
Permanent link to this record
 

 
Author Kerkhofs, S.; Leroux, F.; Allouche, L.; Mellaerts, R.; Jammaer, J.; Aerts, A.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Martens, J.A.;
Title Single-step alcohol-free synthesis of coreshell nanoparticles of \gamma-casein micelles and silica Type (down) A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 49 Pages 25650-25657
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new, single-step protocol for wrapping individual nanosized β-casein micelles with silica is presented. This biomolecule-friendly synthesis proceeds at low protein concentration at almost neutral pH, and makes use of sodium silicate instead of the common silicon alkoxides. This way, formation of potentially protein-denaturizing alcohols can be avoided. The pH of the citrate-buffered synthesis medium is close to the isoelectric point of β-casein, which favours micelle formation. A limited amount of sodium silicate is added to the protein micelle suspension, to form a thin silica coating around the β-casein micelles. The size distribution of the resulting proteinsilica structures was characterized using DLS and SAXS, as well as 1H NMR DOSY with a dedicated pulsed-field gradient cryo-probehead to cope with the low protein concentration. The degree of silica-condensation was investigated by 29Si MAS NMR, and the nanostructure was revealed by advanced electron microscopy techniques such as ESEM and HAADF-STEM. As indicated by the combined characterization results, a silica shell of 2 nm is formed around individual β-casein micelles giving rise to separate protein coresilica shell nanoparticles of 17 nm diameter. This alcohol-free method at mild temperature and pH is potentially suited for packing protein molecules into bio-compatible silica nanocapsules for a variety of applications in biosensing, therapeutic protein delivery and biocatalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000338434500025 Publication Date 2014-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 3 Open Access OpenAccess
Notes Fwo; 262348 Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:125382 Serial 3027
Permanent link to this record
 

 
Author Shi, H.; Frenzel, J.; Martinez, G.T.; Van Rompaey, S.; Bakulin, A.; Kulkova, A.; Van Aert, S.; Schryvers, D.
Title Site occupation of Nb atoms in ternary Ni-Ti-Nb shape memory alloys Type (down) A1 Journal article
Year 2014 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 74 Issue Pages 85-95
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nb occupancy in the austenite B2-NiTi matrix and Ti2Ni phase in NiTiNb shape memory alloys was investigated by aberration-corrected scanning transmission electron microscopy and precession electron diffraction. In both cases, Nb atoms were found to prefer to occupy the Ti rather than Ni sites. A projector augmented wave method within density functional theory was used to calculate the atomic and electronic structures of the austenitic B2-NiTi matrix phase and the Ti2Ni precipitates both with and without addition of Nb. The obtained formation energies and analysis of structural and electronic characteristics explain the preference for Ti sites for Nb over Ni sites.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000338621400009 Publication Date 2014-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 21 Open Access
Notes Approved Most recent IF: 5.301; 2014 IF: 4.465
Call Number UA @ lucian @ c:irua:118334 Serial 3028
Permanent link to this record
 

 
Author Moshnyaga, V.; Sudheendra, L.; Lebedev, O.I.; Koster, S.A.; Gehrke, K.; Shapoval, O.; Belenchuk, A.; Damaschke, B.; Van Tendeloo, G.; Samwer, K.
Title A-site ordering versus electronic inhomogeneity in colossally magnetoresistive manganite films Type (down) A1 Journal article
Year 2006 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 97 Issue 10 Pages 107205,1-4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000240384300058 Publication Date 2006-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 43 Open Access
Notes Approved Most recent IF: 8.462; 2006 IF: 7.072
Call Number UA @ lucian @ c:irua:60786 Serial 3029
Permanent link to this record
 

 
Author Turner, S.; Egoavil, R.; Batuk, M.; Abakumov, A.A.; Hadermann, J.; Verbeeck, J.; Van Tendeloo, G.
Title Site-specific mapping of transition metal oxygen coordination in complex oxides Type (down) A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 101 Issue 24 Pages 241910
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate site-specific mapping of the oxygen coordination number for transition metals in complex oxides using atomically resolved electron energy-loss spectroscopy in an aberration-corrected scanning transmission electron microscope. Pb2Sr2Bi2Fe6O16 contains iron with a constant Fe3+ valency in both octahedral and tetragonal pyramidal coordination and is selected to demonstrate the principle of site-specific coordination mapping. Analysis of the site-specific Fe-L2,3 data reveals distinct variations in the fine structure that are attributed to Fe in a six-fold (octahedron) or five-fold (distorted tetragonal pyramid) oxygen coordination. Using these variations, atomic resolution coordination maps are generated that are in excellent agreement with simulations.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000312490000035 Publication Date 2012-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access
Notes Fwo; Countatoms; Vortex; Esteem 312483; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:105302UA @ admin @ c:irua:105302 Serial 3030
Permanent link to this record
 

 
Author Shestakov, M.V.; Meledina, M.; Turner, S.; Tikhomirov, V.K.; Verellen, N.; Rodríguez, V.D.; Velázquez, J.J.; Van Tendeloo, G.; Moshchalkov, V.V.
Title The size and structure of Ag particles responsible for surface plasmon effects and luminescence in Ag homogeneously doped bulk glass Type (down) A1 Journal article
Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 114 Issue 7 Pages 073102-73105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract As-prepared and heat-treated oxyfluoride glasses, co-doped with Ag nanoclusters/nanoparticles, are prepared at 0.15 at. % Ag concentration. The as-prepared glass shows an absorption band in the UV/violet attributed to the presence of amorphous Ag nanoclusters with an average size of 1.1 nm. The luminescence spectra of the untreated glass can also be ascribed to these Ag nanoclusters. Upon heat-treatment, the clusters coalesce into Ag nanoparticles with an average size of 2.3 nm, and the glasses show an extra surface plasmon absorption band in the visible. These particles, however, cease to emit due to ascribing plasmonic properties of bulk silver.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000323510900003 Publication Date 2013-08-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 19 Open Access
Notes Fwo Approved Most recent IF: 2.068; 2013 IF: 2.185
Call Number UA @ lucian @ c:irua:109455 Serial 3031
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Zgirski, M.; Peeters, F.M.; Arutyunov, K.
Title Size-dependent enhancement of superconductivity in Al and Sn nanowires: shape-resonance effect Type (down) A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue 5 Pages 052502,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000240238400015 Publication Date 2007-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 95 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:60806 Serial 3034
Permanent link to this record
 

 
Author Milants, K.; Verheyden, J.; Barancira, T.; Deweerd, W.; Pattyn, H.; Bukshpan, S.; Williamson, D.L.; Vermeiren, F.; Van Tendeloo, G.; Vlekken, C.; Libbrecht, S.; van Haesendonck, C.
Title Size distribution and magnetic behavior of lead inclusions in silicon single crystals Type (down) A1 Journal article
Year 1997 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 81 Issue 5 Pages 2148-2152
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1997WK08800017 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 8 Open Access
Notes Approved Most recent IF: 2.068; 1997 IF: 1.630
Call Number UA @ lucian @ c:irua:21433 Serial 3035
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title Size effects and strain state of Ga1-xInxAs/GaAs multiple quantum wells: Monte Carlo study Type (down) A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 78 Issue 16 Pages 165326,1-165326,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The effect of the size of the GaAs barrier and the Ga1−xInxAs well on the structural properties of a Ga1−xInxAs/GaAs multiple quantum well structure is investigated using the Metropolis Monte Carlo approach based on a well-parametrized Tersoff potential. It is found that within the well the Ga-As and In-As bond lengths undergo contractions whose magnitude increases with increasing In content in sharp contrast with bond-length variations in the bulk Ga1−xInxAs systems. For fixed barrier size and In content, the contraction of the bonds is also found to increase with increasing size of the well. Using the local atomic structure of the heterostructures, a more local analysis of the strain state of the systems is given and comparison with the prediction of macroscopic continuum elasticity theory shows deviations from the latter.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000260574500084 Publication Date 2008-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:72920 Serial 3036
Permanent link to this record
 

 
Author Maignan, A.; Martin, C.; Van Tendeloo, G.; Hervieu, M.; Raveau, B.
Title Size mismatch : a crucial factor for generating a spin-glass insulator in manganites Type (down) A1 Journal article
Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 60 Issue 22 Pages 15214-15219
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Thr structural, electronic, and magnetic properties of the highly mismatched perovskite oxides, Th(0.35)A(0.65)MnO(3), where Ais for the alkaline earth divalent cations (Ca, Ba, Sr), which are all characterized by the same large tolerance factor (t=0.934), have been investigated by using electron microscopy, electrical resistivity, magnetic susceptibility, and magnetization. It is clearly established that a transition from ferromagnetic metallic towards spin-glass insulator samples is induced as the A-site cationic size mismatch is increased. Moreover, the magnetoresistance (MR) properties of these manganites are strongly reduced for the spin-glass insulators, demonstrating that the A-sire cationic disorder is detrimental for the colossal MR properties. Based on these results, a new electronic and magnetic diagram is established that shows that the A-site disorder, rather than the A-site average cationic size (or t) is the relevant factor for generating spin-glass insulating manganites. [S0163-1829(99)01746-4].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000084631600039 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 75 Open Access
Notes Approved Most recent IF: 3.836; 1999 IF: NA
Call Number UA @ lucian @ c:irua:104280 Serial 3038
Permanent link to this record
 

 
Author De Trizio, L.; Figuerola, A.; Manna, L.; Genovese, A.; George, C.; Brescia, R.; Saghi, Z.; Simonutti, R.; van Huis, M.; Falqui, A.
Title Size-tunable, hexagonal plate-like Cu3P and Janus-like Cu-Cu3P nanocrystals Type (down) A1 Journal article
Year 2012 Publication ACS nano Abbreviated Journal Acs Nano
Volume 6 Issue 1 Pages 32-41
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We describe two synthesis approaches to colloidal Cu3P nanocrystals using trioctylphosphine (TOP) as phosphorus precursor. One approach is based on the homogeneous nucleation of small Cu3P nanocrystals with hexagonal plate-like morphology and with sizes that can be tuned from 5 to 50 nm depending on the reaction time. In the other approach, metallic Cu nanocrystals are nucleated first and then they are progressively phosphorized to Cu3P. In this case, intermediate Janus-like dimeric nanoparticles can be isolated, which are made of two domains of different materials, Cu and Cu3P, sharing a flat epitaxial interface. The Janus-like nanoparticles can be transformed back to single-crystalline copper particles if they are annealed at high temperature under high vacuum conditions, which makes them an interesting source of phosphorus. The features of the Cu Cu3P Janus-like nanoparticles are compared with those of the Wiped microstructure discovered more than two decades ago in the rapidly quenched Cu Cu3P eutectic of the Cu P alloy, suggesting that other alloy/eutectic systems that display similar behavior might give origin to nanostructures with flat, epitaxial Interface between domains of two diverse materials. Finally, the electrochemical properties of the copper phosphide plates are studied, and they are found to be capable of undergoing lithiation/delithiation through a displacement reaction, while the Janus-like Cu Cu3P particles do not display an electrochemical behavior that would make them suitable for applications in batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000299368300006 Publication Date 2011-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 60 Open Access
Notes Approved Most recent IF: 13.942; 2012 IF: 12.062
Call Number UA @ lucian @ c:irua:99172 Serial 3039
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Batuk, M.; d' Hondt, H.; Tyablikov, O.A.; Rozova, M.G.; Pokholok, K.V.; Filimonov, D.S.; Sheptyakov, D.V.; Tsirlin, A.A.; Niermann, D.; Hemberger, J.; Van Tendeloo, G.; Antipov, E.V.
Title Slicing the Perovskite structure with crystallographic shear planes : the AnBnO3n-2 homologous series Type (down) A1 Journal article
Year 2010 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 49 Issue 20 Pages 9508-9516
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new AnBnO3n−2 homologous series of anion-deficient perovskites has been evidenced by preparation of the members with n = 5 (Pb2.9Ba2.1Fe4TiO13) and n = 6 (Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16) in a single phase form. The crystal structures of these compounds were determined using a combination of transmission electron microscopy and X-ray and neutron powder diffraction (S.G. Ammm, a = 5.74313(7), b = 3.98402(4), c = 26.8378(4) Å, RI = 0.035, RP = 0.042 for Pb2.9Ba2.1Fe4TiO13 and S.G. Imma, a = 5.7199(1), b = 3.97066(7), c = 32.5245(8) Å, RI = 0.032, RP = 0.037 for Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16). The crystal structures of the AnBnO3n−2 homologues are formed by slicing the perovskite structure with (01)p crystallographic shear (CS) planes. The shear planes remove a layer of oxygen atoms and displace the perovskite blocks with respect to each other by the 1/2[110]p vector. The CS planes introduce edge-sharing connections of the transition metal−oxygen polyhedra at the interface between the perovskite blocks. This results in intrinsically frustrated magnetic couplings between the perovskite blocks due to a competition of the exchange interactions between the edge- and the corner-sharing metal−oxygen polyhedra. Despite the magnetic frustration, neutron powder diffraction and Mssbauer spectroscopy reveal that Pb2.9Ba2.1Fe4TiO13 and Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16 are antiferromagnetically ordered below TN = 407 and 343 K, respectively. The Pb2.9Ba2.1Fe4TiO13 and Pb3.8Bi0.2Ba2Fe4.2Ti1.8O16 compounds are in a paraelectric state in the 5−300 K temperature range.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000282783400051 Publication Date 2010-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 23 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 4.857; 2010 IF: 4.326
Call Number UA @ lucian @ c:irua:84963 Serial 3041
Permanent link to this record
 

 
Author Bogomolova, A.; Hruby, M.; Panek, J.; Rabyk, M.; Turner, S.; Bals, S.; Steinhart, M.; Zhigunov, A.; Sedlacek, O.; Stepanek, P.; Filippov, S.K.;
Title Small-angle X-ray scattering and light scattering study of hybrid nanoparticles composed of thermoresponsive triblock copolymer F127 and thermoresponsive statistical polyoxazolines with hydrophobic moieties Type (down) A1 Journal article
Year 2013 Publication Journal of applied crystallography Abbreviated Journal J Appl Crystallogr
Volume 46 Issue 6 Pages 1690-1698
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A combination of new thermoresponsive statistical polyoxazolines, poly[(2-butyl-2-oxazoline)-stat-(2-isopropyl-2-oxazoline)] [pBuOx-co-piPrOx], with different hydrophobic moieties and F127 surfactant as a template system for the creation of thermosensitive nanoparticles for radionuclide delivery has recently been tested [Pánek, Filippov, Hrubý, Rabyk, Bogomolova, Kučka Stěpánek (2012). Macromol. Rapid Commun.33, 16831689]. It was shown that the presence of the thermosensitive F127 triblock copolymer in solution reduces nanoparticle size and polydispersity. This article focuses on a determination of the internal structure and solution properties of the nanoparticles in the temperature range from 288 to 312 K. Here, it is demonstrated that below the cloud point temperature (CPT) the polyoxazolines and F127 form complexes that co-exist in solution with single F127 molecules and large aggregates. When the temperature is raised above the CPT, nanoparticles composed of polyoxazolines and F127 are predominant in solution. These nanoparticles could be described by a spherical shell model. It was found that the molar weight and hydrophobicity of the polymer do not influence the size of the outer radius and only slightly change the inner radius of the nanoparticles. At the same time, molar weight and hydrophobicity did affect the process of nanoparticle formation. In conclusion, poly(2-oxazoline) molecules are fully incorporated inside of F127 micelles, and this result is very promising for the successful application of such systems in radionuclide delivery.
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000327070000020 Publication Date 2013-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8898; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 18 Open Access
Notes 262348 Esmi; Fwo; Iap-Pai Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:112420 Serial 3042
Permanent link to this record
 

 
Author Jones, L.; Yang, H.; Pennycook, T.J.; Marshall, M.S.J.; Van Aert, S.; Browning, N.D.; Castell, M.R.; Nellist, P.D.
Title Smart Align : a new tool for robust non-rigid registration of scanning microscope data Type (down) A1 Journal article
Year 2015 Publication Advanced Structural and Chemical Imaging Abbreviated Journal
Volume 1 Issue 1 Pages 8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias-voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the careful alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000218507000008 Publication Date 2015-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2198-0926; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 131 Open Access
Notes 312483 Esteem2; esteem2_jra2 Approved Most recent IF: NA
Call Number c:irua:126944 c:irua:126944 Serial 3043
Permanent link to this record
 

 
Author Smeulders, G.; van Oers, C.; Van Havenbergh, K.; Houthoofd, K.; Mertens, M.; Martens, J.A.; Bals, S.; Maes, B.U.W.; Meynen, V.; Cool, P.
Title Smart heating profiles for the synthesis of benzene bridged periodic mesoporous organosilicas Type (down) A1 Journal article
Year 2011 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
Volume 175 Issue Pages 585-591
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)
Abstract In this study the effects of the heating rate and heating time on the formation of crystal-like benzene bridged periodic mesoporous organosilicas (PMOs) are investigated. The time needed to heat up an autoclave during the hydrothermal treatment has shown to be crucial in the synthesis of PMOs, while the total duration of heating gave rise to only minor differences. By choosing a smart heating profile, superior PMO materials can be obtained in a short time. Different heating profiles in a range from one minute to one hour are adopted by microwave equipment and compared with conventional heating methods. The heating rate has a large influence on the porosity characteristics and the uniformity of the obtained particles. Moreover, two new alternative synthetic strategies to adopt the smart heating profile are presented, in order to give some possible solutions for the expensive microwave equipment.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000297875900069 Publication Date 2011-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited 7 Open Access
Notes Fwo; Goa-Bof Approved Most recent IF: 6.216; 2011 IF: 3.461
Call Number UA @ lucian @ c:irua:93630 Serial 3044
Permanent link to this record
 

 
Author Blandy, J.N.; Abakumov, A.M.; Christensen, K.E.; Hadermann, J.; Adamson, P.; Cassidy, S.J.; Ramos, S.; Free, D.G.; Cohen, H.; Woodruff, D.N.; Thompson, A.L.; Clarke, S.J.;
Title Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide Type (down) A1 Journal article
Year 2015 Publication APL materials Abbreviated Journal Apl Mater
Volume 3 Issue 3 Pages 041520
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides. (C) 2015 Author(s).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353828400027 Publication Date 2015-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 5 Open Access
Notes Approved Most recent IF: 4.335; 2015 IF: NA
Call Number c:irua:126021 Serial 3049
Permanent link to this record
 

 
Author Van Havenbergh, K.; Turner, S.; Driesen, K.; Bridel, J.-S.; Van Tendeloo, G.
Title Solidelectrolyte interphase evolution of carbon-coated silicon nanoparticles for lithium-ion batteries monitored by transmission electron microscopy and impedance spectroscopy Type (down) A1 Journal article
Year 2015 Publication Energy technology Abbreviated Journal Energy Technol-Ger
Volume 3 Issue 3 Pages 699-708
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The main drawbacks of silicon as the most promising anode material for lithium-ion batteries (theoretical capacity=3572 mAh g−1) are lithiation-induced volume changes and the continuous formation of a solidelectrolyte interphase (SEI) upon cycling. A recent strategy is to focus on the influence of coatings and composite materials. To this end, the evolution of the SEI, as well as an applied carbon coating, on nanosilicon electrodes during the first electrochemical cycles is monitored. Two specific techniques are combined: Transmission Electron Microscopy (TEM) is used to study the surface evolution of the nanoparticles on a very local scale, whereas electrochemical impedance spectroscopy (EIS) provides information on the electrode level. A TEMEELS fingerprint signal of carbonate structures from the SEI is discovered, which can be used to differentiate between the SEI and a graphitic carbon matrix. Furthermore, the shielding effect of the carbon coating and the thickness evolution of the SEI are described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357869100003 Publication Date 2015-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4288; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.789 Times cited Open Access
Notes IWT Flanders Approved Most recent IF: 2.789; 2015 IF: 2.824
Call Number c:irua:126676 Serial 3051
Permanent link to this record
 

 
Author van der Stam, W.; Akkerman, Q.A.; Ke, X.; van Huis, M.A.; Bals, S.; de Donega, C.M.
Title Solution-processable ultrathin size- and shape-controlled colloidal Cu2-xS nanosheets Type (down) A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 283-291
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ultrathin two-dimensional (2D) nanosheets (NSs) possess extraordinary properties that are attractive for both fundamental studies and technological devices. Solution-based bottom-up methods are emerging as promising routes to produce free-standing NSs, but the synthesis of colloidal NSs with well-defined size and shape has remained a major challenge. In this work, we report a novel method that yields 2 nm thick colloidal Cu2-xS NSs with well-defined shape (triangular or hexagonal) and size (100 nm to 3 mu m). The key feature of our approach is the use of a synergistic interaction between halides (Br or Cl) and copper-thiolate metal-organic frameworks to create a template that imposes 2D constraints on the Cu-catalyzed C-S thermolysis, resulting in nucleation and growth of colloidal 2D Cu2-xS NSs. Moreover, the NS composition can be postsynthetically tailored by exploiting topotactic cation exchange reactions. This is illustrated by converting the Cu2-xS NSs into ZnS and CdS NSs while preserving their size and shape. The method presented here thus holds great promise as a route to solution-processable compositionally diverse ultrathin colloidal NSs with well-defined shape and size.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000348085300036 Publication Date 2014-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 68 Open Access OpenAccess
Notes 335078 Colouratom; 246791 Countatoms; 312483 Esteem2; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:123865 c:irua:123865 Serial 3052
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Turner, S.; Hafideddine, Z.; Khasanova, N.R.; Antipov, E.V.; Van Tendeloo, G.
Title Solving the structure of Li ion battery materials with precession electron diffraction : application to Li2CoPo4F Type (down) A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 15 Pages 3540-3545
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of the Li2CoPO4F high-voltage cathode for Li ion rechargeable batteries has been completely solved from precession electron diffraction (PED) data, including the location of the Li atoms. The crystal structure consists of infinite chains of CoO4F2 octahedra sharing common edges and linked into a 3D framework by PO4 tetrahedra. The chains and phosphate anions together delimit tunnels filled with the Li atoms. This investigation demonstrates that PED can be successfully applied for obtaining structural information on a variety of Li-containing electrode materials even from single micrometer-sized crystallites.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000293357100019 Publication Date 2011-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 46 Open Access
Notes Fwo; Bof Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:90357 Serial 3053
Permanent link to this record
 

 
Author Schryvers, D.; Van Tendeloo, G.; van Landuyt, J.; Amelinckx, S.
Title Some examples of electron microscopy studies of microstructures and phase transitions in solids Type (down) A1 Journal article
Year 1995 Publication Meccanica Abbreviated Journal Meccanica
Volume 30 Issue Pages 433-438
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Milano Editor
Language Wos A1995TD08800003 Publication Date 2005-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-6455;1572-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.949 Times cited 1 Open Access
Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #
Call Number UA @ lucian @ c:irua:13170 Serial 3054
Permanent link to this record
 

 
Author Alonso, J.A.; López, M.J.; March, N.H.; Lamoen, D.
Title Some properties of a model liquid of C60 buckyballs Type (down) A1 Journal article
Year 2002 Publication Physics And Chemistry Of Liquids Abbreviated Journal Phys Chem Liq
Volume 40 Issue Pages 457
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000178012900008 Publication Date 2004-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9104;1029-0451; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.145 Times cited 4 Open Access
Notes Approved Most recent IF: 1.145; 2002 IF: 0.533
Call Number UA @ lucian @ c:irua:41407 Serial 3055
Permanent link to this record
 

 
Author Alekseeva, A.M.; Abakumov, A.M.; Leither-Jasper, A.; Schnelle, W.; Prots, Y.; Van Tendeloo, G.; Antipov, E.V.; Grin, Y.
Title Spatial separation of covalent, ionic, and metallic interactions in Mg11Rh18B8 and Mg3Rh5B3 Type (down) A1 Journal article
Year 2013 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 19 Issue 52 Pages 17860-17870
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structures of Mg11Rh18B8 and Mg3Rh5B3 have been investigated by using single-crystal X-ray diffraction. Mg11Rh18B8: space group P4/mbm; a=17.9949(7), c=2.9271(1)angstrom; Z=2. Mg3Rh5B3: space group Pmma; a=8.450(2), b=2.8644(6), c=11.602(2)angstrom; Z=2. Both crystal structures are characterized by trigonal prismatic coordination of the boron atoms by rhodium atoms. The [BRh6] trigonal prisms form arrangements with different connectivity patterns. Analysis of the chemical bonding by means of the electron-localizability/electron-density approach reveals covalent BRh interactions in these arrangements and the formation of BRh polyanions. The magnesium atoms that are located inside the polyanions interact ionically with their environment, whereas, in the structure parts, which are mainly formed by Mg and Rh atoms, multicenter (metallic) interactions are observed. Diamagnetic behavior and metallic electron transport of the Mg11Rh18B8 and Mg3Rh5B3 phases are in agreement with the bonding picture and the band structure.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000328531000028 Publication Date 2013-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 5 Open Access
Notes Approved Most recent IF: 5.317; 2013 IF: 5.696
Call Number UA @ lucian @ c:irua:113697 Serial 3064
Permanent link to this record
 

 
Author Delville, R.; Shi, H.; James, R.D.; Schryvers, D.
Title Special microstructures and twin features in Ti50Ni50-x(Pd,Au)x at small hysteresis Type (down) A1 Journal article
Year 2011 Publication Diffusion and defect data : solid state data : part B : solid state phenomena Abbreviated Journal
Volume 172/174 Issue Pages 105-110
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The breaking of symmetry due to atomic displacements in the austenite-martensite phase transformation generally leads to their crystallographic incompatibility. Energy minimizing accommodation mechanisms such as martensite twinning have been recently shown to be a source of hysteresis and irreversible plastic deformation. Compatibility between the two phases can however be achieved by carefully tuning lattice parameters through composition change. A dramatic drop in hysteresis and novel microstructures such as a lowering of the amount of twin lamella are then observed. Related theoretical and simulation works also support the existence of such microstructures including peculiar self-accommodating configurations at near-compatibility. We present the transmission electron microscopy (TEM) study of these novel microstructures for the alloy systems Ti50Ni50-xPdx and Ti50Ni50-xAux where the composition was systemically tuned to approach perfect compatibility. High resolution imaging of the interface between austenite and martensite supplies evidences of compatibility at the atomic level.
Address
Corporate Author Thesis
Publisher Place of Publication Vaduz Editor
Language Wos 000303359700016 Publication Date 2011-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-9779; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:90155 Serial 3069
Permanent link to this record
 

 
Author Buffière, M.; Brammertz, G.; Oueslati, S.; El Anzeery, H.; Bekaert, J.; Ben Messaoud, K.; Köble, C.; Khelifi, S.; Meuris, M.; Poortmans, J.
Title Spectral current-voltage analysis of kesterite solar cells Type (down) A1 Journal article
Year 2014 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 17 Pages 175101-175105
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract Current-voltage analysis using different optical band pass filters has been performed on Cu2ZnSnSe4 and Cu2ZnSn(S, Se)(4) thin-film solar cells. When using red or orange light (i.e. wavelengths above 600 nm), a distortion appears in the I-V curve of the Cu2ZnSnSe4 solar cell, indicating an additional potential barrier to the current flow in the device for these conditions of illumination. This barrier is reduced when using a Cu2ZnSn(S, Se)(4) absorber. Numerical simulations demonstrate that the barrier visible under red light could be explained by a positive conduction band offset at the front interface coupled with compensating defects in the buffer layer.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000334504800003 Publication Date 2014-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 25 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:117170 Serial 3070
Permanent link to this record
 

 
Author Bittencourt, C.; van Lier, G.; Ke, X.; Suarez-Martinez, I.; Felten, A.; Ghijsen, J.; Van Tendeloo, G.; Ewels, C.O.
Title Spectroscopy and defect identification for fluorinated carbon nanotubes Type (down) A1 Journal article
Year 2009 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 10 Issue 6 Pages 920-925
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multi-wall carbon nanotubes (MWCNTs) were exposed to a CF4 radio-frequency (rf) plasma. High-resolution photoelectron spectroscopy shows that the treatment effectively grafts fluorine atoms onto the MWCNTs, altering the valence electronic states. Fluorine surface concentration can be tuned by varying the exposure time. Evaporation of gold onto MWCNTs is used to mark active site formation. High-resolution transmission electron microscopy coupled with density functional theory (DFT) modelling is used to characterise the surface defects formed, indicating that the plasma treatment does not etch the tube surface. We suggest that this combination of theory and microscopy of thermally evaporated gold atoms onto the CNT surface may be a powerful approach to characterise both surface defect density as well as defect type.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000265469200011 Publication Date 2009-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 14 Open Access
Notes Iuap; Fwo Approved Most recent IF: 3.075; 2009 IF: 3.453
Call Number UA @ lucian @ c:irua:77315 Serial 3073
Permanent link to this record
 

 
Author Gotter, R.; Fratesi, G.; Bartynski, R.A.; da Pieve, F.; Offi, F.; Ruocco, A.; Ugenti, S.; Trioni, M.I.; Brivio, G.P.; Stefani, G.
Title Spin-dependent on-site electron correlations and localization in itinerant f erromagnets Type (down) A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 109 Issue 12 Pages 126401
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Spin selectivity in angle-resolved Auger photoelectron coincidence spectroscopy (AR-APECS) is used to probe electron correlation in ferromagnetic thin films. In particular, exploiting the AR-APECS capability to discriminate Auger electron emission events characterized by valence hole pairs created either in the high or in the low total spin state, a strong correlation effect in the Fe M2,3VV Auger line shape (measured in coincidence with the Fe 3p photoelectrons) of Fe/Cu(001) thin films is detected and ascribed to interactions within the majority spin subband. Such an assignment follows from a close comparison of the experimental AR-APECS line shapes with the predictions of a model based on spin polarized density functional theory and the Cini-Sawatzky approach.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000308877000002 Publication Date 2012-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 9 Open Access
Notes Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:101841 Serial 3084
Permanent link to this record
 

 
Author Van Boxem, R.; Verbeeck, J.; Partoens, B.
Title Spin effects in electron vortex states Type (down) A1 Journal article
Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 102 Issue 4 Pages 40010-40016
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The recent experimental realization of electron vortex beams opens up a wide research domain previously unexplored. The present paper explores the relativistic properties of these electron vortex beams, and quantifies deviations from the scalar wave theory. It is common in electron optics to use the Schrodinger equation neglecting spin. The present paper investigates the role of spin and the total angular momentum J(z) and how it pertains to the vortex states. As an application, we also investigate if it is possible to use holographic reconstruction to create novel total angular momentum eigenstates in a transmission electron microscope. It is demonstrated that relativistic spin coupling effects disappear in the paraxial limit, and spin effects in holographically created electron vortex beams can only be exploited by using specialized magnetic apertures.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000321118600011 Publication Date 2013-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 11 Open Access
Notes 312483 Esteem2; N246791 Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 1.957; 2013 IF: 2.269
Call Number UA @ lucian @ c:irua:109852 Serial 3087
Permanent link to this record
 

 
Author Tsirlin, A.A.; Shpanchenko, R.V.; Antipov, E.V.; Bougerol, C.; Hadermann, J.; Van Tendeloo, G.; Schnelle, W.; Rosner, H.
Title Spin ladder compound Pb0.55Cd0.45V2O5: synthesis and investigation Type (down) A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue 10 Pages 104429,1-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000249786300074 Publication Date 2007-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:65594 Serial 3091
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Perez-Mato, J.M.; Petřiček, V.; Rosner, H.; Yang, T.; Greenblatt, M.
Title Spiral ground state against ferroelectricity in the frustrated magnet BiMnFe2O6 Type (down) A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 21 Pages 214402-214402,10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The spiral magnetic structure and underlying spin lattice of BiMnFe2O6 are investigated by low-temperature neutron powder diffraction and density functional theory band structure calculations. In spite of the random distribution of the Mn3+ and Fe3+ cations, this centrosymmetric compound undergoes a transition into an incommensurate antiferromagnetically ordered state below TN≃220 K. The magnetic structure is characterized by the propagation vector k=[0,β,0] with β≃0.14 and the P221211′(0β0)0s0s magnetic superspace symmetry. It comprises antiferromagnetic helixes propagating along the b axis. The magnetic moments lie in the ac plane and rotate about π(1+β)≃204.8-deg angle between the adjacent magnetic atoms along b. The spiral magnetic structure arises from the peculiar frustrated arrangement of exchange couplings in the ab plane. The antiferromagnetic coupling along the c axis cancels the possible electric polarization and prevents ferroelectricity in BiMnFe2O6.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000291197400001 Publication Date 2011-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90080 Serial 3107
Permanent link to this record
 

 
Author Georgieva, V.; Saraiva, M.; Jehanathan, N.; Lebelev, O.I.; Depla, D.; Bogaerts, A.
Title Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments Type (down) A1 Journal article
Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 42 Issue 6 Pages 065107,1-065107,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using a molecular dynamics model the crystallinity of MgxAlyOz thin films with a variation in the stoichiometry of the thin film is studied at operating conditions similar to the experimental operating conditions of a dual magnetron sputter deposition system. The films are deposited on a crystalline or amorphous substrate. The Mg metal content in the film ranged from 100% (i.e. MgO film) to 0% (i.e. Al2O3 film). The radial distribution function and density of the films are calculated. The results are compared with x-ray diffraction and transmission electron microscopy analyses of experimentally deposited thin films by the dual magnetron reactive sputtering process. Both simulation and experimental results show that the structure of the MgAlO film varies from crystalline to amorphous when the Mg concentration decreases. It seems that the crystalline MgAlO films have a MgO structure with Al atoms in between.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000263824200024 Publication Date 2009-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 37 Open Access
Notes Iwt Approved Most recent IF: 2.588; 2009 IF: 2.083
Call Number UA @ lucian @ c:irua:73246 Serial 3110
Permanent link to this record